The Nexus between Agriculture, Water, Energy and Environmental Degradation in Central Asia—Empirical Evidence Using Panel Data Models
Abstract
:1. Introduction
2. Literature Review
2.1. CO2—GDP Nexus
2.2. CO2—Agriculture Nexus
2.3. CO2—Water Nexus
2.4. CO2—Energy Consumption and Fossil-Fuel Based Energy Consumption
2.5. CO2—Trade Openness
3. Material, Methodology and Data
3.1. Data and Materials
3.2. Specification of the Econometric Model
3.3. Estimation Methodologies
3.3.1. Panel Unit-Root Tests
3.3.2. Specification of Panel ARDL (PMG) Model
3.3.3. FMOLS and DOLS Long-Run Estimators
3.3.4. Juodis, Karavias and Sarafidis (2021) Granger Non-Causality Test
4. Empirical Results
Long-Run Results
5. Discussion
6. Policy Recommendations
- Climate migration is a potential threat resulting from the unsustainability of available resources (water, energy) and industries (agriculture, economy, environment) in Central Asia. The agricultural productivity of cultivated land has decreased because of salt and dust being transported when the northeastern winds blow. As a result of increased health hazards, inadequate nutrition and unemployment, the Aral Sea’s degraded water resources are also having a negative socioeconomic impact on the local population. Salinity-related losses are thought to reach more than USD 2 billion annually, or 5% of Central Asia’s GDP [2]. Rural populations with fragile ecological and socio-economic conditions will start moving to places offering sustainable economic and ecological conditions.
- Smart and water management strategies should be urgently introduced for CA countries. With almost 2000 m3 per person in 2025, Central Asia will have the highest water withdrawal rates globally [17]. More than 65 percent of the water used in Central Asian nations is used by the agriculture sector where Uzbekistan is a dominant consumer (56 km3) followed by Turkmenistan (28 km3) [2]. Water quality and quantity are expected to continue to decline over the next ten years, so Uzbekistan needs to come up with a water management plan that uses as little water as possible for cotton cultivation [3]. To prevent an excessive amount of water from being wasted, for instance, irrigation management should be improved, and irrigation limitations should be established. It is important to encourage the development of crop types that can resist drought and save water. By implementing above mentioned policies, countries located in Central Asia can tackle the Aral Sea dilemma which is seen as an upcoming disaster for the surrounding locals.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aminova, M.; Abdullayev, I. Water Management in a State-Centered Environment: Water Governance Analysis of Uzbekistan. Sustainability 2009, 1, 1240–1265. [Google Scholar] [CrossRef] [Green Version]
- EPRS (European Parliamentary Research Service). Water in Central Asia—An Increasingly Scarce Resource. 2018. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2018/625181/EPRS_BRI(2018)625181_EN.pdf (accessed on 10 September 2022).
- Gaybullaev, B.; Chen, S.C.; Kuo, Y.M. Large-scale desiccation of the Aral Sea due to over-exploitation after 1960. J. Mt. Sci. 2012, 9, 538–546. [Google Scholar] [CrossRef]
- The World Bank. Climate Risk Country Profile-Uzbekistan. 2021. Available online: https://climateknowledgeportal.worldbank.org/sites/default/files/2021-09/15838-Uzbekistan%20Country%20Profile-WEB.pdf (accessed on 17 October 2022).
- ESCAP (United Nations, Economic and Social Commission of Asia and the Pacific). Asia-Pacific Disaster Report 2021. Available online: https://www.unescap.org/kp/2021/asia-pacific-disaster-report-2021 (accessed on 18 August 2022).
- Jalilov, S.-M.; Amer, S.A.; Ward, F.A. Managing the water-energy-food nexus: Opportunities in Central Asia. J. Hydrol. 2018, 557, 407–425. [Google Scholar] [CrossRef]
- Izhitskiy, A.S.; Zavialov, P.O.; Sapozhnikov, P.V.; Kirillin, G.B.; Grossart, H.P.; Kalinina, O.Y.; Zalota, A.K.; Goncharenko, I.V.; Kurbaniyazov, A.K. Present state of the Aral Sea: Diverging physical and biological characteristics of the residual basins. Sci. Rep. 2016, 6, 23906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IFAS. The Aral Sea and its Challenges. Executive Committee of the International Fund for saving the Aral Sea. In United Nations Economic and Social Commission for Asia and the Pacific; Expert Group Meeting on Improving Access to Water; Sanitation and Energy Services in Asia and the Pacific by addressing the Water-Food Energy Nexus: Bangkok, Thailand, 2013. [Google Scholar]
- UNESCO. Water Related Vision for the Aral Sea Basin for the Year 2025; UNESCO: Paris, France, 2000; p. 237. [Google Scholar]
- Harriman, L.; Chander, A.; Sing, A.; Litswa, E.; Giese, K.; Anthony, M.; Zommers, Z. The Future of the Aral Sea Lies in Transboundary Co-Operation Article Reproduced from United Nations Environment Programme (Unep) Global Environmental Alert Service (Geas). Environ. Dev. 2014, 10, 120–128. [Google Scholar]
- UNDP. Review of Donor Assistance in the Aral Sea Region; UNDP: Tashkent, Uzbekistan, 2008; Available online: http://www.undp.uz/en/publications/publication.php?id=99 (accessed on 4 July 2022).
- Saidmamatov, O.; Khodjaniyazov, E.; Matyakubov, U.; Ibadullaev, E.; Bekjanov, D.; Day, J.; Marty, P.; Zhao, J. The impact of Central Asian tourists’ risk perception on their travel intentions during the COVID-19 pandemic. Turyzm/Tourism 2021, 31, 133–154. [Google Scholar] [CrossRef]
- Srivastava, S.; Dewi, M.B.K.; Suman, R.K.; Shrivastav, A.; Behboodi, A.; Dubey, S. A Managing in-Land Water Disasters in the Aral Sea: Sub-Regional Pathways for Adaptation and Resilience; ESCAP, IDD: Bangkok, Thailand, 2022. [Google Scholar]
- García de Jalón, S.; Iglesias, A.; Cunningham, R.; Pérez Díaz, J.I. Building resilience to water scarcity in southern Spain: A case study of rice farming in Doñana protected wetlands. Reg. Environ. Chang. 2013, 14, 1229–1242. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, A.; Garrote, L. Review: Adaptation strategies for agricultural water management under climate change in Europe. Agric Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Srivastav, A.L.; Dhyani, R.; Ranjan, M.; Madhav, S.; Sillanpää, M. Climate-Resilient Strategies for Sustainable Management of Water Resources and Agriculture. Environ. Sci. Pollut. Res. 2021, 28, 41576–41595. [Google Scholar] [CrossRef]
- FAO. Aral Sea Basin. Aquastat. Food and Agriculture Organization of the United Nations (FAO). 2012. Available online: http://www.fao.org/nr/water/aquastat/basins/aral-sea/index.stm (accessed on 28 August 2022).
- FAO. State of Food and Agriculture 2020. Available online: https://www.fao.org/documents/card/en/c/cb1447en/#:~:text=The%20State%20of%20Food%20and%20Agriculture%202020%20presents%20new%20estimates,the%20number%20of%20people%20affected (accessed on 16 November 2022).
- Saidmamatov, O.; Rudenko, I.; Pfister, S.; Koziel, J. Water–Energy–Food Nexus Framework for Promoting Regional Integration in Central Asia. Water 2020, 12, 1896. [Google Scholar] [CrossRef]
- Micklin, P.P. The Aral Sea Disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Fan, Y.; Li, X. The impact of trade openness on carbon dioxide emissions in developing countries: Evidence from panel data analysis. J. Clean. Prod. 2017, 142, 1386–1394. [Google Scholar]
- Yu, C.; Zhang, R.; An, L.; Yu, Z. Has China’s Belt and Road Initiative Intensified Bilateral Trade Links between China and the Involved Countries? Sustainability 2020, 12, 6747. [Google Scholar] [CrossRef]
- Aydoğan, B.; Vardar, G. Evaluating the role of renewable energy, economic growth and agriculture on CO₂ emission in E7 countries. Int. J. Sustain. Energy 2019, 4, 335–348. [Google Scholar] [CrossRef]
- Spetan, K. Renewable energy consumption, CO₂ emissions and economic growth: A case of Jordan. Int. J. Bus. Econ. Res. 2016, 5, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Zarzoso, I.; Bengochea-Morancho, A.; Morales-Lage, R. The impact of population on CO₂ emissions: Evidence from European countries. Environ. Resour. Econ. 2007, 38, 497–512. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.K. A structural VAR analysis of renewable energy consumption, real GDP and CO₂ emissions: Evidence from India. Econ. Bull. 2011, 31, 1793–1806. [Google Scholar]
- Fakhri, I.; Hassen, T.; Wassim, T. Effects of CO₂ Emissions on Economic Growth, Urbanization and Welfare: Application to MENA Countries. 2015. Available online: https://mpra.ub.uni-muenchen.de/65683/ (accessed on 18 September 2022).
- Yahyaoui, I. Does the Interaction Between ICT Diffusion and Economic Growth Reduce CO₂ Emissions? An ARDL Approach. J. Knowl. Econ. 2022, 1–25. [Google Scholar] [CrossRef]
- Nahrin, R.; Rahman, M.H.; Majumder, S.C.; Esquivias, M.A. Economic Growth and Pollution Nexus in Mexico, Colombia, and Venezuela (G-3 Countries): The Role of Renewable Energy in Carbon Dioxide Emissions. Energies 2023, 16, 1076. [Google Scholar] [CrossRef]
- Robalino-López, A.; Mena-Nieto, Á.; García-Ramos, J.-E.; Golpe, A.A. Studying the relationship between economic growth, CO₂ emissions, and the environmental Kuznets curve in Venezuela (1980–2025). Renew. Sustain. Energy Rev. 2015, 41, 602–614. [Google Scholar] [CrossRef] [Green Version]
- Bilgili, F.; Koçak, E.; Bulut, Ü. The dynamic impact of renewable energy consumption on CO₂ emissions: A revisited Environmental Kuznets Curve approach. Renew. Sustain. Energy Rev. 2016, 54, 838–845. [Google Scholar] [CrossRef]
- Boukhelkhal, A. Energy use, economic growth and CO₂ emissions in Africa: Does the environmental Kuznets curve hypothesis exist? New evidence from heterogeneous panel under cross-sectional dependence. Environ. Dev. Sustain. 2021, 24, 13083–13110. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Bae, J. The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. J. Clean. Prod. 2017, 164, 1239–1247. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K. What drives environmental degradation? Evidence from 14 Sub-Saharan African countries. Sci. Total Environ. 2019, 656, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Hanif, I. Impact of economic growth, nonrenewable and renewable energy consumption, and urbanization on carbon emissions in Sub-Saharan Africa. Environ. Sci. Pollut. Res. 2018, 25, 15057–15067. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, H.; Alkhateeb, T.T.Y.; Al-Qahtani, M.M.Z.; Allam, Z.; Ahmad, N.; Furqan, M. Agriculture development and CO₂ emissions nexus in Saudi Arabia. PLoS ONE 2019, 14, e0225865. [Google Scholar] [CrossRef] [Green Version]
- Salahodjaev, R.; Isaeva, A. Post-soviet States and CO₂ Emissions: The Role of Foreign Direct Investment. Post-Communist Econ. 2021, 34, 944–965. [Google Scholar] [CrossRef]
- Lin, B.; Xu, B. Factors affecting CO₂ emissions in China’s agricultural sector: A quantile regression. Renew. Sustain. Energy Rev. 2018, 94, 15–27. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Kumar, P.; Kumar, S.; Dagar, V.; Kumar, A. A district-level analysis for measuring the effects of climate change on production of agricultural crops, i. e.; wheat and paddy: Evidence from India. Environ. Sci. Pollut. Res. 2022, 29, 31861–31885. [Google Scholar] [CrossRef]
- Chen, M.; Cui, Y.; Jiang, S.; Forsell, N. Toward carbon neutrality before 2060: Trajectory and technical mitigation potential of non-CO₂ greenhouse gas emissions from Chinese agriculture. J. Clean. Prod. 2022, 368, 133186. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Mallidis, I.; Galanopoulos, K.; Arabatzis, G. Greenhouse Gas Emissions and Economic Performance in EU Agriculture: An Empirical Study in a Non-Linear Framework. Sustainability 2018, 10, 3837. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, S.; Bae, J. The nexus of renewable energy-agriculture-environment in BRICS. Appl. Energy 2017, 204, 489–496. [Google Scholar] [CrossRef]
- Raza, M.Y.; Khan, A.N.; Khan, N.A.; Kakar, A. The role of food crop production, agriculture value added, electricity consumption, forest covered area, and forest production on CO₂ emissions: Insights from a developing economy. Environ. Monit. Assess. 2021, 193, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Warsame, A.A.; Sheik-Ali, I.A.; Ali, A.O.; Sarkodie, S.A. Climate change and crop production nexus in Somalia: An empirical evidence from ARDL technique. Environ. Sci. Pollut. Res. 2021, 28, 19838–19850. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zaman, S.; Zaman, Q.; Rasool, S.F. Impact of remittances on carbon emission: Fresh evidence from a panel of five remittance-receiving countries. Environ. Sci. Pollut. Res. 2021, 28, 52418–52430. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Ntiamoah, E.B.; Li, D. Panel heterogeneous distribution analysis of trade and modernized agriculture on CO₂ emissions: The role of renewable and fossil fuel energy consumption. Nat. Resour. Forum 2019, 43, 135–153. [Google Scholar] [CrossRef] [Green Version]
- Knox, J.W.; Daccache, A.; Hess, T.M.; Haro, D. Meta-analysis of climate impacts and uncertainty on crop yields in Europe. Environ. Res. Lett. 2016, 11, 113004. [Google Scholar] [CrossRef]
- Rey, D.; Holman, I.P.; Knox, J.W. Developing drought resilience in irrigated agriculture in the face of increasing water scarcity. Reg. Environ. Chang. 2017, 17, 1527–1540. [Google Scholar] [CrossRef] [Green Version]
- Melkonyan, A.; Asadoorian, M.O. Climate impact on agroeconomy in semiarid region of Armenia. Environ. Dev. Sustain. 2014, 16, 393–414. [Google Scholar] [CrossRef]
- Lu, S.; Bai, X.; Li, W.; Wang, N. Impacts of climate change on water resources and grain production. Technol. Forecast Soc. Chang. 2019, 143, 76–84. [Google Scholar] [CrossRef]
- Manuamorn, O.P.; Biesbroek, R.; Cebotari, V. What makes internationally-financed climate change adaptation projects focus on local communities? A configurational analysis of 30 Adaptation Fund projects. Glob. Environ. Chang. 2020, 1, 102035. [Google Scholar] [CrossRef]
- Rockström, J.; Brasseur, G.; Hoskins, B.; Lucht, W.; Schellnhuber, J.; Kabat, P.; Nakicenovic, N.; Gong, P.; Schlosser, P.; Máñez Costa, M.; et al. Climate change: The necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th IPCC Assessment. Earth’s Future 2014, 2, 606–611. [Google Scholar] [CrossRef] [Green Version]
- Anser, M.K.; Yousaf, Z.; Nassani, A.A.; Alotaibi, S.M.; Kabbani, A.; Zaman, K. Dynamic linkages between poverty, inequality, crime, and social expenditures in a panel of 16 countries: Two-step GMM estimates. Econ. Struct. 2020, 9, 43. [Google Scholar] [CrossRef]
- Munir, A.; Hanjra, M.; Ejaz, Q. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Khaitov, B.; Karimov, A.A.; Toderich, K.; Sultanova, Z.; Mamadrahimov, A.; Allanov, K.; Islamov, S. Adaptation, grain yield and nutritional characteristics of quinoa (Chenopodium quinoa) genotypes in marginal environments of the Aral Sea basin. J. Plant Nutr. 2020, 44, 1365–1379. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- World Meteorological Organization. The Future of the Aral Sea Lies in Transboundary Cooperation 2014, Volume 63. Available online: https://public.wmo.int/en/resources/bulletin/future-of-aral-sea-lies-transboundary-co%E2%80%93operation (accessed on 25 November 2022).
- Mehran, A.; Mazdiyasni, O.; AghaKouchak, A. A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. J. Geophys. Res.: Atmos. 2015, 120, 7520–7533. [Google Scholar] [CrossRef]
- Mukheibir, P. Water Access, Water Scarcity, and Climate Change. Environ. Manag. 2010, 45, 1027–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cayan, D.R.; Maurer, E.P.; Dettinger, M.D.; Tyree, M.; Hayhoe, K. Climate change scenarios for the California region. Clim. Chang. 2008, 87, 21–42. [Google Scholar] [CrossRef]
- Rickert, B.; van den Berg, H.; Bekure, K.; Girma, S.; de Roda Husman, A.M. Including aspects of climate change into water safety planning: Literature review of global experience and case studies from Ethiopian urban supplies. Int. J. Hyg. Environ. Health 2019, 222, 744–755. [Google Scholar] [CrossRef]
- Urquiza, A.; Billi, M. Water markets and social–ecological resilience to water stress in the context of climate change: An analysis of the Limarí Basin, Chile. Environ. Dev. Sustain. 2018, 22, 1929–1951. [Google Scholar] [CrossRef]
- Apergis, N.; Kuziboev, B.; Abdullaev, I.; Rajabov, A. Investigating the association among CO₂ emissions, renewable and non-renewable energy consumption in Uzbekistan: An ARDL approach. Environ. Sci. Pollut. Res. 2023, 30, 39666–39679. [Google Scholar] [CrossRef]
- Saidi, K.; Omri, A. Reducing CO₂ emissions in OECD countries: Do renewable and nuclear energy matter? Prog. Nucl. Energy 2020, 126, 10342. [Google Scholar] [CrossRef]
- Saidmamatov, O.; Salaev, S.; Eshchanov, B. Challenges and Optimization Strategy for Feed-In Tariffs of Renewable Energy in CIS Countries. Balt. J. Real Estate Econ. Constr. Manag. 2015, 3, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.A.; Nahiduzzaman, K.M.; Aldosary, A.S.; Hewage, K.; Sadiq, R. Nexus of economic growth, energy consumption, FDI and emissions: A tale of Bangladesh. Environ. Dev. Sustain. 2022, 24, 6327–6348. [Google Scholar] [CrossRef]
- BBC. Central Asia Blackout Leaves Millions without Power. 2023. Available online: https://www.bbc.com/news/world-asia-60123178 (accessed on 29 October 2022).
- Saidmamatov, O.; Rudenko, I.; Baier, U.; Khodjaniyazov, E. Challenges and Solutions for Biogas Production from Agriculture Waste in the Aral Sea Basin. Processes 2021, 9, 199. [Google Scholar] [CrossRef]
- Ben Jebli, M.; Ben Youssef, S. Combustible renewables and waste consumption, agriculture, CO₂ emissions and economic growth in Brazil. Carbon Manag. 2019, 10, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Ren, X.; Wang, Z.; Yan, C. Heterogeneous impacts of renewable energy and environmental patents on CO₂ emission—Evidence from the BRIICS. Sci. Total Environ. 2019, 668, 1328–1338. [Google Scholar] [CrossRef]
- Patiño, L.I.; Alcántara, V.; Padilla, E. Driving forces of CO₂ emissions and energy intensity in Colombia. Energy Policy 2021, 151, 112130. [Google Scholar] [CrossRef]
- Azam, M.; Khan, A.Q.; Zaman, K.; Ahmad, M. Factors determining energy consumption: Evidence from Indonesia, Malaysia and Thailand. Renew. Sustain. Energy Rev. 2015, 42, 1123–1131. [Google Scholar] [CrossRef]
- Peng, X.; Chen, H.; Zhong, H.; Long, R.; Zhang, C.; Zhao, D.; Yang, G.; Hong, J.; Duan, C.; Qi, X.; et al. Water-saving co-benefits of CO₂ reduction in China’s electricity sector. iScience 2023, 26, 106035. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Leal, P.A. The impact of economic growth on CO₂ emissions in Australia: The environmental Kuznets curve and the decoupling index. Environ. Sci. Pollut. Res. 2018, 25, 27283–27296. [Google Scholar] [CrossRef] [PubMed]
- Atici, C. Carbon emissions in Central and Eastern Europe: Environmental Kuznets curve and implications for sustainable development. Sustain. Dev. 2009, 17, 155–160. [Google Scholar] [CrossRef]
- Rahman, M.H.; Majumder, S.C. Empirical analysis of the feasible solution to mitigate the CO₂ emission: Evidence from Next-11 countries. Environ. Sci. Pollut. Res. 2022, 29, 73191–73209. [Google Scholar] [CrossRef]
- Mikayilov, J.I.; Galeotti, M.; Hasanov, F.J. The impact of economic growth on CO₂ emissions in Azerbaijan. J. Clean. Prod. 2018, 197, 1558–1572. [Google Scholar] [CrossRef]
- Kahia, M.; Jebli, M.B.; Belloumi, M. Analysis of the impact of renewable energy consumption and economic growth on carbon dioxide emissions in 12 MENA countries. Clean. Technol. Environ. Policy 2019, 21, 871–885. [Google Scholar] [CrossRef]
- Salazar-Núñez, H.F.; Venegas-Martínez, F.; Lozano-Díez, J.A. Assessing the interdependence among renewable and non-renewable energies, economic growth, and CO₂ emissions in Mexico. Environ. Dev. Sustain. 2021, 24, 12850–12866. [Google Scholar] [CrossRef]
- Li, X.; Fan, Y.; Liu, J. The impact of trade openness on carbon dioxide emissions in China: An empirical analysis based on panel data. J. Clean. Prod. 2016, 112, 2279–2289. [Google Scholar]
- Ali, R.; Bakhsh, K.; Yasin, M.A. Impact of urbanization on CO₂ emissions in emerging economy: Evidence from Pakistan. Sustain. Cities Soc. 2019, 48, 101553. [Google Scholar] [CrossRef]
- Kozul-Wright, R.; Fortunato, P. International Trade and Carbon Emissions. Eur. J. Dev. Res. 2012, 24, 509–529. [Google Scholar] [CrossRef]
- World Development Indicators. 2023. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 14 October 2022).
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.P. Pooled mean group estimation of dynamic heterogeneous panels. J. Am. Stat. Assoc. 1997, 94, 621–634. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A comparative study of unit root tests with panel data and a new simple test. Oxf. Bull. Econ. Stat. 1999, 61, 631–652. [Google Scholar] [CrossRef]
- Choi, I. Unit root tests for panel data. J. Int. Money Financ. 2001, 20, 249–272. [Google Scholar] [CrossRef]
- Phillips, P.C.; Hansen, B.E. Statistical inference in instrumental variables regression with I (1) processes. Rev. Econ. Stud. 1990, 57, 99–125. [Google Scholar] [CrossRef]
- Pedroni, P. Fully modified OLS for heterogeneous cointegrated panels. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels; Emerald Group Publishing Limited: Bingley, UK, 2001; pp. 93–130. [Google Scholar]
- Hamit-Haggar, M. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective. Energy Econ. 2012, 34, 358–364. [Google Scholar] [CrossRef]
- Pedroni, P. Fully modified OLS for heterogeneous cointegrated panels and the case of purchasing power parity. Manuscr. Dep. Econ. Indiana Univ. 1996, 5, 1–45. [Google Scholar]
- Juodis, A.; Karavias, Y.; Sarafidis, V. A homogeneous approach to testing for Granger non-causality in heterogeneous panels. Empir. Econ. 2021, 60, 93–112. [Google Scholar] [CrossRef]
- Tucker, M. Carbon dioxide emissions and global GDP. Ecol. Econ. 1995, 15, 215–223. [Google Scholar] [CrossRef]
- Chaabouni, S.; Saidi, K. The dynamic links between carbon dioxide (CO₂) emissions, health spending and GDP growth: A case study for 51 countries. Environ. Res. 2017, 158, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Pejović, B.; Karadžić, V.; Dragašević, Z.; Backović, T. Economic growth, energy consumption and CO₂ emissions in the countries of the European Union and the Western Balkans. Energy Rep. 2021, 7, 2775–2783. [Google Scholar] [CrossRef]
- Fodha, M.; Zaghdoud, O. Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve. Energy Policy 2010, 38, 1150–1156. [Google Scholar] [CrossRef]
- Sikder, M.; Wang, C.; Yao, X.; Huai, X.; Wu, L.; Kwame Yeboah, F.; Wood, J.; Zhao, Y.; Dou, X. The Integrated Impact of GDP Growth, Industrialization, Energy Use, and Urbanization on CO₂ Emissions in Developing Countries: Evidence from the Panel ARDL Approach. Sci. Total Environ. 2022, 837, 155795. [Google Scholar] [CrossRef]
- Saboori, B.; Sulaiman, J. CO₂ emissions, energy consumption and economic growth in Association of Southeast Asian Nations (ASEAN) countries: A cointegration approach. Energy 2013, 55, 813–822. [Google Scholar] [CrossRef]
- Gokmenoglu, K.K.; Taspinar, N. Testing the agriculture-induced EKC hypothesis: The case of Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 22829–22841. [Google Scholar] [CrossRef]
- Khan, M.T.I.; Ali, Q.; Ashfaq, M. The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan. Renew. Energy 2018, 118, 437–451. [Google Scholar] [CrossRef]
- Waheed, R.; Chang, D.; Sarwar, S.; Chen, W. Forest, agriculture, renewable energy, and CO₂ emission. J. Clean. Prod. 2018, 172, 4231–4238. [Google Scholar] [CrossRef]
- Searchinger, T.; Adhya, T.K. Wetting and Drying: Reducing Greenhouse Gas Emissions and Saving Water from Rice Production. World Resource Institute. Available online: https://www.wri.org/research/wetting-and-drying-reducing-greenhouse-gas-emissions-and-saving-water-rice-production (accessed on 4 July 2022).
- Zaman, K.; Abd-el Moemen, M. Energy consumption, carbon dioxide emissions and economic development: Evaluating alternative and plausible environmental hypothesis for sustainable growth. Renew. Sustain. Energy Rev. 2017, 74, 1119–1130. [Google Scholar] [CrossRef]
- Kasman, A.; Duman, Y.S. CO₂ emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [Google Scholar] [CrossRef]
- Wang, S.S.; Zhou, D.Q.; Zhou, P.; Wang, Q.W. CO₂ emissions, energy consumption and economic growth in China: A panel data analysis. Energy Policy 2011, 39, 4870–4875. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Ben Youssef, A.; M’henni, H.; Rault, C. Energy consumption, economic growth and CO₂ emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Tiwari, A.K.; Nasir, M. The effects of financial development, economic growth, coal consumption and trade openness on CO₂ emissions in South Africa. Energy Policy 2013, 61, 1452–1459. [Google Scholar] [CrossRef] [Green Version]
- Grether, J.-M.; Mathys, N.A.; De Melo, J. Is Trade Bad for the Environment? Decomposing World-Wide SO2 Emissions 1990–2000; University of Geneva: Geneva, Switzerland, 2007. [Google Scholar]
- Shahbaz, M.; Lean, H.H.; Shabbir, M.S. Environmental Kuznets curve hypothesis in Pakistan: Cointegration and Granger causality. Renew. Sustain. Energy Rev. 2012, 16, 2947–2953. [Google Scholar] [CrossRef] [Green Version]
Variables | Description and Unit | Source | Period |
---|---|---|---|
CO2 | CO2 emissions (kt) | WDI, (2022) | 1992–2020 |
GDP | GDP (constant 2015 US$) | WDI, (2022) | 1992–2020 |
AGR | Agriculture, forestry, and fishing, value added (% of GDP) | WDI, (2022) | 1992–2020 |
WATER | Level of water stress: freshwater withdrawal as a proportion of available freshwater resources | WDI, (2022) | 1992–2020 |
ENG | Energy use (kg of oil equivalent per capita) | WDI, (2022) | 1992–2020 |
ELC | Electricity production from oil, gas, and coal sources (% of total) | WDI, (2022) | 1992–2020 |
TO | Trade (% of GDP) | WDI, (2022) | 1992–2020 |
Variable | Obs | Mean | Std. dev. | Min | Max |
---|---|---|---|---|---|
lnCO2 | 140 | 10.3095 | 1.601232 | 7.663877 | 12.46848 |
lnGDP | 144 | 23.62457 | 1.350189 | 21.53163 | 26.07563 |
lnAGR | 131 | 4.452783 | 0.1500689 | 4.057057 | 4.584434 |
lnWATER | 131 | 4.338419 | 0.5823849 | 3.346076 | 5.129452 |
lnENG | 114 | 7.218931 | 0.9743152 | 5.635909 | 8.475568 |
lnELC | 120 | 3.256355 | 1.764502 | −1.54665 | 4.60517 |
lnTO | 135 | 4.414645 | 0.3813467 | 3.373905 | 5.201752 |
lnCO2 | lnGDP | lnAGR | lnWATER | lnENG | lnELC | lnTO | |
---|---|---|---|---|---|---|---|
lnCO2 | 1.0000 | ||||||
lnGDP | 0.7307 | 1.0000 | |||||
lnAGR | −0.4497 | −0.6219 | 1.0000 | ||||
lnWATER | 0.0451 | −0.1241 | 0.7244 | 1.0000 | |||
lnENG | 0.6110 | 0.7880 | −0.3838 | 0.0967 | 1.0000 | ||
lnELC | 0.7804 | 0.6945 | −0.2462 | 0.1591 | 0.9046 | 1.0000 | |
lnTO | −0.4961 | −0.5197 | 0.1433 | −0.2689 | −0.3252 | −0.3914 | 1.0000 |
Fisher-Type Tests | IPS Test | |||||
---|---|---|---|---|---|---|
Fisher ADF Statistics | Fisher-PP Statistics | |||||
I(0) | I(1) | I(0) | I(1) | I(0) | I(1) | |
lnCO2 | 6.1427 | 57.9795 *** | 10.2413 | 85.9605 *** | −2.4397 *** | −5.4896 *** |
GDP | 4.7553 | 52.4932 *** | 0.2920 | 28.3205 *** | −5.2704 *** | −1.6087 ** |
lnagriculture | 14.0404 | 46.3537 *** | 14.4270 | 124.6767 *** | 0.8348 | −5.7529 *** |
lnlevofwater | 17.9404 ** | 50.9431 *** | 10.4234 | 57.3955 *** | 1.1062 | −4.4619 *** |
lnenergy | 20.4985 ** | 75.6571 *** | 50.5401 *** | 69.2403 *** | −2.8629 *** | −4.2897 *** |
lnfenergy | 12.2603 | 75.5989 *** | 14.6722 | 132.0359 *** | −2.7732 *** | −5.6403 *** |
lntrade | 9.8814 | 51.4519 *** | 12.4277 | 94.3563 *** | −0.8764 | −4.9880 *** |
Within-Dimension | ||
---|---|---|
Statistic | p-value | |
Panel v-Statistic | −2.0091 *** | 0.0223 |
Panel rho-Statistic | 1.5452 *** | 0.0111 |
Panel PP-Statistic | −0.7160 | 0.2370 |
Panel ADF-Statistic | −1.1488 | 0.1253 |
Between-Dimension | ||
Statistic | p-value | |
Group rho-Statistic | 1.8060 *** | 0.0355 |
Group PP-Statistic | −1.8377 *** | 0.0331 |
Group ADF-Statistic | −1.0976 | 0.1362 |
Variables | DOLS | FMOLS |
---|---|---|
lnGDP | 0.652 *** | 0.544 *** |
(0.0288) | (0.0500) | |
lnAGR | −0.762 *** | −0.419 ** |
(0.146) | (0.174) | |
lnWATER | 0.435 *** | 0.125 |
(0.131) | (0.161) | |
lnENG | 0.500 *** | 0.0129 |
(0.160) | (0.214) | |
lnELC | 0.558 *** | 0.418 *** |
(0.0632) | (0.0824) | |
lnTO | −0.672 *** | −0.706 *** |
(0.115) | (0.143) | |
Observations | 96 | 101 |
R-squared | 0.984 | 0.963 |
Variables | Long-Term | Kazakhstan | Kyrgyz Republic | Tajikistan | Turkmenistan | Uzbekistan |
---|---|---|---|---|---|---|
__ec | −0.628 ** | 0.00775 | −0.997 *** | 0.0380 * | 0.0328 | |
(0.252) | (0.0511) | (0.148) | (0.0220) | (0.134) | ||
D.lnGDP | −0.264 | 0.663 ** | 0.519 ** | 0.0764 * | −0.661 | |
(0.319) | (0.310) | (0.240) | (0.0390) | (0.966) | ||
D.lnAGR | −0.266 ** | −0.0544 | −0.0724 | −0.00125 | 0.139 | |
(0.114) | (0.189) | (0.0995) | (0.0115) | (0.147) | ||
D.lnWATER | −0.0662 | −0.105 | 2.279 | 0.607 *** | 0.723 | |
(0.156) | (0.544) | (1.699) | (0.196) | (1.441) | ||
D.lnENG | 0.301 | 1.369 *** | 0.822 *** | 0.971 *** | 0.487 * | |
(0.274) | (0.124) | (0.257) | (0.0434) | (0.249) | ||
D.lnELC | 0.983 ** | 0.00489 | −0.0324 | 33.91 ** | −0.377 | |
(0.408) | (0.0549) | (0.0272) | (16.60) | (0.364) | ||
D.lnTO | 0.0430 | 0.0914 | −0.000571 | −0.0110 | −0.0247 | |
(0.0968) | (0.128) | (0.0796) | (0.0183) | (0.102) | ||
lnGDP | 0.484 *** | |||||
(0.0578) | ||||||
lnAGR | −0.503 *** | |||||
(0.139) | ||||||
lnWATER | −0.439 | |||||
(0.286) | ||||||
lnENG | 0.847 *** | |||||
(0.139) | ||||||
lnELC | 0.154 *** | |||||
(0.0278) | ||||||
lnTO | −0.224 *** | |||||
(0.0781) | ||||||
Constant | −3.921 * | 0.0341 | −6.367 *** | 0.254 | 0.245 | |
(2.065) | (0.335) | (2.112) | (0.171) | (0.801) | ||
Observations | 97 | 97 | 97 | 97 | 97 | 97 |
Test Statistics | HPJ Wald Test | Coefficient | Prob. |
---|---|---|---|
lnGDP does not Granger-cause lnCO2 | 29.817045 *** | 0.1709876 *** | 0.0000 |
lnCO2 does not Granger-cause lnGDP | 47.105256 *** | −0.179036 *** | 0.0000 |
lnAGR does not Granger-cause lnCO2 | 63.039461 *** | −0.7809887 *** | 0.0014 |
lnCO2 does not Granger-cause lnAGR | 34.481617 *** | −0.041358 *** | 0.0042 |
lnWATER does not Granger-cause lnCO2 | 8.3430113 *** | −0.4575799 *** | 0.0039 |
lnCO2 does not Granger-cause lnWATER | 13.615436 *** | 0.0710439 *** | 0.0002 |
lnENG does not Granger-cause lnCO2 | 65.762049 *** | −1.313412 *** | 0.0000 |
lnCO2 does not Granger-cause lnENG | 2.5654612 | 0.1313206 | 0.1092 |
lnELC does not Granger-cause lnCO2 | 177.43993 *** | −0.3573938 | 0.0000 |
lnCO2 does not Granger-cause lnELC | 0.09616554 | 0.0351109 | 0.7565 |
lnTO does not Granger-cause lnCO2 | 0.67881694 | 0.0451014 | 0.4100 |
lnCO2 does not Granger-cause lnTO | 1.3098619 | 0.0429897 | 0.2524 |
Kazakhstan | HPJ Wald Test | Coeff. | Prob. |
---|---|---|---|
GDP-CO2 | 24.924641 *** | 0.2442349 *** | 0.0000 |
Agriculture → CO2 | 35.594333 *** | −0.6423979 *** | 0.0000 |
Water → CO2 | 10.534225 *** | 0.4054786 *** | 0.0012 |
Energy → CO2 | 18.018716 *** | 1.734604 *** | 0.0000 |
Electricity from oil, gas, and coal → CO2 | 6.47384 *** | 2.339287 *** | 0.0109 |
Trade → CO2 | 3.3811766 ** | −0.1676981 ** | 0.0659 |
Kyrgyz Republic | HPJ Wald Test | Coeff. | Prob. |
GDP-CO2 | 32.874327 *** | 0.6220052 *** | 0.0000 |
Agriculture → CO2 | 61.170693 *** | 9.494256 *** | 0.0000 |
Water → CO2 | 80.119141 *** | 2.917541 *** | 0.0000 |
Energy → CO2 | 49.775664 *** | 3.182574 *** | 0.0000 |
Electricity from oil, gas, and coal → CO2 | 29.763587 *** | 0.4218315 *** | 0.0000 |
Trade → CO2 | 54.601792 *** | 1.005915 *** | 0.0000 |
Tajikistan | HPJ Wald Test | Coeff. | Prob. |
GDP-CO2 | 19.093867 *** | 0.3717678 *** | 0.0000 |
Agriculture → CO2 | 10.044585 *** | −0.2268042 *** | 0.0000 |
Water → CO2 | 2.5430826 | −0.7768634 | 0.1108 |
Energy → CO2 | 17.633354 *** | −1.024879 *** | 0.0000 |
Electricity from oil, gas, and coal → CO2 | 47.522853 *** | 0.2429706 *** | 0.0000 |
Trade → CO2 | 45.1325353 | −0.1325353 | 0.3669 |
Turkmenistan | HPJ Wald Test | Coeff. | Prob. |
GDP-CO2 | 5.311809 *** | −0.1491076 *** | 0.0212 |
Agriculture → CO2 | 0.84441843 *** | −6.83907 *** | 0.0009 |
Water → CO2 | 0.1578529 | 0.1858017 | 0.6911 |
Energy → CO2 | 6.6229458 *** | 1.360706 *** | 0.0101 |
Electricity from oil, gas, and coal → CO2 | 0.33449237 *** | 65.41621 *** | 0.5630 |
Trade → CO2 | 0.41130557 | −0.0300651 | 0.5213 |
Uzbekistan | HPJ Wald Test | Coeff. | Prob. |
GDP-CO2 | 23.621855 *** | −0.1234307 *** | 0.0000 |
Agriculture → CO2 | 0.20574869 *** | −4.4622 *** | 0.0085 |
Water → CO2 | 2.6526705 | 0.4455153 | 0.1034 |
Energy → CO2 | 9.9312233 *** | 0.4170792 *** | 0.0016 |
Electricity from oil, gas, and coal → CO2 | 27.857949 *** | 1.515818 *** | 0.0000 |
Trade → CO2 | 5.7874141 *** | 0.1169658 *** | 0.0161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saidmamatov, O.; Tetreault, N.; Bekjanov, D.; Khodjaniyazov, E.; Ibadullaev, E.; Sobirov, Y.; Adrianto, L.R. The Nexus between Agriculture, Water, Energy and Environmental Degradation in Central Asia—Empirical Evidence Using Panel Data Models. Energies 2023, 16, 3206. https://doi.org/10.3390/en16073206
Saidmamatov O, Tetreault N, Bekjanov D, Khodjaniyazov E, Ibadullaev E, Sobirov Y, Adrianto LR. The Nexus between Agriculture, Water, Energy and Environmental Degradation in Central Asia—Empirical Evidence Using Panel Data Models. Energies. 2023; 16(7):3206. https://doi.org/10.3390/en16073206
Chicago/Turabian StyleSaidmamatov, Olimjon, Nicolas Tetreault, Dilmurad Bekjanov, Elbek Khodjaniyazov, Ergash Ibadullaev, Yuldoshboy Sobirov, and Lugas Raka Adrianto. 2023. "The Nexus between Agriculture, Water, Energy and Environmental Degradation in Central Asia—Empirical Evidence Using Panel Data Models" Energies 16, no. 7: 3206. https://doi.org/10.3390/en16073206
APA StyleSaidmamatov, O., Tetreault, N., Bekjanov, D., Khodjaniyazov, E., Ibadullaev, E., Sobirov, Y., & Adrianto, L. R. (2023). The Nexus between Agriculture, Water, Energy and Environmental Degradation in Central Asia—Empirical Evidence Using Panel Data Models. Energies, 16(7), 3206. https://doi.org/10.3390/en16073206