China’s Inter-Provincial Energy Security Resilience Assessment over Space and Time: An Improved Gray Relational Projection Model
Abstract
:1. Introduction
2. Methodology
2.1. The Evolution Mechanism of Energy Resilience
- Preparation . At this stage, the energy system is in a state of resilience. Set energy resilience in this period as S. Predict and prepare for disruption using various planning and design measures (by identifying and improving critical thresholds) designed to avoid and withstand potential disruptions and keep energy services available and assets functioning during emergency disturbances to achieve reliable energy services. Specifically, this includes strengthening energy resource reserves, maintaining energy infrastructures, and ensuring energy investments. Sufficient investment is a priority for resilient systems [28]. Additionally, it also includes minimizing the impact of the energy system on the environment [29].
- Absorption . The main purpose of this stage is to examine the affordability of the energy system. Regardless of how well the energy system is prepared to withstand disturbances, potential shocks may exceed the system’s resistance threshold. When the system’s disaster-bearing capacity is insufficient to absorb the impact from , a disturbance occurs, and the energy system’s performance begins to decline. The energy system’s self-sufficiency rate, energy investment, the utilization efficiency of energy facilities, and other indicators are related to the regional energy system’s affordability. Efficient use of existing facilities can also reduce demand for new facilities and improve the energy system’s economic and environmental resilience [30].
- Mitigation . This stage means that the energy system recovers to the preparation stage after the disturbance. In this stage, we should establish a risk-management method to rapidly restore the availability of all system operations and services to achieve efficiency in advance. Ideally, planning for the recovery process should begin before a disruptive event occurs. If the planning and absorption activities are appropriately implemented, the recovery process can be accelerated. Human intervention measures to reduce greenhouse gas and pollutant emissions decrease energy use, improve the diversity of energy production, help shorten the mitigation time after disturbances, and improve the energy system [31].
- Adaptation . In this stage, adaptation is related to the degree of disturbance, policy support from the government, and recovery time. After an energy crisis, the state and affected departments should introduce more policies, build more effective crisis-response mechanisms, and support the resilient development of the energy system by learning and absorbing the experience and lessons from a disaster. Specifically, it includes increasing local energy reserves and improving the level of energy diversification [32]. The performance of the energy system is improved from the lessons learned from interference to achieve higher energy resilience (S+).
2.2. Energy Resilience Evaluation Index Construction
2.3. Energy Resilience Evaluation Model Construction
2.4. Evaluation Criterion and Data
3. Results
3.1. Optimal Weight of Each Indicator
3.2. Suitability of the Proposed Improved Gray Relational Projection Model
3.2.1. Energy Resilience of the 30 Chinese Provinces
3.2.2. Spatial Evolution of the 30 Chinese Provinces
4. Discussion
4.1. Key Factors Affecting Energy Resilience
4.2. Energy Resilience and Sustainable Development
4.3. Economic Development and Energy Resilience
5. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- Xu, S.-C.; Zhang, W.-W.; He, Z.-X.; Han, H.-M.; Long, R.-Y.; Chen, H. Decomposition analysis of the decoupling indicator of carbon emissions due to fossil energy consumption from economic growth in China. Energy Effic. 2017, 10, 1365–1380. [Google Scholar] [CrossRef]
- Calzadilla, A.; Bleischwitz, R.; Nechifor, V. Steel in a circular economy: Global implications of a green shift in China. World Dev. 2020, 127, 104775. [Google Scholar]
- Energy, B.P. Statistical Review of World Energy globally consistent data on world energy markets and authoritative publications in the field of energy. BP Energy Outlook 2021, 70, 8–20. [Google Scholar]
- Petroleum, B. BP energy outlook 2035. BP Stats Jan 2014. [Google Scholar]
- Sovacool, B.K. National context drives concerns. Nat. Energy 2018, 3, 820–821. [Google Scholar] [CrossRef]
- Shakou, L.M.; Wybo, J.-L.; Reniers, G.; Boustras, G. Developing an innovative framework for enhancing the resilience of critical infrastructure to climate change. Saf. Sci. 2019, 118, 364–378. [Google Scholar] [CrossRef]
- Van Der Merwe, S.E.; Biggs, R.; Preiser, R. A framework for conceptualizing and assessing the resilience of essential services produced by socio-technical systems. Ecol. Soc. 2018, 23, 12. [Google Scholar] [CrossRef]
- World Economic Forum. Global Risks 2014, 9th ed.; World Economic Forum: Geneva, Switzerland, 2014. [Google Scholar]
- Hasselqvist, H.; Renström, S.; Strömberg, H.; Håkansson, M. Household energy resilience: Shifting perspectives to reveal opportunities for renewable energy futures in affluent contexts. Energy Res. Soc. Sci. 2022, 88, 102498. [Google Scholar] [CrossRef]
- Yergin, D. Ensuring energy security. Foreign Aff. 2006, 85, 69–82. [Google Scholar] [CrossRef]
- Kerner, D.; Thomas, S. Defense Energy Resilience: Lessons from Ecology; Strategic Studies Institute: Carlisle, PA, USA, 2010. [Google Scholar]
- Zhang, Q.; Farzaneh, H.; McLellan, B. Resilience, sustainability and risk management: A focus on energy. Challenges 2012, 3, 153–182. [Google Scholar]
- Roege, P.E.; Collier, Z.A.; Mancillas, J.; McDonagh, J.A.; Linkov, I. Metrics for energy resilience. Energy Policy 2014, 72, 249–256. [Google Scholar] [CrossRef]
- Guttromson, R.; Silva-Monroy, C.; Watson, J.P. Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, 2014.
- Ding, Y.; Zhang, M.; Chen, S.; Nie, R. Assessing the resilience of China’s natural gas importation under network disruptions. Energy 2020, 211, 118459. [Google Scholar] [CrossRef]
- Bento, F.; Garotti, L.; Mercado, M.P. Organizational resilience in the oil and gas industry: A scoping review. Saf. Sci. 2020, 133, 105036. [Google Scholar] [CrossRef] [PubMed]
- Abdin, A.F.; Fang, Y.-P.; Zio, E. A modeling and optimization framework for power systems design with operational flexibility and resilience against extreme heat waves and drought events. Renew. Sustain. Energy Rev. 2019, 112, 706–719. [Google Scholar] [CrossRef] [Green Version]
- López, A.M.; Beliaeva Durán-Romero, G. Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model. Technol. Forecast. Soc. Chang. 2020, 160, 120246. [Google Scholar]
- Kharrazi, A.; Sato, M.; Yarime, M.; Nakayama, H.; Yu, Y.; Kraines, S. Examining the resilience of national energy systems: Measurements of diversity in production-based and consumption-based electricity in the globalization of trade networks. Energ. Policy 2015, 87, 455–464. [Google Scholar] [CrossRef]
- Molyneaux, L.; Brown, C.; Wagner, L.; Foster, J. Measuring resilience in energy systems: Insights from a range of disciplines. Renew. Sust. Energ. Rev. 2016, 59, 1068–1079. [Google Scholar] [CrossRef] [Green Version]
- Kruyt, B.; van Vuuren, D.; de Vries, H.; Groenenberg, H. Indicators for energy security. Energy Policy 2009, 37, 2116–2181. [Google Scholar] [CrossRef]
- Jansen, J.C.; Seebregts, A.J. Long-term energy services security: What is it and how can it be measured and valued? Energy Policy 2010, 38, 1654–1664. [Google Scholar] [CrossRef] [Green Version]
- Kalbar, P.P.; Niero, M. Coupling material circularity indicators and life cycle based indicators: A proposal to advance the assessment of circular economy strategies at the product level. Resour. Conserv. Recycl. 2019, 140, 305–312. [Google Scholar]
- Gatto, A.; Drago, C. Measuring and modeling energy resilience. Ecol. Econ. 2020, 172, 106527. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Huang, Z.; Cui, R. Understanding the resilience of coal industry ecosystem to economic shocks: Influencing factors, dynamic evolution and policy suggestions. Resour. Policy 2020, 67, 101682. [Google Scholar] [CrossRef]
- Loa, K.; Willis, H.H. Measuring the Resilience of Energy Distribution Systems; RAND Corporation: Santa Monica, CA, USA, 2015. [Google Scholar]
- Chen, C.; Xu, L.; Zhao, D.; Xu, T.; Lei, P. A new model for describing the urban resilience considering adaptability, resistance and recovery. Saf. Sci. 2020, 128, 104756. [Google Scholar] [CrossRef]
- Molyneaux, L.; Wagner, L.; Froome, C.; Foster, J. Resilience and electricity systems: A comparative analysis. Energy Policy 2012, 47, 188–201. [Google Scholar] [CrossRef]
- Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef] [Green Version]
- Winkelman, S.; Bishins, A.; Kooshian, C. Planning for economic and environmental resilience. Transp. Res. Part A Policy Pract. 2010, 44, 575–586. [Google Scholar] [CrossRef]
- Watson, R.T. Intergovernmental Panel on Climate Change, Third Assessment Report, Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Kun, Z. The EU renewable energy policy and its impact on forests. De Gruyter Handb. Sustain. Dev. Financ. 2022, 219. [Google Scholar]
- Panteli, M.; Mancarella, P.; Trakas, D.N.; Kyriakides, E.; Hatziargyriou, N.D. Metrics and Quantification of Operational and Infrastructure Resilience in Power Systems. IEEE T. Power Syst. 2017, 32, 4732–4742. [Google Scholar] [CrossRef] [Green Version]
- Burman, K.; Simpkins, T.; Anderson, K. New York Solar Smart DG Hub—Resilient Solar Project: Economic and Resiliency Impact of PV and Storage on New York Critical Infrastructure; National Renewable Energy Lab (NREL): Golden, CO, USA, 2016. [Google Scholar]
- Hamborg, S.; Meya, J.N.; Eisenack, K.; Raabe, T. Rethinking resilience: A cross-epistemic resilience framework for interdisciplinary energy research. Energy Res. Soc. Sci. 2020, 59, 101285. [Google Scholar] [CrossRef]
- Exner, A.; Politti, E.; Schriefl, E.; Erker, S.; Stangl, R.; Baud, S.; Warmuth, H.; Matzenberger, J.; Kranzl, L.; Paulesich, R.; et al. Measuring regional resilience towards fossil fuel supply constraints. Adaptability and vulnerability in socio-ecological Transformations-the case of Austria. Energy Policy 2016, 91, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- Lustenberger, P.; Sun, T.; Gasser, P. Security of electricity supply indicators in a resilience context. In Proceedings of the 27th European Safety and Reliability Conference (ESREL 2017), Portorož, Slovenia, 18–22 June 2017; p. 153. [Google Scholar]
- Martišauskas, L.; Augutis, J.; Krikštolaitis, R. Methodology for energy security assessment considering energy system resilience to disruptions. Energy Strat. Rev. 2018, 22, 106–118. [Google Scholar] [CrossRef]
- Zeng, Y.; Dong, C.; Höök, M.; Sun, J.; Shi, D. Can the Shanghai LNG Price Index indicate Chinese market? An econometric investigation using price discovery theory. Front. Energy 2020, 14, 726–739. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ahearn, J.A.; Amadei, B.; Crawford, P.; Eide, E.A.; Galloway, G.E.; Goodchild, M.F.; Kunreuther, H.C.; Li-Vollmer, M.; Schoch-Spana, M.; et al. Disaster resilience: A national imperative. Environ. Sci. Policy Sustain. Dev. 2013, 55, 25–29. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Song, X.; Jin, X.; Zhao, S.; Qi, Z.; Zeng, H.; Zhu, S.; Jiang, F.; Ni, W.; et al. Market Stakeholder Analysis of the Practical Implementation of Carbonation Curing on Steel Slag for Urban Sustainable Governance. Energies 2022, 15, 2399. [Google Scholar] [CrossRef]
- Geng, J.-B.; Ji, Q. Multi-perspective analysis of China’s energy supply security. Energy 2014, 64, 541–550. [Google Scholar] [CrossRef]
- Ren, J.; Sovacool, B. Enhancing China’s energy security: Determining influential factors and effective strategic measures. Energy Convers. Manag. 2014, 88, 589–597. [Google Scholar] [CrossRef]
- Li, P.; Zhang, J.-S. A New Hybrid Method for China’s Energy Supply Security Forecasting Based on ARIMA and XGBoost. Energies 2018, 11, 1687. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, D.K.; Johansson, B.; Månsson, A.; Nilsson, L.J.; Nilsson, M.; Sonnsjö, H. Energy security matters in the EU Energy Roadmap. Energy Strat. Rev. 2015, 6, 48–56. [Google Scholar] [CrossRef]
- Ren, J.; Sovacool, B.K. Quantifying, measuring, and strategizing energy security: Determining the most meaningful dimensions and metrics. Energy 2014, 76, 838–849. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.; Yao, L. Evaluating energy security of resource-poor economies: A modified principle component analysis approach. Energy Econ. 2016, 58, 211–221. [Google Scholar] [CrossRef]
- Ang, B.; Choong, W.; Ng, T. Energy security: Definitions, dimensions and indexes. Renew. Sustain. Energy Rev. 2015, 42, 1077–1093. [Google Scholar] [CrossRef]
- Lucas, J.N.V.; Francés, G.E.; González, E.S.M. Energy security and renewable energy deployment in the EU: Liaisons Dangereuses or Virtuous Circle? Renew. Sustain. Energy Rev. 2016, 62, 1032–1046. [Google Scholar] [CrossRef]
- Vivoda, V. Evaluating energy security in the Asia-Pacific region: A novel methodological approach. Energy Policy 2010, 38, 5258–5263. [Google Scholar] [CrossRef] [Green Version]
- Von Hippel, D.; Savage, T.; Hayes, P. Introduction to the Asian Energy Security project: Project organization and methodologies. Energy Policy 2011, 39, 6712–6718. [Google Scholar] [CrossRef]
- Erahman, Q.F.; Purwanto, W.W.; Sudibandriyo, M.; Hidayatno, A. An assessment of Indonesia’s energy security index and comparison with seventy countries. Energy 2016, 111, 364–376. [Google Scholar] [CrossRef]
- Månsson, A.; Johansson, B.; Nilsson, L.J. Assessing energy security: An overview of commonly used methodologies. Energy 2014, 73, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Augutis, J.; Krikštolaitis, R.; Pečiulytė, S.; Žutautaitė, I. Dynamic model based on Bayesian method for energy security assessment. Energy Convers. Manag. 2015, 101, 66–72. [Google Scholar] [CrossRef]
- Song, X.; Geng, Y.; Li, K.; Zhang, X.; Wu, F.; Pan, H.; Zhang, Y. Does environmental infrastructure investment contribute to emissions reduction? A case of China. Front. Energy 2019, 14, 57–70. [Google Scholar] [CrossRef]
- Brown, M.A.; Wang, Y.; Sovacool, B.K.; D’Agostino, A.L. Forty years of energy security trends: A comparative assessment of 22 industrialized countries. Energy Res. Soc. Sci. 2014, 4, 64–77. [Google Scholar] [CrossRef]
- Ang, B.W.; Choong, W.L.; Ng, T.S. A framework for evaluating Singapore’s energy security. Appl. Energy 2015, 148, 314–325. [Google Scholar] [CrossRef]
- Zuo, W.; Li, J.; Zhang, Y.; Li, Q.; He, Z. Effects of multi-factors on comprehensive performance of a hydrogen-fueled micro-cylindrical combustor by combining grey relational analysis and analysis of variance. Energy 2020, 199, 117439. [Google Scholar] [CrossRef]
- Lee, W.-S.; Lin, Y.-C. Evaluating and ranking energy performance of office buildings using Grey relational analysis. Energy 2011, 36, 2551–2556. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zeng, Y.; Jin, Y.; Zhang, B.; Huang, Z.; Wei, K.; Chen, J.; Zhu, H.; Deng, Y. Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis. Energy 2020, 211, 118596. [Google Scholar] [CrossRef]
- Arce, M.E.; Saavedra; Míguez, J.L.; Granada, E. The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review. Renew. Sustain. Energy Rev. 2015, 47, 924–932. [Google Scholar] [CrossRef]
- Yazdani, M.; Kahraman, C.; Zarate, P.; Onar, S.C. A fuzzy multi attribute decision framework with integration of QFD and grey relational analysis. Expert Syst. Appl. 2019, 115, 474–485. [Google Scholar] [CrossRef] [Green Version]
- World Economic Forum. The Global Risks Report 2022: Insight Report; World Economic Forum: Cologny, Switzerland, 2022. [Google Scholar]
- Adar, M.; Najih, Y.; Gouskir, M.; Chebak, A.; Mabrouki, M.; Bennouna, A. Three PV plants performance analysis using the principal component analysis method. Energy 2020, 207, 118315. [Google Scholar] [CrossRef]
- Yuan, J.; Li, X.; Xu, C.; Zhao, C.; Liu, Y. Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method. Energy 2019, 176, 623–640. [Google Scholar] [CrossRef]
- Wu, Y.; Liao, M.; Hu, M.; Lin, J.; Zhou, J.; Zhang, B.; Xu, C. A decision framework of low-speed wind farm projects in hilly areas based on DEMATEL-entropy-TODIM method from the sustainability perspective: A case in China. Energy 2020, 213, 119014. [Google Scholar] [CrossRef]
- Ge, L.; Li, Y.; Li, S.; Zhu, J.; Yan, J. Evaluation of the situational awareness effects for smart distribution networks under the novel design of indicator framework and hybrid weighting method. Front. Energy 2020, 15, 143–158. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L. A novel evidential FMEA method by integrating fuzzy belief structure and grey relational projection method. Eng. Appl. Artif. Intell. 2019, 77, 136–147. [Google Scholar] [CrossRef]
- Gasser, P.; Suter, J.; Cinelli, M.; Spada, M.; Burgherr, P.; Hirschberg, S.; Kadziński, M.; Stojadinovic, B. Comprehensive resilience assessment of electricity supply security for 140 countries. Ecol. Indic. 2020, 110, 105731. [Google Scholar] [CrossRef]
- Zhao, S.; Weng, M.; Liu, F. Fire risk assessment for large-scale commercial buildings based on structure entropy weight method. Saf. Sci. 2017, 94, 26–40. [Google Scholar]
- Li, P.; Zhang, J. Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods. Energies 2019, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, A.; Yamagata, Y. Principles and criteria for assessing urban energy resilience: A literature review. Renew. Sustain. Energy Rev. 2016, 60, 1654–1677. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Zhang, H.; Wang, B.; Huang, L.; Fang, K.; Liang, Y. Downstream oil supply security in China: Policy implications from quantifying the impact of oil import disruption. Energy Policy 2019, 136, 111077. [Google Scholar] [CrossRef]
- Editorial: Resilience and sustainability. Nat. Sustain. 2019, 2, 249. [CrossRef] [Green Version]
- Grafton, R.Q.; Doyen, L.; Béné, C.; Borgomeo, E.; Brooks, K.; Chu, L.; Cumming, G.S.; Dixon, J.; Dovers, S.; Garrick, D.; et al. Realizing resilience for decision-making. Nat. Sustain. 2019, 2, 907–913. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Shao, S.; Zhang, X. Decoupling PM2. 5 emissions and economic growth in China over 1998–2016: A regional investment perspective. Sci. Total Environ. 2020, 714, 136841. [Google Scholar]
- Long, R.; Li, H.; Wu, M.; Li, W. Dynamic evaluation of the green development level of China’s coal-resource-based cities using the TOPSIS method. Resour. Policy 2021, 74, 102415. [Google Scholar] [CrossRef]
- Xu, S.-C.; Han, H.-M.; Zhang, W.-W.; Zhang, Q.-Q.; Long, R.-Y.; Chen, H.; He, Z.-X. Analysis of regional contributions to the national carbon intensity in China in different Five-Year Plan periods. J. Clean. Prod. 2017, 145, 209–220. [Google Scholar] [CrossRef]
- Xu, S.-C.; Miao, Y.-M.; Gao, C.; Long, R.-Y.; Chen, H.; Zhao, B.; Wang, S.-X. Regional differences in impacts of economic growth and urbanization on air pollutants in China based on provincial panel estimation. J. Clean. Prod. 2018, 208, 340–352. [Google Scholar] [CrossRef]
- Strunz, S. The German energy transition as a regime shift. Ecol. Econ. 2014, 100, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Demski, C.; Poortinga, W.; Whitmarsh, L.; Böhm, G.; Fisher, S.; Steg, L.; Umit, R.; Jokinen, P.; Pohjolainen, P. National context is a key determinant of energy security concerns across Europe. Nat. Energy 2018, 3, 882–888. [Google Scholar] [CrossRef]
Dimensions | Indicators | No. | Attribute | Equations | Variable Description | Indicator Source |
---|---|---|---|---|---|---|
Availability | Reserve and production ratio | I1 | Positive | : the ratio of energy reserve to production in each province. : the proportion of the, energy in the province’s total energy production. | [43,44,45] | |
Energy self-sufficiency | I2 | Positive | : total energy production in each province. : total energy consumption in each province. | [46,47,48] | ||
Diversity | Production diversity index | I3 | Positive | : the proportion of the energy in the province’s total energy production. | [46,49,50] | |
Consumption diversity index | I4 | Positive | : the proportion of the energy in the province’s total energy consumption. | [51,52,53] | ||
Economic resilience | Energy investment | I5 | Positive | ------ | Each province’s investment in fixed assets of the energy industry. | [54,55,56] |
Environmental resilience | GDP energy intensity | I6 | Negative | : total energy consumption in each province. GDP: gross domestic product in each province. | [48,50,53,57] | |
Technical resilience | Utilization time of power generation equipment | I7 | Positive | : annual operating hours of power plants in each province. : total annual hours in each province. | [47,48,49,58] | |
Distribution loss of power system | I8 | Negative | ------ | ------ | [48,53,58] |
Number | Security Grade | Score Range | Basic Characteristics |
---|---|---|---|
1 | Ⅰ | 0.8–1 | When it is disturbed by uncertainty, the energy supply in the area is in a safe state |
2 | Ⅱ | 0.6–0.8 | When it is disturbed by uncertainty, the energy supply in the area is basically safe |
3 | Ⅲ | 0.4–0.6 | When disturbed by uncertainty, individual energy sources with high external dependence may be slightly short of supply during a specific period |
4 | Ⅳ | 0.2–0.4 | When disturbed by uncertainty, individual energy sources with high external dependence may be in short supply during a specific period |
5 | Ⅴ | 0–0.2 | When disturbed by uncertainty, the energy system in the region is very tight |
Year | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Province | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 |
Yunnan | 9 | 6 | 8 | 11 | 14 | 4 | 5 | 4 | 9 | 12 | 7 | 9 | 3 | 1 | 8 | 2 | 2 | 4 | 4 | 29 | 3 | 24 | 9 | 27 | 7 | 20 | 1 | 11 |
Heilongjiang | 10 | 4 | 7 | 7 | 5 | 12 | 6 | 20 | 10 | 14 | 12 | 27 | 6 | 20 | 9 | 9 | 10 | 2 | 12 | 2 | 10 | 8 | 11 | 8 | 8 | 11 | 10 | 19 |
Shaanxi | 1 | 11 | 2 | 5 | 3 | 9 | 2 | 17 | 3 | 10 | 1 | 3 | 2 | 11 | 1 | 28 | 4 | 29 | 1 | 25 | 1 | 30 | 2 | 30 | 1 | 25 | 3 | 30 |
Shanghai | 29 | 19 | 11 | 21 | 30 | 20 | 25 | 12 | 29 | 11 | 28 | 12 | 29 | 28 | 25 | 19 | 29 | 21 | 28 | 24 | 28 | 21 | 18 | 15 | 26 | 29 | 25 | 25 |
Chongqing | 11 | 5 | 21 | 14 | 13 | 23 | 17 | 16 | 13 | 25 | 11 | 30 | 13 | 26 | 15 | 18 | 12 | 15 | 11 | 7 | 9 | 5 | 15 | 10 | 14 | 30 | 12 | 18 |
Qinghai | 5 | 15 | 12 | 19 | 11 | 19 | 8 | 29 | 7 | 18 | 6 | 29 | 9 | 30 | 2 | 27 | 6 | 27 | 8 | 23 | 7 | 16 | 7 | 9 | 6 | 6 | 4 | 9 |
Inner Mongolia | 6 | 9 | 5 | 2 | 1 | 5 | 10 | 9 | 5 | 3 | 3 | 5 | 5 | 27 | 6 | 13 | 1 | 17 | 7 | 27 | 8 | 4 | 4 | 4 | 5 | 8 | 8 | 5 |
Guizhou | 12 | 8 | 13 | 10 | 15 | 6 | 11 | 6 | 15 | 1 | 10 | 1 | 11 | 6 | 28 | 7 | 11 | 14 | 10 | 10 | 12 | 25 | 14 | 25 | 9 | 3 | 11 | 16 |
Jilin | 13 | 27 | 25 | 27 | 16 | 27 | 12 | 26 | 14 | 22 | 13 | 21 | 17 | 17 | 12 | 22 | 13 | 20 | 15 | 19 | 14 | 18 | 10 | 29 | 10 | 19 | 13 | 14 |
Zhejiang | 30 | 25 | 27 | 30 | 8 | 14 | 30 | 7 | 24 | 5 | 29 | 6 | 28 | 3 | 27 | 6 | 30 | 3 | 29 | 21 | 30 | 14 | 30 | 19 | 28 | 14 | 30 | 22 |
Liaoning | 14 | 12 | 4 | 8 | 6 | 22 | 13 | 15 | 16 | 24 | 16 | 24 | 12 | 14 | 11 | 11 | 14 | 10 | 16 | 18 | 13 | 26 | 12 | 26 | 11 | 26 | 18 | 28 |
Shandong | 15 | 16 | 23 | 17 | 17 | 29 | 19 | 24 | 19 | 28 | 17 | 26 | 14 | 23 | 13 | 24 | 16 | 24 | 13 | 16 | 15 | 11 | 13 | 18 | 15 | 24 | 20 | 23 |
Henan | 16 | 13 | 6 | 12 | 18 | 8 | 18 | 27 | 11 | 27 | 14 | 11 | 15 | 29 | 14 | 30 | 17 | 30 | 18 | 28 | 16 | 29 | 17 | 20 | 17 | 13 | 19 | 8 |
Shanxi | 2 | 3 | 1 | 9 | 2 | 7 | 1 | 8 | 4 | 30 | 2 | 19 | 1 | 10 | 3 | 1 | 5 | 9 | 3 | 5 | 4 | 12 | 1 | 7 | 3 | 1 | 5 | 6 |
Hunan | 27 | 28 | 19 | 29 | 24 | 21 | 24 | 13 | 23 | 17 | 27 | 14 | 27 | 21 | 29 | 17 | 28 | 26 | 26 | 22 | 27 | 23 | 16 | 21 | 29 | 17 | 26 | 12 |
Fujian | 17 | 24 | 14 | 24 | 21 | 24 | 14 | 23 | 17 | 15 | 15 | 15 | 16 | 9 | 16 | 20 | 15 | 6 | 14 | 12 | 18 | 13 | 23 | 23 | 16 | 21 | 22 | 17 |
Guangdong | 18 | 30 | 30 | 13 | 9 | 13 | 21 | 21 | 12 | 16 | 18 | 20 | 19 | 22 | 17 | 21 | 19 | 22 | 17 | 17 | 19 | 20 | 24 | 12 | 23 | 7 | 14 | 1 |
Hubei | 28 | 26 | 26 | 26 | 29 | 30 | 29 | 25 | 25 | 9 | 22 | 25 | 30 | 19 | 26 | 16 | 26 | 16 | 27 | 8 | 29 | 9 | 19 | 28 | 25 | 28 | 29 | 27 |
Jiangsu | 19 | 17 | 20 | 20 | 19 | 15 | 20 | 11 | 18 | 23 | 24 | 22 | 21 | 18 | 19 | 4 | 18 | 11 | 19 | 6 | 17 | 19 | 25 | 14 | 20 | 15 | 15 | 13 |
Sichuan | 3 | 7 | 22 | 1 | 7 | 2 | 3 | 3 | 6 | 6 | 5 | 8 | 7 | 16 | 5 | 3 | 7 | 5 | 5 | 3 | 6 | 1 | 3 | 1 | 12 | 2 | 7 | 4 |
Guangxi | 20 | 14 | 24 | 15 | 20 | 18 | 22 | 22 | 26 | 19 | 23 | 16 | 18 | 8 | 20 | 23 | 21 | 25 | 22 | 11 | 20 | 10 | 26 | 3 | 19 | 5 | 21 | 7 |
Ningxia | 4 | 2 | 10 | 4 | 10 | 1 | 7 | 5 | 2 | 7 | 4 | 4 | 10 | 13 | 10 | 14 | 3 | 13 | 6 | 14 | 2 | 22 | 5 | 17 | 2 | 16 | 6 | 10 |
Xinjiang | 7 | 1 | 17 | 6 | 12 | 3 | 4 | 2 | 1 | 4 | 9 | 2 | 4 | 4 | 4 | 26 | 8 | 23 | 2 | 26 | 5 | 28 | 6 | 24 | 4 | 22 | 2 | 21 |
Beijing | 21 | 21 | 16 | 23 | 25 | 26 | 15 | 30 | 20 | 20 | 19 | 28 | 20 | 12 | 21 | 8 | 22 | 18 | 20 | 20 | 22 | 7 | 22 | 5 | 18 | 10 | 16 | 29 |
Gansu | 26 | 18 | 15 | 28 | 28 | 17 | 28 | 28 | 28 | 26 | 26 | 18 | 23 | 24 | 30 | 25 | 24 | 19 | 30 | 15 | 26 | 17 | 27 | 16 | 27 | 9 | 27 | 3 |
Tianjin | 22 | 22 | 9 | 22 | 22 | 25 | 16 | 10 | 21 | 2 | 20 | 7 | 22 | 5 | 18 | 12 | 20 | 7 | 21 | 4 | 24 | 2 | 21 | 6 | 22 | 12 | 17 | 15 |
Anhui | 8 | 10 | 3 | 3 | 4 | 11 | 9 | 19 | 8 | 29 | 8 | 23 | 8 | 25 | 7 | 29 | 9 | 28 | 9 | 30 | 11 | 27 | 8 | 22 | 13 | 27 | 9 | 26 |
Hebei | 23 | 23 | 29 | 25 | 27 | 10 | 23 | 1 | 27 | 8 | 25 | 10 | 26 | 2 | 23 | 5 | 25 | 8 | 24 | 9 | 23 | 3 | 20 | 2 | 21 | 4 | 23 | 2 |
Jiangxi | 24 | 20 | 18 | 16 | 23 | 16 | 27 | 14 | 22 | 21 | 21 | 17 | 24 | 15 | 24 | 15 | 27 | 12 | 23 | 13 | 21 | 15 | 29 | 13 | 24 | 23 | 24 | 20 |
Hainan | 25 | 29 | 28 | 18 | 26 | 28 | 26 | 18 | 30 | 13 | 30 | 13 | 25 | 7 | 22 | 10 | 23 | 1 | 25 | 1 | 25 | 6 | 28 | 11 | 30 | 18 | 28 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Zhang, J. China’s Inter-Provincial Energy Security Resilience Assessment over Space and Time: An Improved Gray Relational Projection Model. Energies 2023, 16, 3131. https://doi.org/10.3390/en16073131
Li P, Zhang J. China’s Inter-Provincial Energy Security Resilience Assessment over Space and Time: An Improved Gray Relational Projection Model. Energies. 2023; 16(7):3131. https://doi.org/10.3390/en16073131
Chicago/Turabian StyleLi, Pin, and Jinsuo Zhang. 2023. "China’s Inter-Provincial Energy Security Resilience Assessment over Space and Time: An Improved Gray Relational Projection Model" Energies 16, no. 7: 3131. https://doi.org/10.3390/en16073131
APA StyleLi, P., & Zhang, J. (2023). China’s Inter-Provincial Energy Security Resilience Assessment over Space and Time: An Improved Gray Relational Projection Model. Energies, 16(7), 3131. https://doi.org/10.3390/en16073131