Operational Wind Turbine Blade Damage Evaluation Based on 10-min SCADA and 1 Hz Data
Abstract
:1. Introduction
2. Resources and Hypothesis
2.1. Resources
2.2. Considered Environmental Effects and Hypothesis
2.3. Hypothesis
3. LCF Damage Assessment
3.1. Assessment of Stress
3.2. Damage Evaluation Based on 10-min SCADA Data
4. HCF Damage Evaluation
5. Results and Discussion
5.1. Damage Estimation
5.2. Impact of TI and on HCF Damage
5.3. Study Case
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Characteristic short-term structural member resistance for tension | |
Characteristic short-term structural member resistance for compression | |
Partial safety factor for material | |
Partial safety factor for material | |
Mean value of characteristic cycles | |
Amplitude of characteristic cycles | |
Slope parameter of S/N curve | |
Vacuum infusion molding effect | |
Post-cure polymerization effect | |
Temperature effect | |
Non-woven unidirectional fibers effect | |
Post-cure polymerization effect | |
Local safety factor at the trailing edge | |
Ageing effect | |
Temperature effect |
References
- DNV GL Energy Transition Outlook DNV GL’s Energy Transition Outlook 2020. Available online: https://eto.dnvgl.com/2020/index.html (accessed on 4 December 2020).
- Zhu, C.; Li, Y.; Zhu, C.; Li, Y. Reliability Analysis of Wind Turbines; IntechOpen: London, UK, 2018; ISBN 978-1-78984-148-0. [Google Scholar]
- Li, H.; Peng, W.; Huang, C.-G.; Guedes Soares, C. Failure Rate Assessment for Onshore and Floating Offshore Wind Turbines. J. Mar. Sci. Eng. 2022, 10, 1965. [Google Scholar] [CrossRef]
- Mishnaevsky, L. Repair of wind turbine blades: Review of methods and related computational mechanics problems. Renew. Energy 2019, 140, 828–839. [Google Scholar] [CrossRef]
- IEA. Technology Roadmap: Wind Energy, 2013rd ed.; IEA: Paris, French, 2013. [Google Scholar]
- Nielsen, J.S.; Sørensen, J.D. Bayesian Estimation of Remaining Useful Life for Wind Turbine Blades. Energies 2017, 10, 664. [Google Scholar] [CrossRef] [Green Version]
- Asgarpour, M.; Sørensen, J.D. Bayesian based Prognostic Model for Predictive Maintenance of Offshore Wind Farms. Int. J. Progn. Health Manag. 2018, 9, 2696. [Google Scholar] [CrossRef]
- Eder, M.A.; Chen, X. FASTIGUE: A computationally efficient approach for simulating discrete fatigue crack growth in large-scale structures. Eng. Fract. Mech. 2020, 233, 107075. [Google Scholar] [CrossRef]
- Liu, P.F.; Chen, H.Y.; Wu, T.; Liu, J.W.; Leng, J.X.; Wang, C.Z.; Jiao, L. Fatigue Life Evaluation of Offshore Composite Wind Turbine Blades at Zhoushan Islands of China Using Wind Site Data. Appl. Compos. Mater. 2023, 30. [Google Scholar] [CrossRef]
- Yisu, C.; Di, W.; Haifeng, L.; Wei, G. Quantifying the Fatigue Life of Wind Turbines in Cyclone-Prone Regions | Elsevier Enhanced Reader. Available online: https://reader.elsevier.com/reader/sd/pii/S0307904X22002682?token=AFBC21C659B18F1E6EFDFD5A21555CD6748B1151BE736E6E2C7BDCB79A9893EC29A491306D7632A6B1F674BD3D38877A&originRegion=us-east-1&originCreation=20220620161427 (accessed on 20 June 2022).
- Sanchez, H.; Sankararaman, S.; Escobet, T.; Puig, V.; Frost, S.; Goebel, K. Analysis of two modeling approaches for fatigue estimation and remaining useful life predictions of wind turbine blades. Proc. Eur. Conf. PHM Soc. 2016, 11, 1640. [Google Scholar]
- Jiang, Z.; Moan, T.; Gao, Z. A Comparative Study of Shutdown Procedures on the Dynamic Responses of Wind Turbines. J. Offshore Mech. Arct. Eng. 2015, 137, 011904. [Google Scholar] [CrossRef]
- Jang, Y.J.; Choi, C.W.; Lee, J.H.; Kang, K.W. Development of fatigue life prediction method and effect of 10-min mean wind speed distribution on fatigue life of small wind turbine composite blade. Renew. Energy 2015, 79, 187–198. [Google Scholar] [CrossRef]
- Germanischer, L. Guideline for the Certification of Wind Turbine; Germanischer Lloyd: Hamburg, Germany, 2010. [Google Scholar]
- Bergami, L.; Gaunaa, M. Analysis of aeroelastic loads and their contributions to fatigue damage. J. Phys. Conf. Ser. 2014, 555, 012007. [Google Scholar] [CrossRef] [Green Version]
- Marín, J.C.; Barroso, A.; París, F.; Cañas, J. Study of fatigue damage in wind turbine blades. Eng. Fail. Anal. 2009, 16, 656–668. [Google Scholar] [CrossRef]
- Vera-Tudela, L.; Kühn, M. Analysing wind turbine fatigue load prediction: The impact of wind farm flow conditions. Renew. Energy 2017, 107, 352–360. [Google Scholar] [CrossRef]
- Tibaldi, C.; Henriksen, L.C.; Hansen, M.H.; Bak, C. Wind turbine fatigue damage evaluation based on a linear model and a spectral method: Wind turbine fatigue damage evaluation. Wind Energy 2016, 19, 1289–1306. [Google Scholar] [CrossRef]
- Ragan, P.; Manuel, L. Comparing Estimates of Wind Turbine Fatigue Loads Using Time-Domain and Spectral Methods. Wind Eng. 2007, 31, 83–99. [Google Scholar] [CrossRef]
- IEC 61400-1; Wind Turbines Part 1: Design Requirements, International Electrotechnical Commission. IEC: Geneva, Switzerland, 2019.
- Valeti, B.; Pakzad, S.N. Estimation of Remaining Useful Life of a Fatigue Damaged Wind Turbine Blade with Particle Filters. In Dynamics of Civil Structures, Volume 2; Pakzad, S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 319–328. ISBN 978-3-319-74420-9. [Google Scholar]
- IEC 61400-12-1 Ed. 2.0 b:2017; Wind Energy Generation Systems–Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines. International Electrotechnical Commission: Geneva, Switzerland, 2017.
- Kaimal, J.C.; Wyngaard, J.C.; Izumi, Y.; Coté, O.R. Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 1972, 98, 563–589. [Google Scholar] [CrossRef]
- Jonkman, B.J.; Buhl, M.L. TurbSim User’s Guide; National Renewable Energy Laboratory: Oak Ridge, TN, USA, 2006. [Google Scholar]
- Jonkman, J.M.; Buhl, M.L., Jr. FAST User’s Guide—Updated August 2005; National Renewable Energy Laboratory: Oak Ridge, TN, USA, 2005. [Google Scholar]
- Dykes, K.L.; Rinker, J. WindPACT Reference Wind Turbines; National Renewable Energy Laboratory: Oak Ridge, TN, USA, 2018. [Google Scholar]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; National Renewable Energy Laboratory: Oak Ridge, TN, USA, 2009. [Google Scholar]
- Hu, W.; Chen, W.; Wang, X.; Jiang, Z.; Wang, Y.; Verma, A.S.; Teuwen, J.J.E. A computational framework for coating fatigue analysis of wind turbine blades due to rain erosion. Renew. Energy 2021, 170, 236–250. [Google Scholar] [CrossRef]
- Barnes, R.H.; Morozov, E.V.; Shankar, K. Improved methodology for design of low wind speed specific wind turbine blades. Compos. Struct. 2015, 119, 677–684. [Google Scholar] [CrossRef]
- Hawileh, R.A.; Abu-Obeidah, A.; Abdalla, J.A.; Al-Tamimi, A. Temperature effect on the mechanical properties of carbon, glass and carbon–glass FRP laminates. Constr. Build. Mater. 2015, 75, 342–348. [Google Scholar] [CrossRef]
- Lars, D.; Torben, J.L.; Jaocb, W.; John, D.S.; Rune, K.; Johnny, P.; Mads, L.; Vasileios, K. Wind Turbine Blades Handbook; Bladena: Taastrup, Denmark, 2017. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 978-4-470-01500-1. [Google Scholar]
- Joncas, S. Thermoplastic Composite Wind Turbine Blades. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Zárate-Miñano, R.; Anghel, M.; Milano, F. Continuous wind speed models based on stochastic differential equations. Appl. Energy 2013, 104, 42–49. [Google Scholar] [CrossRef]
- Bortolotti, P.; Tarres, H.C.; Dykes, K.; Merz, K.; Sethuraman, L.; Verelst, D.; Zahle, F. Systems Engineering in Wind Energy–WP2.1 Reference Wind Turbines; National Renewable Energy Laboratory: Oak Ridge, TN, USA, 2019. [Google Scholar]
- Yi, W.; Lu, Z.; Hao, J.; Zhang, X.; Chen, Y.; Huang, Z. A Spectrum Correction Method Based on Optimizing Turbulence Intensity. Appl. Sci. 2021, 12, 66. [Google Scholar] [CrossRef]
- Hong, X.; Li, J. Stochastic Fourier spectrum model and probabilistic information analysis for wind speed process. J. Wind Eng. Ind. Aerodyn. 2018, 174, 424–436. [Google Scholar] [CrossRef]
- Cheynet, E.; Jakobsen, J.B.; Obhrai, C. Spectral characteristics of surface-layer turbulence in the North Sea. Energy Procedia 2017, 137, 414–427. [Google Scholar] [CrossRef]
- Couche limite atmosphérique–Centre National de Recherches Météorologiques. Available online: https://www.umr-cnrm.fr/spip.php?rubrique186 (accessed on 6 March 2023).
- Chou, J.-S.; Chiu, C.-K.; Huang, I.-K.; Chi, K.-N. Failure analysis of wind turbine blade under critical wind loads. Eng. Fail. Anal. 2013, 27, 99–118. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Zhang, L.; Huang, X.; Yu, Y. Study on the Effect of Different Delamination Defects on Buckling Behavior of Spar Cap in Wind Turbine Blade. Adv. Mater. Sci. Eng. 2020, 2020, 6979636. [Google Scholar] [CrossRef]
- Murdy, P.; Hughes, S.; Barnes, D. Characterization and repair of core gap manufacturing defects for wind turbine blades. J. Sandw. Struct. Mater. 2022, 24, 2083–2100. [Google Scholar] [CrossRef]
- Jiang, Z.; Xing, Y. Load mitigation method for wind turbines during emergency shutdowns. Renew. Energy 2022, 185, 978–995. [Google Scholar] [CrossRef]
- Sun, Z.; Sessarego, M.; Chen, J.; Shen, W.Z. Design of the OffWindChina 5 MW Wind Turbine Rotor. Energies 2017, 10, 777. [Google Scholar] [CrossRef] [Green Version]
- Hiebel, M.; Schlipf, D. Case Study: D50 Offshore Wind Turbine. Aerodyn Eng. 2018. [Google Scholar]
- We are LM Wind Power—The Leading Rotor Blade Supplier to the Wind Industry | LM Wind Power. Available online: https://www.lmwindpower.com/ (accessed on 8 March 2023).
- Rainflow Counts for Fatigue Analysis–MATLAB Rainflow. Available online: https://www.mathworks.com/help/signal/ref/rainflow.html?searchHighlight=C#d123e146736 (accessed on 13 April 2022).
- Kollar, L.P.; Springer, G.S. Mechanics of Composite Structures; Cambridge University Press: Cambridge UK; New York, NY, USA, 2003; ISBN 978-0-521-80165-2. [Google Scholar]
- Kim, D.-Y.; Kim, Y.-H.; Kim, B.-S. Changes in wind turbine power characteristics and annual energy production due to atmospheric stability, turbulence intensity, and wind shear. Energy 2021, 214, 119051. [Google Scholar] [CrossRef]
- Dong, L.; Lio, W.H.; Simley, E. On turbulence models and lidar measurements for wind turbine control. Wind Energy Sci. 2021, 6, 1491–1500. [Google Scholar] [CrossRef]
- Farouk, C. Etude du Comportement Stochastique et Cyclique du vent en ALGÉRIE; Presses Académiques Francophones: Paris, French, 2019; ISBN 978-3-8416-2904-3. [Google Scholar]
- Chrétien, A.; Tahan, A.; Cambron, P.; de Oliveira-Filho, A.M. Impact of 10 Min Average Wind Speed SCADA Data on the Wind Turbine Blade Damage Prediction Compared to 1 Second Signal. In Proceedings of the 1st International Electronic Conference on Processes: Processes System Innovation, Online, 17–31 May 2022. [Google Scholar]
- Requate, N.; Meyer, T.; Hofmann, R. From wind conditions to operational strategy: Optimal planning of wind turbine damage progression over its lifetime; Dynamics and control/Wind turbine control. WES 2022. [Google Scholar] [CrossRef]
- Salimi-Majd, D.; Azimzadeh, V.; Mohammadi, B. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint. Appl. Compos. Mater. 2015, 22, 269–287. [Google Scholar] [CrossRef]
- Bisoi, S.; Haldar, S. Impact of climate change on dynamic behavior of offshore wind turbine. Mar. Georesour. Geotechnol. 2017, 35, 905–920. [Google Scholar] [CrossRef]
Period of Study | DLCF (t) | Mean DHCF (t) | DHCF (t)/DLCF (t) |
---|---|---|---|
1 year | 7.94 × 10−5 | 4.02 | 5.06 × 104 |
20 years | 1.56 × 10−3 | 7.12 × 101 | 4.56 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrétien, A.; Tahan, A.; Cambron, P.; Oliveira-Filho, A. Operational Wind Turbine Blade Damage Evaluation Based on 10-min SCADA and 1 Hz Data. Energies 2023, 16, 3156. https://doi.org/10.3390/en16073156
Chrétien A, Tahan A, Cambron P, Oliveira-Filho A. Operational Wind Turbine Blade Damage Evaluation Based on 10-min SCADA and 1 Hz Data. Energies. 2023; 16(7):3156. https://doi.org/10.3390/en16073156
Chicago/Turabian StyleChrétien, Antoine, Antoine Tahan, Philippe Cambron, and Adaiton Oliveira-Filho. 2023. "Operational Wind Turbine Blade Damage Evaluation Based on 10-min SCADA and 1 Hz Data" Energies 16, no. 7: 3156. https://doi.org/10.3390/en16073156
APA StyleChrétien, A., Tahan, A., Cambron, P., & Oliveira-Filho, A. (2023). Operational Wind Turbine Blade Damage Evaluation Based on 10-min SCADA and 1 Hz Data. Energies, 16(7), 3156. https://doi.org/10.3390/en16073156