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Abstract: An optimal dispatching strategy for a multi-source complementary power generation
system taking source–load uncertainty into account is proposed, in order to address the effects of
large-scale intermittent renewable energy consumption and power load instability on power grid
dispatching. The uncertainty problem is first converted into common situations for study, such as
load power forecasting and solar and wind power. The backward scenario reduction and Latin
hypercube sampling techniques are used to create these common situations. Based on this, a multi-
timescale coordinated optimum scheduling control method for a multi-source complementary power
generation system taking the demand response into account is presented, and the optimal operation
of a wind–PV–thermal-pumped storage hybrid system is examined. The time-of-use power price
optimizes the electrical load in the day-ahead pricing mode, and the two types of demand response
loads are selected in the day-ahead scheduling. Second, the lowest system operating cost and the
minimal day-ahead and intra-day adjustment of each source are established as the optimization
targets in the day-ahead and intra-day phases of the multi-timescale coordinated scheduling model
of the multi-source complementary system. The example study demonstrates that the scheduling
strategy may increase the amount of renewable energy consumed, minimize load fluctuations,
increase system stability, and further reduce operating expenses, proving the viability and efficiency
of the suggested strategy.

Keywords: Latin hypercube sampling; scenario analysis; demand response; multiple-timescale;
intra-day rolling; model predictive control; uncertainty

1. Introduction

The functioning of the power system’s dispatching is made more difficult by the
unpredictability posed by the expansion of availability to renewable energy sources such as
wind and PV [1]. The main solutions to the issue of renewable energy consumption are to
increase the consumption of renewable energy, depending on the complementary qualities
of different power sources; combine various forms of variable resources; and maximize
the performance of hybrid power systems. These strategies try to decrease the uncertainty
associated with wind and PV power generation [2,3]. The large-scale combination of
energy storage devices and renewable energy technologies is an effective means to absorb
new energy and reduce the overall energy consumption of the system. As a scarce clean
regulation resource, a pumped storage power station has a large capacity, fast response
speed, and outstanding peak regulation effect. Together, wind power, PV power, thermal
power, and pumped storage may increase the integration of renewable energy, increase
system dependability, and reduce pollutant emissions. This is based on the combination of
these two types of units. It is crucial to maximize the cost effectiveness and improve the
hybrid system’s performance. In addition, the fluctuation of the demand-side load increases
the difficulty of the operation and management of multi-source complementary power
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generation systems. The load curve can be improved by adding the demand response
mechanism to the system scheduling to use the pricing signal or incentive signal to transfer
or stop the load.

The issue of how to solve the problem of power system scheduling with source–
load uncertainty and to reduce the impact of source–load uncertainty on power grid
operation, so as to improve the economy and reliability of power grid operation, has become
an urgent problem to be solved for a high proportion of wind power and photovoltaic
access to the power grid system. Domestic and foreign scholars have conducted relevant
research on this issue. The conventional method is to apply the deterministic method to
deal with the randomness of renewable energy—that is, to use energy storage devices or
conventional power sources to stabilize the fluctuations caused by renewable energy. A day-
ahead multi-timescale scheduling technique for microgrids based on hybrid energy storage
systems is suggested in one article [4]. The operation of renewable energy sources, load
unpredictability, and the effects of fluctuating power on grid operation are all optimized by
the hybrid energy storage system composed of batteries and supercapacitors. However,
studies demonstrate that these scheduling techniques have issues such as high costs and
significant inaccuracies. Some studies have proposed to express the actual output of
wind power, photovoltaic, and load as the sum of the determined predicted value and
uncertain predicted error [5], so that an optimization model with uncertain variables can
be used to formulate a scheduling plan. Interval optimization, robust optimization, and
stochastic optimization are all methods of optimization that take uncertainty into account.
However, the economies of interval optimization and robust optimization are relatively
poor, whereas stochastic optimization can more closely link the system cost to the system
scheduling by using the probability distribution information of uncertain variables to the
model [6]. Among them, by using sampling to determine the probability distribution of
unknown variables, the stochastic optimization model based on scenario analysis creates
a large number of deterministic scenarios from uncertain variables [7]. One group [8]
suggests a random optimization control approach with energy storage and uses a random
optimization model to simulate a typical wind power output scenario. In another article [9],
a multi-timescale optimal scheduling strategy for an AC/DC hybrid microgrid based on
the scenario analysis method is proposed. The uncertainty of wind power, photovoltaic,
and load is simulated by scenario analysis technology, which effectively suppresses the
power fluctuation caused by multiple uncertainties of the microgrid. In another [10], the
scenario analysis approach is used to determine how electric vehicles would affect the best
power grid dispatch. In another article [11], considering the influence of the uncertainty of
wind and solar output on the optimization of regional integrated energy system, combined
with the model predictive control theory, the output of the unit is adjusted via correction
and rolling optimization to achieve the coordinated operation of multiple timescales. The
above research on the uncertainty of wind power, photovoltaic, and load fluctuation still
has the following shortcomings: (1) most of the above literature is based on energy storage
technology to stabilize power fluctuations at multiple timescales, and few models and
analyses of uncertain variables are carried out; (2) most of the existing research objects focus
on the analysis of small and medium-sized power generation systems such as microgrids,
active distribution networks, and park-integrated energy. There are few applications for
joint system planning involving large-scale wind power, photovoltaic grid-connected, and
pumped storage energy storage units.

On the other hand, for the wind and solar consumption of the multi-source combined
power generation system under a high proportion of renewable energy grid connection,
the wind and solar fluctuations are mainly suppressed by optimizing the energy structure
and increasing the energy storage device. One study [12] looked at maximizing the benefits
of the joint operation of wind power, thermal power, and pumped storage, and considered
the robust optimization strategy of multiple scenarios in different seasons to reduce the
operating cost of the system. Based on the coordinated complementary mechanism of
photovoltaic–energy storage, one group [13] dynamically adjusted the maximum power
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tracking operating point to suppress photovoltaic power fluctuations. In another work [14],
for wind power and pumped storage, a combined dispatching optimization technique is
recommended. A coordinated dispatching model is created to lessen wind curtailment,
and this model serves as the conceptual framework for the creation of a wind power output
system. As evidenced by the joint operating plan for pumped storage and a wind–PV
complementary power generation system suggested in one paper [15], the addition of
pumped storage may effectively suppress or compensate for the discrepancy between the
output of wind–PV power generation and the expected output. In addition, for the schedul-
ing strategy of renewable energy such as wind power and photovoltaic, many previous
studies have focused on the short-term optimal scheduling technology of hybrid power
systems [16,17]. The research on the coordinated operation of the two-resource hybrid
power generation systems mainly includes a wind–solar complementary system, hydro–
photovoltaic hybrid power generation system, and a hydro–wind hybrid power generation
system. A day-ahead optimum scheduling model for wind–PV complementary power
production with a unit spinning reserve and reservoir capacity as constraints is constructed
in one article [18], which also studies the optimal functioning of wind–PV–pumped storage
complementary power generation systems. The ideal day-ahead scheduling of hybrid
power systems, which include thermal power, pumped storage, wind power, and PV
power generation, was explored in another paper [19]. A day-ahead optimum scheduling
model of a multi-source complementary power generating system is designed to optimize
economic advantages and renewable energy consumption by taking into account the com-
plementary properties of various power sources. In another article [20], considering the
regulation of the demand-side load, an optimal scheduling model of renewable energy
and energy storage device coordination is constructed. It shows that the introduction of
the demand response can effectively realize the coordination of multiple types of energy
and load, and provide differentiated energy consumption forms according to the different
needs of users, so as to achieve efficient energy utilization. Another group [21] considers
the ultra-short-term power prediction method of renewable energy, and establishes an
intra-day rolling optimization model with minimum active power deviation and maximum
wind power consumption. Based on the idea of step-by-step refinement, one group [22]
established a multi-timescale scheduling model of source–storage–load considering the
distribution characteristics of energy storage, which can reduce the operation cost of the
system and improve the wind–solar accommodation capacity. The above research on renew-
able energy scheduling strategies still has the following shortcomings: (1) the coordinated
regulation of pumped storage, wind power, and photovoltaic at different timescales is
not considered in the joint operation optimization scheduling problem of pumped storage
and renewable energy; (2) the traditional open-loop scheduling process represented by the
refined time scale does not consider the feedback correction of the actual system to the
optimal control process.

In summary, on the basis of considering the uncertainty of source–load, this paper
proposes a multi-timescale optimal scheduling method for hybrid power systems including
wind power, photovoltaic, thermal power, and pumped storage power generation, consid-
ering the demand response, by fully exploiting the complementary operation characteristics
of various energy sources. The day-ahead and intra-day optimal scheduling model of a
multi-source complementary system is established, and the coordinated scheduling model
of the joint system is extensively studied. The complementary operation is realized by
accurate joint scheduling, which provides a reference for the future demand response
project of multi-source complementary power generation systems. Compared with the
concepts of virtual power plants (VPPs) [23] and integrated energy systems (IES) [24], the
proposed system effectively alleviates the power fluctuation on the power supply side
while ensuring the economic operation of the multi-source complementary system. For
simplicity, the main contributions and innovations of this paper are as follows.

(1) The influence of uncertain factors such as wind power, photovoltaic, and load is
considered in the day-ahead stage. The power balance equation with uncertain
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variables in multiple scenarios is established, and the typical scenarios of wind power,
photovoltaic, and load power prediction are generated by Latin hypercube sampling
and backward scenario reduction technology. At the same time, the complementary
operation characteristics of wind, photovoltaic, thermal power units, and pumped
storage are analyzed, and the coordinated scheduling framework for the multi-source
complementary system is proposed according to different operation characteristics.
We provide scheduling strategies for multi-source complementary systems with
pumped storage.

(2) A multi-timescale coordinated scheduling strategy for multi-source complementary
systems is proposed. In the day-ahead stage, the minimum operating cost of the sys-
tem is taken as the optimization objective. In the intra-day stage, a rolling scheduling
model based on ultra short-term forecast data is proposed, and the minimum day-
ahead and intra-day adjustment of each source is taken as the optimization objective.
Considering various constraints, such as the system power balance, pumped storage
capacity, spinning reserve capacity, and demand response load, a multi-timescale co-
ordinated optimization scheduling model for the multi-source complementary system
is constructed.

(3) According to the advantages of the demand response, we fully consider the interaction
between the multi-source complementary power generation system and load demand
side. A pricing and incentive demand response model based on market elasticity is
created. The day-ahead scheduling and the introduction of the transferable load and
interruptible load into the multi-source complementary system’s optimum scheduling
model are considered. A future demand response project for a multi-source comple-
mentary system can use this analysis of the system’s overall impact of energy supply
and demand as a guide.

The remaining sections of this paper are as follows. The construction of the multi-
source complimentary system power generating system, each unit’s mathematical model,
and the wind–PV–load uncertainty modeling are all introduced in Section 2. Section 3
describes the day-ahead and intra-day scheduling models. Section 4 covers many numerical
simulations and describes case examples. Section 5 contains the conclusions.

2. Structure and Mathematical Model of Multi-Source Complementary Power
Gene-Ration System
2.1. System Structure

The wind farm, photovoltaic power station, thermal power plant, pumped storage
power station, power load, and dispatching center compose the multi-source complemen-
tary power generating system built in this article. The architecture of the system is shown
in Figure 1. The output coordination between wind, PV, thermal, and other units is referred
to as the multi-source complementary power generating system’s output characteristics.
To minimize the uncertainty of wind and PV output and anti-peaking characteristics, and
to track the imbalance between the wind and PV output curve and the load curve of the
receiving end area, daily complementary output characteristics—that is, by adjusting the
output of each unit and fully utilizing the adjustment ability of thermal power units—are
achieved. This results in a more closely matched relationship between the delivery curve
and the load curve of the receiving end area.

In the system, thermal power generation, wind turbines, and photovoltaic arrays are
the main energy sources; pumped storage is used as a storage medium, and the grid is used
as a backup (the grid cannot be used for storage). Due to the variability of renewable energy
generation, there are excess and insufficient generation periods associated with the load.
A portion of the power produced by the power producing side is sent to pumped storage
to be stored as potential energy, while another portion is used for direct grid connection.
Through the pump turbine, the pumped storage power plant switches the higher and
lower reservoirs. The pump is initiated to pump water for energy storage when the power
generated by the power producing side is more than the demand of the load end. While
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the system is operating at peak load, we start the turbine discharge to compensate for the
lack of output. Once the lower limit of thermal power generation is reached, renewable
power generation is activated as a priority.
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2.2. Thermal Power Output Characteristics

The production of thermal power is variable within a particular range, independent of
the weather or other effects, and highly controllable. The minimal technical output tends to
be situated between the minimum and maximum output, which may be as low as 30% of
the installed capacity [25]. The following formula splits the power regulation direction of
thermal power units into uphill and downhill.

ci ≥ βi,m + αi,m(PT−i − pi,m)

UitPi−min ≤ PT−it ≤ UitPi−max

−Rd
i ∆tUit − Pi−max(1−Uit) ≤ Pit − Pi(t−1) ≤ Ru

i ∆tUi(t−1) + Pi−min

(
1−Ui(t−1)

) (1)

In the t period, ci, βi,m, and αi,m are the fuel cost, fixed cost, and variable cost coefficient
of the unit; PT−i, pi,m are the output value of the unit and the left end of the m segment;
Uit is the power on state of the unit, indicated by 0, 1; Pi−min and Pi−max are the lower and
upper limit values of the unit’s output; Rd

i , Ru
i is the hourly landslide and climbing power

of the unit; ∆t is the time interval.

2.3. Mathematical Model of Pumped Storage Unit

The pumped storage units can start and stop and switch between different working
conditions in a short period of time, and they have the characteristics of flexible adjustment
and frequency regulation. The operation mode is to store electricity when the power load
is at a low ebb and generate electricity at a peak. The residual power is utilized to operate
the pump and transfer the water to the upper reservoir when the generation of renewable
energy power in the multi-source complementary system exceeds the load on a daily
regulated time scale. The turbine starts and powers the load when the demand for the load
cannot be fulfilled by the renewable energy power output. The minimum output power
of the turbine is set to 15% of the rated capacity [26], which is also the minimum output
power of the pump. The volume expression for the upper and lower reservoir pools using
the pump flow, turbine flow, and pumped storage unit is as follows:
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Qp(t) = Kp ∗ Ep(t)

Qg(t) = Et(t) ∗ Kt
−1

Vup
t = Vup

t−1 −Qg(t) + (1− α)Qp(t)

Vdown
t = Vdown

t−1 −Qp(t) + (1− β)Qg(t)

(2)

Here, Qp(t), Qg(t) are the pump flow rate and the turbine power generation flow,
m3/h; Ep(t), Et(t) are the energy input pump and the power generated by the turbine,
MWh; Kp, Kt are the pumping and power generation coefficients of the pump turbine.
At time t and time t − 1, the upper and lower reservoirs’ water volumes are Vup

t , Vdown
t ,

and Vup
t−1, Vdown

t−1 , respectively; α and β are the pumped storage unit’s respective water loss
coefficients for power production and pumping.

2.4. Wind Power–Photovoltaic–Load Uncertainty Model in Multiple Scenarios

In this study, scenario analysis is utilized to examine forecasts for wind, photovoltaic,
and load power.

Wind speed and wind power generation are connected. Weibull distribution is utilized
in this study to model the uncertainty of wind power output and represent the variation in
wind speed. According to its probability density function [27], the wind power output is
modeled as shown below.

Pw,t =


0, v < vi, v ≥ vo

Pw
v−vi
vr−vi

, vi ≤ v ≤ vr

Pw, vr ≤ v < vo

(3)

Here, in the t period, the Pw,t, and Pw are the output power and total installed capacity
of the unit, kW; vi, vo, and vr are the cut into wind speed, cut out wind speed, and rated
wind speed, m/s, respectively.

The photovoltaic intensity is linked to the output power characteristics of photovoltaic
power generation. The probability distribution model of irradiance in this study is described
using the beta distribution. The output power of photovoltaic power generation is modeled
according to its probability density function:

Pv,t =
Γ(α + β)

Γ(α) + Γ(β)

(
Pv,t/Pmax

v,t
)α−1

(
rmax − r

rmax

)β−1
(4)

Here, Pv,t is the photovoltaic power during t period, kW; Γ(·) is the gamma function;
α, β are shape parameters of beta distribution; Pmax

v,t is the greatest photovoltaic output
power in t period; r, rmax are the photovoltaic radiation intensity and maximum radiation
intensity, kw/m2.

The probability density function is as follows, since the load’s variation follows the
normal distribution [28]:

f (∆PL) = e−
(∆PL−µ)2

2δ2

/
δ
√

2π (5)

Here, ∆PL is the load fluctuation power; µ and δ2 are the expectation and variance of a
normal distribution, respectively.

Based on the above uncertainty model, this paper uses Latin hypercube sampling
(LHS) to generate a large number of random scenes [29]. The specific steps are as follows.

Step 1: Let X be an M-dimensional (M = 1,2, . . . , N) random variable. Yi = Fi is the
formula for the probability distribution function of wind power, photovoltaic power, and
load power, where i = 1, 2, . . . , M, and Yi is the function for the probability distribution of
wind power, photovoltaic power, and load power.

Step 2: Extract L samples in each element, and obtain the jth sampling xmj of the mth
element, where j = 1,2, . . . , L.
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Step 3: The extracted samples are randomly combined to obtain the L×N dimensional
sampling matrix B =

[
vi, cj, ek

]
of wind power, photovoltaic, and load power uncertainty.

Among them, vi = [vi1, vi2, . . . , viL], cj =
[
cj1, cj2, . . . , cjL

]
, ek = [ek1, ek2, . . . , ekL] are the lth

sampling data of wind speed, photovoltaic intensity, and load power, respectively.
Considering that the generation of a large number of scenes will increase the burden

of solving operations, in order to reduce the amount of calculation, the backward scene
reduction technology is used to reduce similar scenes. The reduced typical scene set can
well reflect the probability distribution of the original scene set. The specific steps are
as follows:

Step 1: Let the original scene set be B, and the scene set J that needs to be reduced in
the number of iterations is an empty set. Calculating the scene distance of any two scenes
forms the scene distance matrix D[w(Si), w

(
Sj
)
] = ‖w(Si), w

(
Sj
)
‖2, where w(Si) is the

uncertainty scene, Si and Sj are scene numbers, and ‖·‖ is the Euclidean distance operator
of vector space.

Step 2: The minimal distance probability PDi of the closest scene Sk to the scene Si is
calculated using the assumption that the likelihood of the scene Si occurring is pi. PDi =
pimin

{
D
[
w(Si), w

(
Sj
)]}

.
Step 3: Find the minimum pDb = minPDi in all the current scene sets C, where pDb is

the minimum distance probability of searching Si nearest scene Sk in all scene sets C.
Step 4: Update the scene set B and plan to reduce the scene set J, and update the scene

probability pi = pi + pDb.
Through Latin hypercube sampling, a set of 10,000 day-ahead scenarios is generated.

After backward reduction technology, the number of scenarios for wind power, photovoltaic
output, and load power is 5, which is used to reflect the uncertainty of wind power,
photovoltaic, and load. The power situation in each scenario is shown in Figure 2.
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3. Multi-Timescale Coordinated Optimal Scheduling Model
3.1. Optimal Strategy

The prediction accuracy of wind and photovoltaic output will be improved step-by-
step according to the continuous approximation of the timescale, and the disturbance to the
system will be smaller. Therefore, the optimal scheduling on multiple timescales, through
the timescale refinement, is achieved through step-by-step coordination to enhance the
ability to accept renewable energy. The multi-source complementary power production
system’s optimal scheduling strategy diagram for the day-ahead and the intra-day cases is
shown in Figure 3.

Energies 2023, 16, x FOR PEER REVIEW 9 of 23 
 

 

 

Figure 3. Diagram of the multi-source complementary power generating system’s optimal schedul-

ing method. 

(1) The impact of wind, PV, and load power unpredictability on scheduling is taken into 

account in the day-ahead scheduling plan. Based on the scenario analysis method, 

the uncertainty model of wind–PV–load is established to optimize the day-ahead out-

put. The time scale is set to 1 h, with a total of a 24 h execution cycle, and before the 

conclusion of the first day, a day-ahead scheduling plan for 24 periods on the second 

day is created based on the short-term forecast value. Determining the short-term 

forecast value of wind power and PV production is crucial for day-ahead scheduling; 

we obtain the short-term prediction value of user load power consumption, the out-

put value of each unit and its cost of operation, the call plan of the PDR load response, 

and the IDR load, and input them into the intra-day rolling optimization scheduling 

as the determined quantity. 

(2) The variance between the wind–PV–load ultra short-term forecast data and the ref-

erence value is determined in the intra-day rolling scheduling plan based on the an-

ticipated scheduling value of multi-scenario optimization scheduling. We set the 

time scale to 15 min, with a total of 4 h execution cycles and a total of 96 executions 

within a day, with a known ultra short-term forecast value continuously rolling cor-

rection day generation plan. All rolling schedules for the remaining five periods with 

the minimum load error of the day are developed during the last period ending in 

the first 4 h before the day. In order to correct the discrepancy between the day-ahead 

scheduling plan and the actual situation, intra-day rolling scheduling must be used 

to calculate the ultra-short-term prediction value of wind power and photovoltaic 

output; the ultra-short-term prediction of user load power consumption, the daily 

production of each unit, and the output of each unit before the day are used as the 

target quantities. In the final 15 min of the entire scheduling plan, the positive and 

negative spinning reserve capacity of the unit that the system ultimately calls is es-

tablished. This is carried out to ensure that the system accurately predicts infor-

mation and creates a spinning reserve plan to lower the spinning reserve cost. 

(3) The day-ahead scheduling plan serves as the foundation for the intra-day rolling 

Figure 3. Diagram of the multi-source complementary power generating system’s optimal
scheduling method.

(1) The impact of wind, PV, and load power unpredictability on scheduling is taken into
account in the day-ahead scheduling plan. Based on the scenario analysis method,
the uncertainty model of wind–PV–load is established to optimize the day-ahead
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output. The time scale is set to 1 h, with a total of a 24 h execution cycle, and before the
conclusion of the first day, a day-ahead scheduling plan for 24 periods on the second
day is created based on the short-term forecast value. Determining the short-term
forecast value of wind power and PV production is crucial for day-ahead scheduling;
we obtain the short-term prediction value of user load power consumption, the output
value of each unit and its cost of operation, the call plan of the PDR load response,
and the IDR load, and input them into the intra-day rolling optimization scheduling
as the determined quantity.

(2) The variance between the wind–PV–load ultra short-term forecast data and the ref-
erence value is determined in the intra-day rolling scheduling plan based on the
anticipated scheduling value of multi-scenario optimization scheduling. We set the
time scale to 15 min, with a total of 4 h execution cycles and a total of 96 executions
within a day, with a known ultra short-term forecast value continuously rolling cor-
rection day generation plan. All rolling schedules for the remaining five periods with
the minimum load error of the day are developed during the last period ending in
the first 4 h before the day. In order to correct the discrepancy between the day-ahead
scheduling plan and the actual situation, intra-day rolling scheduling must be used
to calculate the ultra-short-term prediction value of wind power and photovoltaic
output; the ultra-short-term prediction of user load power consumption, the daily
production of each unit, and the output of each unit before the day are used as the
target quantities. In the final 15 min of the entire scheduling plan, the positive and
negative spinning reserve capacity of the unit that the system ultimately calls is estab-
lished. This is carried out to ensure that the system accurately predicts information
and creates a spinning reserve plan to lower the spinning reserve cost.

(3) The day-ahead scheduling plan serves as the foundation for the intra-day rolling
optimization scheduling, which is based on it. The MPC method is used to carry
out rolling optimization for 96 periods during the day based on the ultra-short-term
forecast information of wind power and photovoltaic power output, in order to
effectively reduce the amount of intra-day adjustment of each source while ensuring
the effectiveness of the day-ahead scheduling plan and minimizing the impact of the
day-ahead scheduling plan.

The characteristics of the prediction information related to the timescale (the shorter
the timescale, the higher the prediction accuracy) are used to formulate a more accurate
scheduling plan through the multi-timescale coordinated optimal scheduling strategy of
multi-source complementary systems, and the complementary adjustment is realized by
fully utilizing the source–load coordination characteristics, boosting the use of renewable
energy as a result.

3.2. Demand Response Model

The demand response is separated into price-based and incentive-based segments
depending on the various user response strategies. This study presents the demand
response (DR) to optimize the electric load in accordance with time-of-use prices, adopts
price-based DR, achieves electric load transfer using a transferable load, and modifies the
transferable load in peak hours to the period of energy price underestimation. In order
to fulfill the goals of smoothing the load curve, peak load shifting, and enhancing the
dependability of the system, the interruptible load in the peak period is compensated using
the incentive demand response. In order to optimize the power load, the model adopts the
day-ahead pricing mode and describes how the grid price signal affects users’ electricity
consumption patterns using the price elasticity coefficient of the time-of-use electricity
price. The day-ahead scheduling determines the two forms of demand response loads.

3.2.1. Day-Ahead Load Model Based on PDR

In this paper, the elastic matrix method of electricity price elasticity is used to model
the response of the electric load, and its index is used to express the rate of change of the
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electric load and electricity price, i.e., to direct users to reasonably adjust their electricity
strategy through the time-of-use price. Based on the elasticity coefficient and elasticity
matrix [30], the transferable load model of users in the i period is

PSL,i = P0
SL,i

(
1 +

24

∑
j=1

ESL(i, j)∆Qj

Q0
j

)
(6)

where P0
SL,i is the initial value of the transferable load; ESL(i, j) is the price demand elasticity

matrix; Q0
j and ∆Qj are the initial electricity price and the change in electricity price; the

value range of time period i and j is 1~24.

3.2.2. Day-Ahead Load Model Based on IDR

The interruptible load is expressly referred to as the IDR response type in this study.
The interruptible load’s response procedure involves responding to the dispatching center’s
interruption request in a certain amount of time in order to meet the goals of reducing the
operational pressure on the system and obtaining a particular financial reward. Economic
compensation generally includes capacity compensation and power compensation, as
shown in a previous study [31]. The electrical load expression after user n adopts an
interruptible load in i period is as follows:

PIL,i = P0
IL,i −∑NIL

n=1 εn,iPIL−i,n (7)

where P0
IL,i and PIL,i are the electrical load requirements before and after the use of inter-

ruptible loads; εn,i is the interrupt state variable, represented by 0 and 1, where the value of
1 indicates the interrupt state, and the value of 0 indicates that the load is not interrupted;
PIL−i,n is the interruptible load value; and NIL is the number of interruptible users.

3.3. Day-Ahead Stochastic Optimal Scheduling Based on Multi-Scenario Technology
3.3.1. Objective Function

The day-ahead scheduling plan aims to minimize the system cost, and its expression
is as follows:

F = min ∑T
t=1

{
∑NT

i=1 Uit

[
f (PT−it) + Sit

(
1−Ui(t−1)

)
+ Cri

(
Ru

it, Rd
it

)]
+ ∑NH

k=1

(
Sgen

kt + Spum
kt

)}
f (PT−it) = aiP2

T−it + biPT−it + ci

Cri

(
Ru

it, Rd
it

)
= ku

itR
u
it + kd

itR
d
it

Sgen
kt = Sgen

k Igen
kt

(
Igen
kt − Igen

k(t−1)

)
Spum

kt = Spum
k Ipum

kt

(
Ipum
kt − Ipum

k(t−1)

)
(8)

Here, Uit shown as 1, 0, and is the ith thermal power unit’s start–stop condition; Sit is
the start-up cost of thermal power units; T is the total number of time periods, taken as
24; NT is the total number of thermal power units; NH is the total number of pumping and
storage units; f (PT−it) is the cost of generating electricity from thermal power units; PT−it
is the output value of the thermal power unit; ai, bi, and ci are the correlation coefficients of
the operating costs of thermal power units; Cri

(
Ru

it, Rd
it

)
is the spare cost of thermal power

units. The thermal power unit’s positive and negative spinning reserves are represented
by Ru

it and Rd
it in the time period; the positive and negative reserve costs of thermal power

units are known as ku
it and kd

it. When the value of Igen
kt is 1, it indicates that the pumped

storage unit is in the power generation condition in period t; Sgen
kt is the start-up cost of the

pumping unit k in the power generation condition during the t period; Sgen
k is the start-up

cost of the pumping and storage unit when it is in the power generation condition. When
the value of Ipum

kt is 1, it signifies that the pumped storage unit works in the pumping
condition for the duration of the specified time period. Spum

k denotes the start-up cost of
the pumping condition of the kth pumped storage unit.
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3.3.2. Constraint Condition
Power Balance Constraint

In order to ensure the safe and stable operation of the power grid, it is necessary
to maintain a balance between supply and demand, between the total power and load
demand. The existing grid power balance constraints are mostly based on the prediction
data of renewable energy sources and loads such as wind power and photovoltaics. In
order to facilitate the model solution, the prediction error is directly ignored, as shown in
Equation (9).

∑NW
x=1 PW−xt + ∑NV

y=1 PV−yt + ∑NT
i=1 PT−it + ∑NH

k=1 PH−kt = Ppre
Lt + ∆PDRt + ∆IDRt (9)

At the t moment, PW−xt, PV−yt, PT−it, and PH−kt indicate the output of wind turbines,
photovoltaic units, thermal power units, and pumped storage units, respectively. NW , NV ,
NT , and NH are the total number of wind turbines, photovoltaic units, thermal power units,
and pumped storage units, respectively; a PH−kt value greater than zero reflects the power
generation condition, and less than zero reflects the pumping condition; Ppre

Lt is the forecast
value of the electricity load; ∆PDRt and ∆IDRt are load response quantities.

In this paper, the power balance equation considering the uncertainty of wind power,
photovoltaic, and load is shown in Equation (10). The actual values of wind power,
photovoltaic output, and load power are expressed by the sum of the predicted value and
prediction error.

∑NW
x=1(PW−xt + εw,x) + ∑NV

y=1(PV−yt + εv,y) + ∑NT
i=1 PT−it + ∑NH

k=1 PH−kt =
(

Ppre
Lt + εL

)
+ ∆PDRt + ∆IDRt (10)

Here, εw,x, εv,y, and εL are the prediction errors of wind power, photovoltaic output,
and load power, respectively.

Due to the uncertainty of wind power, photovoltaic output, and the load power
prediction error, Equation (10) cannot be solved directly. In this paper, the scenario analysis
method is used to quantify it. According to the probability distribution function of wind
power, photovoltaic output, and load power fluctuation, multiple scenarios are generated,
which requires the balance of the supply and demand of electric energy in each scenario.
Ps

W−xt + εw,x is used to represent the actual output of wind turbines under scenario s,
Ps

V−yt + εv,y is used to represent the actual output of photovoltaic under scenario s, and Ps
Lt +

εL is used to represent the total load power under scenario s. The stochastic optimization
model with uncertain variables is transformed into a deterministic model for processing.
The power balance equation is shown in Equation (11):

∑NW
x=1

(
Ps

W−xt + εw,x
)
+∑NV

y=1

(
Ps

V−yt + εv,y

)
+∑NT

i=1 PT−it +∑NH
k=1 PH−kt = Ppre

Lt + εL (11)

Wind and Photovoltaic Output Constraints

It should be assured that the on-grid power of wind and PV is lower than its expected
value in the present situation before the day-ahead scheduling plan of the system is
developed. The output constraint is{

0 ≤ PW−t ≤ Ppre
W−t

0 ≤ PV−t ≤ Ppre
V−t

(12)

Here, the short-term forecast values for wind and photovoltaic output at time t are
Ppre

W−t, and Ppre
V−t.

Thermal Power Unit Constraints

The following are the minimum start-up and shutdown time restrictions for thermal
power units: {

Ton
it ≥ Ton

imin

To f f
it ≥ To f f

imin

(13)
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The thermal power units’ starting and stopping times are Ton
it and To f f

it , respectively,
while the minimal start-up and shutdown times are Ton

imin and Toff
imin.

Pumped Storage Constraints

The following are the power and storage capacity restrictions for pumped systems:

Vup
min ≤ Vup

t ≤ Vup
max

Vdown
min ≤ Vdown

t ≤ Vdown
max

PH−kt = Pgen
kt − Ppum

kt

ugen
kt Pgen

k,min ≤ Pgen
kt ≤ ugen

kt Pgen
k,max

upum
kt Ppum

k,min ≤ Ppum
kt ≤ upum

kt Ppum
k,max

(14)

Here, Vup
min, Vup

max, Vdown
min , and Vdown

max are the minimum and maximum capacity of the
upper and lower reservoirs, respectively; Pgen

kt , Ppum
kt are the power generation and pumping

power; ugen
kt , upum

kt are the power generation and pumping state variables, represented by 0
and 1; Pgen

k,min, Pgen
k,max, Ppum

k,min, Ppum
k,max are the minimum and maximum power of the unit when

it is in the power generation condition and pumping condition.

System Spinning Reserve Capacity Constraint

The output of the thermal power unit must be reduced when the actual output value
of renewable energy is greater than or equal to the predicted value. The negative spinning
reserve capacity constitutes a portion of the reduced output when the wind and PV output
are increased to increase the energy utilization rate.

Ru
it ≤

NT
∑

i=1
Uit(PT−it,max − PT−it) +

NW
∑

i=1
(PW−it,max − PW−it)+

∑NV
i=1(PV−it,max − PV−it) + ∑NH

i=1(PH−it,max − PH−it)

(15)

Rd
it ≤

NT
∑

i=1
Uit(PT−it − PT−it,min) +

NW
∑

i=1
(PW−it − PW−it,min)+

∑NV
i=1(PV−it − PV−it,min) + ∑NH

i=1(PH−it − PH−it,min)

(16)

At the t moment, Ru
it, Rd

it are the requirement value of the positive and negative
rotation spare capacity of the system; PT−it,max, PT−it,min, PW−it,max, PW−it,min, PV−it,max,
PV−it,min, PH−it,max, and PH−it,min are the maximum and minimum values of thermal power
unit output, wind turbine output, photovoltaic generator unit output, and pumped storage
unit output, respectively.

Demand Response Load Response Constraint

The total load before and after the demand response remains unchanged in a schedul-
ing cycle, and the load value after adding the demand response should be between the
maximum and minimum values of the original load.

P0
SL,i − PSL,max ≤ ∆PDRt ≤ P0

SL,i − PSL,min

P0
IL,t − PIL,max ≤ ∆IDRt ≤ P0

IL,t − PIL,min

∑24
t=1 ∆PL(t) = 0

(17)

Here, PSL,max, PSL,min, PIL,max, and PIL,min are the maximum and minimum values of
the price and excitation load responses, respectively.
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3.4. Rolling Power Generation Plan
3.4.1. Objective Function

In this study, the MPC approach is used to build an intra-day rolling optimal schedul-
ing model, and the control process is given a feedback corrective link. Through the predic-
tion model at a certain time and the measured value at this time, the prediction error in
the control process is continuously corrected to improve the system optimization accuracy.
Because the prediction accuracy of wind–light–load increases with the decrease in time
scale, this paper uses ultra short-term prediction data to optimize the intra-day scheduling.
Because ultra short-term prediction is not the focus of this study, it is not repeated. In order
to ensure that the intra-day adjustment of each source is as small as possible, the objective
function established in this paper is to minimize the difference between the actual output
vector and the target vector. Under the premise of adjusting the intra-day operating power
of each source to be as small as possible, the objective function is designed to ensure that
the actual output value of each source is closer to the day-ahead plan value, so that the
intra-day rolling plan can better modify the day-ahead plan. The objective function of
intra-day rolling optimization scheduling and the expression of each variable are as follows:

min(F) = ‖Y−YP‖2

Y =

{
PW(t + ∆t|t), PV(t + ∆t|t), PT(t + ∆t|t), PH(t + ∆t|t), . . . ,

PW(t + n∆t|t), PV(t + n∆t|t), PT(t + n∆t|t), PH(t + n∆t|t)

}

YP =

{
PW(t + ∆t), PV(t + ∆t), PT(t + ∆t), PH(t + ∆t), . . . ,

PW(t + n∆t), PV(t + n∆t), PT(t + n∆t), PH(t + n∆t)

} (18)

Here, the diagonal matrix Y represents the system’s actual output vector for the current
day, which is obtained from the day-ahead optimization scheduling of the system. YP is the
rolling optimization scheduling’s target vector for the current day; x(t + n∆t|t) represents
the output value of t + a∆t(a = 1, 2, . . . , n) that was anticipated by prediction at time t; n
represents all of the time intervals in the control time domain, where x represents the actual
daily production of thermal, wind, and pumped storage units; z(t + n∆t) is the desired
value for intra-day scheduling at t + a∆t, and z is the day-ahead output of the thermal,
wind–PV, and pumped storage units.

3.4.2. Constraint Condition

The intra-day rolling scheduling plan is subject to the same limitations as the day-
ahead plan, such as Formulas (9)–(16). In addition to the aforementioned requirements, the
intra-day rolling plan also has to abide by the following limitations.

PW,min ≤ PW(t + a∆t|t) ≤ PW,max

PV,min ≤ PW(t + a∆t|t) ≤ PV,max

PT,min ≤ PW(t + a∆t|t) ≤ PT,max

PH,min ≤ PW(t + a∆t|t) ≤ PH,max

(19)

The above formula shows that the predicted output value of t + a∆t at t time obtained
by the predicted t + a∆t time should be limited within the allowable range, and by solving
the scheduling model at this time while meeting different constraints, the control sequence
in the single control time domain may be obtained. The control time domain rolls forward
once according to the instructions issued in the previous time period, and then continues
the aforementioned procedure until the intra-day rolling scheduling is finished in order to
complete the optimization process.

3.5. Solution Method

The electric load curves before and after the demand response are derived by evalu-
ating PBDR and IBDR with a view to the scheduling model of the multi-source comple-
mentary power production system presented in this study. The day-ahead scheduling
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model is then resolved under the condition that certain constraints are satisfied. We obtain
the system’s component parts’ operational expenses. The intra-day plan also has to solve
the intra-day rolling optimization scheduling model with the least difference between
the actual output vector and the target vector in order to satisfy the restrictions of the
day-ahead plan and keep the actual output of each source within the permissible range.
The MATLAB platform uses the CPLEX solver.

4. Example Analysis
4.1. Data Parameter

We aim to test the viability of the suggested demand response and multi-timescale
coordination optimum dispatching approach of multi-source complementary generating
systems to consume wind and light and smooth out load variations. The day-ahead short-
term output predictions of the scenic farm group from a previous study [32] and random
sampling on the basis of the day-ahead forecasts are used to construct intra-day ultra
short-term output forecasts in this study. The simulation computation for this work is
built using the modified IEEE 30 node architecture, as illustrated in Figure 4. A wind
farm group of three wind farms with a combined installed capacity of 800 MW is shown
in the figure at node 7. Four PV power stations in a grouping with a combined installed
capacity of 1045 MW are located at node 3. At node 16, there is a pumped storage unit
with a 250 MW installed upstream pumping unit and a 250 MW installed downstream
generating unit. Five thermal power units have been installed, one each at nodes 1, 2,
8, 11, and 13. The system’s positive and negative spinning reserve demand values each
make up 10% of the system’s overall load [33]. The capacity of PDR and IDR in the system
accounts for 30 percent and 15 percent of the total load, respectively. The thermal power
unit specifications are shown in Table 1.
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Table 1. Parameters of thermal units.

Parameter Pmax/
MW

Pmin/
MW

rup, rdn/
MW·h−1

Ton/
MW·h−1

Toff/
MW·h−1

a/
USD·(MW2·h)−1

b/
USD·(MW·h)−1

c/
USD·h−1

G1 455 150 160 8 8 0.039 20.56 357.57
G2 130 20 70 5 5 0.062 28.18 345.49
G3 85 25 45 3 3 0.069 29.19 343.48
G4 80 20 40 3 3 0.069 29.19 343.48
G5 55 10 30 1 1 0.069 29.19 343.48

The power consumption at the load end is split into three segments in this paper: the
peak, flat, and valley. The peak period is 9:00–12:00 and 19:00–22:00. The normal period is
8:00–9:00, 12:00–19:00, 22:00–24:00; the valley period is 0:00~8:00. The average electricity
prices are 0.16, 0.098 and 0.050 USD/(KW·h), respectively. The coefficient of the electricity
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price demand elasticity matrix is shown in Table 2. The compensation price after load
interruption is 0.065 USD/(KW·h).

Table 2. Electricity price demand elasticity matrix coefficient.

Time Interval Talley Tlat Peak

valley −0.1 0.01 0.012
flat 0.01 −0.1 0.016

peak 0.012 0.016 −0.1

4.2. System Optimization Scheduling Results

Three models are given for simulation analysis.
Model 1: This is the optimal scheduling model without taking the demand response

into account; a wind, PV, and thermal multi-source complementary power generating
system does not contain pumped storage power plants. In order to adjust the peak of the
combined PV power station group and wind farm group’s power generation in order to
meet the load requirements, there are only five thermal power units in service.

Model 2: A scheduling model for a wind–PV thermal-pumped storage power produc-
ing system with pumped storage units is provided without taking the demand response
into consideration. After the use of energy storage devices, thermal power units and
pumped storage units govern the system.

Model 3: This is a model for the best scheduling of a wind, PV, thermal, and pumped
storage multi-source complimentary system that takes the demand response into account.

4.2.1. Analysis of Day-Ahead Stochastic Optimal Scheduling Results for Multi-Source
Complementary Systems

The size of the scene set is 10,000 when the day-ahead scene is generated by Latin
hypercube sampling. The number of scenes of wind power, photovoltaic output, and load
power after reduction is 5. The final scene sets of wind power, photovoltaic, and load after
reduction are shown in Figure 2. Figure 5 depicts the results of the optimal day-ahead
scheduling for Situations 1~3. The left-hand figure depicts the output value curve and load
curve of each unit, while the right-hand figure depicts the output curves of five thermal
power units.
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It can be obtained from Model 1 that the generalized load power is negative in the
eight periods of 0:00~4:00, 12:00~13:00, and 15:00~16:00; only wind and PV power are
being produced on the power generating side at this moment because the thermal power
unit is shut down. The figure makes it clear that, in this situation, a serious issue with
wind and photovoltaic defection will arise. The power generated on the power generation
side is not absorbed in time by the energy-using side, and the cumulative total amount of
wind and photovoltaic abandonment reaches 488.45 MW·h. In the 16 periods in which the
generalized load is positive, additional thermal power unit output is required since the
power side’s load requirement cannot be satisfied by the wind and PV production alone.
The output of the thermal power unit reaches its upper limit value Pi−max between the
hours of 20:00 and 21:00, and the power side is at its peak at this time, making it impossible
for the power supply side to meet the load demand of the power side. The horizontal
line in the illustration depicts the portion of the electric energy that is absent; hence, other
forms of power supply output must be introduced to match the high demand for electricity.
Additionally, the start–stop expenses for the thermal power unit are greatly increased by
frequent start–stop occurrences during the hours of 0:00 and 4:00 and 12:00 and 13:00.

As a result of the pumped storage power facility being added, Model 2 claims that,
in comparison to Model 1, there is no situation in which the output of the generation side
cannot satisfy the demand of the load side, but the peak value of the load curve is still
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too high. This system’s wind curtailment and photovoltaic curtailment are both zero. The
demand response has to be further integrated into the system to better smooth the load
curve and lower the output cost of the thermal power units.

Model 3 demonstrates how the time-of-use power pricing is utilized to direct the
customer to modify the electricity plan after taking the demand response into account.
During the hours of 0:00~8:00 and 22:00~24:00, the cost of power is relatively cheap. When
the demand response is taken into consideration, it is evident by comparing the load result
curves in the figure that the peak values of both the load result curve and the thermal
power unit output curve are significantly diminished, achieving the desired reduction in
electricity consumption during the peak load period.

Figure 6 depicts the electrical load curve before and following the demand response.
The peak load transfer and interruption are achieved to smooth the power consumption
curve by including the pricing and incentive demand response model into the day-ahead
scheduling, and the user demand side and the power supply side have improved two-way
communication.
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4.2.2. The Influence of Different Power Balance Equations on the Optimization Results

In order to analyze the influence of the power balance equation with wind power,
photovoltaic output, and load power prediction error on the day-ahead scheduling results,
in this paper, the following two models are constructed to deal with the power balance
constraints and carry out simulation analysis.

Model 1: Deterministic day-ahead scheduling model based on forecast data. The
power balance equation ignores the prediction error of wind power, photovoltaic output,
and load power, and directly uses the prediction data as the power balance constraint, as
shown in Equation (9).

Model 2: Stochastic optimization model based on multiple scenarios. The power
balance equation needs to be strictly established in each combined classical scenario, as
shown in Formula (11).

In order to compare the effects of the corresponding power balance constraints of the
two models, 10,000 scenarios of wind power, photovoltaic output, and load power are
generated according to the method proposed in Section 2.4, and the final optimization
results of the two models are tested by simulating the real scene. The deviation of the
power supply and demand in the simulation operation is shown in Figure 7.

From Figure 7, it can be seen that the deviation of the power supply and demand
simulated by the best scheduling scheme of Model 2 is concentrated within −5~5 KW in
10,000 scenarios, while the deviation distribution of Model 1 is obviously shifted to the
left, and the number of scenarios exceeding −5 KW is significantly increased, indicating
that Model 2 has strong adaptability and can maintain a small deviation in the power
supply and demand in more scenarios. It is verified that the proposed method can cope
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with the power fluctuation caused by wind power, photovoltaic, and load uncertainty in
more scenarios.
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In addition, compared with the stochastic optimization model in multiple scenarios,
the deterministic model based on prediction data has a lower day-ahead scheduling cost.
This is because the stochastic optimization model in multiple scenarios considers the
uncertainty of wind power, photovoltaic output, and load power, and the scheduling plan
has stronger robustness, so the scheduling cost also increases accordingly, which can better
meet the requirements of microgrid operation economy and robustness. Although the
day-ahead scheduling cost is lower when the deterministic model is adopted, it does not
consider the prediction errors of wind power, photovoltaic output, and load power, which
increases the cost and pressure for intra-day scheduling. In addition, the solution time of
the stochastic optimization model is longer than that of the deterministic model, because
the stochastic optimization model needs to be optimized in multiple scenarios generated
before the day, so it needs a longer solution time, but it can still meet the time requirements
of day-ahead scheduling.

4.2.3. Analysis of Intra-Day Rolling Scheduling Optimization Results

The intra-day rolling optimization scheduling strategy based on MPC proposed in
this paper aims to effectively eliminate the influence of day-ahead prediction error by
using intra-day ultra short-term prediction, and, on this basis, tries to track the day-ahead
plan value. The intra-day scheduling results based on the above strategy are shown in
Figures 8 and 9. In the intra-day rolling optimization scheduling plan, it is necessary to
compare the daily output plan of each wind and photovoltaic power plant with the actual
output adjustment amount in the day, and the daily output plan of each thermal power unit
and pumped storage unit with the actual output adjustment amount in the day. Figure 8 is
a comparison of the daily output plan and the daily output plan of the wind farm group
and the photovoltaic power station group. Figure 9 compares each thermal power unit’s
and the pumped storage unit’s actual output to the day-ahead plan.

In the comparison of Figures 8 and 9, the MPC strategy shows ideal day-ahead plan
tracking performance, and Figure 8 almost completely fits the day-ahead plan. Therefore,
the tracking effect of the MPC strategy is ideal. Therefore, the increase in the intra-day
operation cost caused by day-ahead prediction error is effectively reduced, the effectiveness
of the day-ahead scheduling plan is ensured, and the economy and robustness of intra-day
operation are improved. The day-ahead output value of wind and light is essentially
consistent with the intra-day output; the adjustment of the day-ahead plan and the actual
output of the thermal power unit is too large, and the actual output of the pumped storage
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unit is essentially in line with the day-ahead plan. The actual output and load demand
curves of each unit after intra-day rolling optimization are shown in Figure 10.
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The intra-day rolling optimization of the multi-source complementary power gen-
eration system using intra-day ultra short-term forecast data can be seen to significantly
lessen the impact on the intra-day scheduling results caused by the large error in the day-
ahead forecast, as shown by the comparison curve between the intra-day output and the
day-ahead plan. After the demand response was implemented, the load curve experienced
peak-shaving and peak-filling effects, and electricity produced on the generating side
completely satisfied the load demand. The dispatching outcomes under the three models
are compared in Table 3 before and after system operation.

Table 3. System operating costs in the three models.

Models

The Amount
of Wind and
Photovoltaic
Abandoned/

MW

Power
Shortage/

MW

Thermal
Power

Operation
Cost/(USD)

Thermal
Power

Start–Stop
Cost/(USD)

Spinning
Reserve

Cost/(USD)

Hydropower
Start–Stop
Cost/(USD)

Incentive
Compensation

Cost/(USD)
Resultant

Costs/(USD)
Electricity

Cost of
Load/(USD)

1 488.45 414.8 0.275 million 0.010 million 0.084 million 0 0 0.369 million 2.618 million
2 0 0 0.258 million 0.005 million 0.084 million 0.0004 million 0 0.347 million 2.681 million
3 0 0 0.250 million 0.005 million 0.084 million 0.0004 million 0.005 million 0.344 million 2.584 million

Table 3 demonstrates that the Model 1 thermal power units have the greatest operating
and total costs. Because the output of the generation side of the system cannot meet the
load demand of the demand side at 20:00 and 21:00 in Model 1, the load electricity cost
of Model 1 is reduced by USD 64,396.93, and the total price increases by 22,213.28 dollars.
As opposed to Model 1, the amount of wind and photovoltaic curtailment in Model 2 is
zero, the thermal power unit’s operating costs are decreased by 17,281.79 dollars, and the
start–stop cost is reduced by USD 5334.06.

Model 3 demonstrates that the quantity of abandoned wind and PV is decreased from
488.45 MW in Model 1 to 0, and the power shortfall is reduced from 414.8 MW to 0 when
compared to Models 1 and 2. There is a 6.75 percent and 0.94 percent overall cost reduction
for the power generating side, and there is a 1.32 percent and 3.63 percent overall cost
reduction for the load side. The findings demonstrate that the addition of the demand
response further lowers the system’s dispatching operation costs. Therefore, increasing the
generating side of the system’s energy storage capacity and taking the demand response
into account will efficiently increase the resource utilization and system operating efficiency.

5. Conclusions

Numerous unpredictable elements affect a system’s ability to operate safely and
reliably due to the large amount of wind power, PV, and other renewable energy sources
that are available to the power grid. In light of this source–load uncertainty, this research
suggests a multi-timescale coordinated optimum scheduling technique for systems using
multiple complementary power sources. The following findings are derived by comparing
the operational costs of the system in three scenarios with the day-ahead and intra-day
output and load demand curves of each unit.

• The coordinated operation of pumped storage and conventional thermal power plants
can significantly increase wind power consumption, decrease wind and photovoltaic
curtailment, notably reduce the system’s running costs, and improve the system’s
operating efficiency by implementing pumped storage on the energy supply side.

• In addition to significantly lowering the system’s scheduling costs based on the con-
ventional scheduling mode, taking into account PBDR and IBDR can also increase the
efficiency with which source and load resources are used and flatten the load curve.

• The effectiveness of the day-ahead scheduling plan is ensured by taking into account
intra-day rolling optimal scheduling in the scheduling plan of a multi-source com-
plementary power generation system. This also significantly lessens the impact of
the large day-ahead prediction error on the intra-day scheduling results. As a result,
including the demand response into the system and working with multi-timescale
coordination may successfully increase the resource utilization and system efficiency
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as well as serve as a guide for future research on demand response projects of multi-
source complementary systems.

The optimization model based on scenario analysis still has much room for improve-
ment in its solving efficiency, which will be further improved in future research.
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