Oxidation Kinetics of Neat Methyl Oleate and as a Blend with Solketal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fuel Aging
2.3. Kinematic Viscosity
2.4. Acid Value
2.5. Peroxide Value
2.6. Gas Chromatography with Mass Spectrometry (GC-MS)
3. Results and Discussion
4. Conclusions
5. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramos, M.J.; Fernández, C.M.; Casas, A.; Rodríguez, L.; Pérez, Á. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 2009, 100, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.L.; McCormick, R.L. Spectroscopic Study of Biodiesel Degradation Pathways; SAE Technical Paper; SAE: Warrendale, PA, USA, 2006. [Google Scholar]
- Tuerck, J.; Singer, A.; Lichtinger, A.; Almaddad, M.; Türck, R.; Jakob, M.; Garbe, T.; Ruck, W.; Krahl, J. Solketal as a renewable fuel component in ternary blends with biodiesel and diesel fuel or HVO and the impact on physical and chemical properties. Fuel 2022, 310, 122463. [Google Scholar] [CrossRef]
- Hamacher, D.; Schrader, W. Investigating Molecular Transformation Processes of Biodiesel Components During Long-Term Storage Via High-Resolution Mass Spectrometry. ChemSusChem 2022, 15, e202200456. [Google Scholar] [CrossRef] [PubMed]
- Krahl, J.; Petchatnikov, M.; Schmidt, L.; Munack, A.; Bünger, J. Spektroskopische Untersuchungen zur Ergründung der Wechselwirkungen zwischen Biodiesel und Dieselkraftstoff bei Blends; Braunschweig und Coburg: Braunschweig, Germany, 2009. [Google Scholar]
- Singer, A.; Schröder, O.; Pabst, C.; Munack, A.; Bünger, J.; Ruck, W.; Krahl, J. Aging studies of biodiesel and HVO and their testing as neat fuel and blends for exhaust emissions in heavy-duty engines and passenger cars. Fuel 2015, 153, 595–603. [Google Scholar] [CrossRef]
- Frankel, E. Lipid Oxidation; The Oily Press: Dundee, Scotland, 1998; Volume 13. [Google Scholar]
- Kim, H.J.; Min, D.B. 11. Chemistry of Lipid Oxidation. Food Lipids Chem. Nutr. Biotechnol. 2008, 1, 299. [Google Scholar]
- Stuhr, R.; Bayer, P.; von Wangelin, A.J. The Diverse Modes of Oxygen Reactivity in Life & Chemistry. ChemSusChem 2022, 15, e202201323. [Google Scholar]
- Schaich, K.M. Lipid oxidation: Theoretical aspects. In Bailey’s Industrial Oil and Fat Products; Wiley: Hoboken, NJ, USA, 2005; Volume 1, pp. 273–303. [Google Scholar]
- Min, D.; Boff, J. Chemistry and reaction of singlet oxygen in foods. Compr. Rev. Food Sci. Food Saf. 2002, 1, 58–72. [Google Scholar] [CrossRef]
- Knothe, G. Some aspects of biodiesel oxidative stability. Fuel Process. Technol. 2007, 88, 669–677. [Google Scholar] [CrossRef]
- Regensburger, J. Spektroskopische Untersuchungen zur Singulett-Sauerstoff-Lumineszenz in Biomolekülen, Bakterien und Zellen; Universität Regensburg: Regensburg, Germany, 2010. [Google Scholar]
- Bär, F.; Knorr, M.; Schröder, O.; Hopf, H.; Garbe, T.; Krahl, J. Rancimat vs. rapid small scale oxidation test (RSSOT) correlation analysis, based on a comprehensive study of literature. Fuel 2021, 291, 120160. [Google Scholar] [CrossRef]
- Romanov, A.N.; Rufov, Y.N.; Korchak, V.N. Thermal generation of singlet oxygen (1ΔgO2) on ZSM-5 zeolite. Mendeleev Commun. 2000, 10, 116–117. [Google Scholar] [CrossRef]
- Kumar, N. Oxidative stability of biodiesel: Causes, effects and prevention. Fuel 2017, 190, 328–350. [Google Scholar] [CrossRef]
- Flitsch, S.; Neu, P.M.; Schober, S.; Kienzl, N.; Ullmann, J.R.; Mittelbach, M. Quantitation of aging products formed in biodiesel during the rancimat accelerated oxidation test. Energy Fuels 2014, 28, 5849–5856. [Google Scholar] [CrossRef]
- Xin, J.; Imahara, H.; Saka, S. Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel 2009, 88, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Domingos, A.K.; Saad, E.B.; Vechiatto, W.W.; Wilhelm, H.M.; Ramos, L.P. The influence of BHA, BHT and TBHQ on the oxidation stability of soybean oil ethyl esters (biodiesel). J. Braz. Chem. Soc. 2007, 18, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Türck, J. Kraftstoffe für die Mobilität von morgen. In Proceedings of the Kraftstoffe für die Mobilität von Morgen, 4. Tagung der Fuels Joint Research Group, Dresden, Germany, 10–11 June 2021; Volume 30, pp. 470–477. [Google Scholar]
- Mota, C.J.; da Silva, C.X.; Jr, N.R.; Costa, J.; da Silva, F. Glycerin Derivatives as Fuel Additives: The Addition of Glycerol/Acetone Ketal (Solketal) in Gasolines. Energy Fuels 2010, 24, 2733–2736. [Google Scholar] [CrossRef]
- Glassman, I. Soot formation in combustion processes. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1989; Volume 22, pp. 295–311. [Google Scholar]
- Bowden, J.; Johnston, A.; Russell, J. Octane-cetane relationship. Southwest Research In San Antonio TX Belvoir Fuels and Lubricants Research; Ft. Belvoir: Fairfax County, VA, USA, 1974. [Google Scholar]
- Samoilov, V.; Borisov, R.; Stolonogova, T.; Zarezin, D.; Maximov, A.; Bermeshev, M.; Chernysheva, E.; Kapustin, V. Glycerol to renewable fuel oxygenates. Part II: Gasoline-blending characteristics of glycerol and glycol derivatives with C3-C4 alkyl (idene) substituents. Fuel 2020, 280, 118585. [Google Scholar] [CrossRef]
- Moser, B.R. Comparative oxidative stability of fatty acid alkyl esters by accelerated methods. J. Am. Oil Chem. Soc. 2009, 86, 699–706. [Google Scholar] [CrossRef]
- Sabudak, T.; Yildiz, M. Biodiesel production from waste frying oils and its quality control. Waste Manag. 2010, 30, 799–803. [Google Scholar] [CrossRef] [PubMed]
- ISO 3960:2012; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. ISO: Geneva, Switzerland, 2012.
- Ball, J.C.; Anderson, J.E.; Wallington, T.J. Depolymerization of polyester polymers from the oxidation of soybean biodiesel. Energy Fuels 2018, 32, 12587–12596. [Google Scholar] [CrossRef]
- Canakci, M.; Monyem, A.; Van Gerpen, J. Accelerated oxidation processes in biodiesel. Trans. ASAE 1999, 42, 1565. [Google Scholar] [CrossRef]
- Thompson, J.; Peterson, C.; Reece, D.; Beck, S. Two-year storage study with methyl and ethyl esters of rapeseed. Trans. ASAE 1998, 41, 931. [Google Scholar] [CrossRef]
- Bouaid, A.; Martinez, M.; Aracil, J. Production of biodiesel from bioethanol and Brassica carinata oil: Oxidation stability study. Bioresour. Technol. 2009, 100, 2234–2239. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Marmesat, S.; Dobarganes, M.C.; Márquez-Ruiz, G.; Velasco, J. Evaporative light scattering detector in normal-phase high-performance liquid chromatography determination of FAME oxidation products. J. Chromatogr. A 2012, 1254, 62–70. [Google Scholar] [CrossRef]
- Velasco, J.; Marmesat, S.; Bordeaux, O.; Márquez-Ruiz, G.; Dobarganes, C. Formation and evolution of monoepoxy fatty acids in thermoxidized olive and sunflower oils and quantitation in used frying oils from restaurants and fried-food outlets. J. Agric. Food Chem. 2004, 52, 4438–4443. [Google Scholar] [CrossRef] [PubMed]
- Wolff, R.L. Heat-induced geometrical isomerization of α-linolenic acid: Effect of temperature and heating time on the appearance of individual isomers. J. Am. Oil Chem. Soc. 1993, 70, 425–430. [Google Scholar] [CrossRef]
- Cheng, N.; Zhang, J.; Yin, J.; Li, S. Computational and experimental research on mechanism of cis/trans isomerization of oleic acid. Heliyon 2018, 4, e00768. [Google Scholar] [CrossRef] [Green Version]
- Emken, E. cis and trans Analysis of fatty esters by gas chromatography: Octadecenoate and octadecadienoate isomers. Lipids 1972, 7, 459–466. [Google Scholar] [CrossRef]
- Moser, B.R.; Cermak, S.C.; Doll, K.M.; Kenar, J.A.; Sharma, B.K. A review of fatty epoxide ring opening reactions: Chemistry, recent advances, and applications. J. Am. Oil Chem. Soc. 2022, 99, 801–842. [Google Scholar] [CrossRef]
- Frankel, E. Chemistry of free radical and singlet oxidation of lipids. Prog. Lipid Res. 1984, 23, 197–221. [Google Scholar] [CrossRef]
- Cravador, A.; Krief, A. Unusual reactivity of selenoboranes towards epoxides: New selective routes to b-hydroxyselenides and allylalcohols. Tetrahedron Lett. 1981, 22, 2491–2494. [Google Scholar] [CrossRef]
- Wei, Y.; Li, G.; Lv, Q.; Cheng, C.; Guo, H. Epoxidation of methyl oleate and unsaturated fatty acid methyl esters obtained from vegetable source over Ti-containing silica catalysts. Ind. Eng. Chem. Res. 2018, 57, 16284–16294. [Google Scholar] [CrossRef]
- Parker, R.-E.; Isaacs, N. Mechanisms of epoxide reactions. Chem. Rev. 1959, 59, 737–799. [Google Scholar] [CrossRef]
- Saurabh, T.; Patnaik, M.; Bhagt, S.; Renge, V. Epoxidation of vegetable oils: A review. Int. J. Adv. Eng. Technol 2011, 2, 491–501. [Google Scholar]
- Marteau, C.; Ruyffelaere, F.; Aubry, J.-M.; Penverne, C.; Favier, D.; Nardello-Rataj, V. Oxidative degradation of fragrant aldehydes. Autoxidation by molecular oxygen. Tetrahedron 2013, 69, 2268–2275. [Google Scholar] [CrossRef]
- Bravo, A.; Bjorsvik, H.-R.; Fontana, F.; Minisci, F.; Serri, A. Radical versus “oxenoid” oxygen insertion mechanism in the oxidation of alkanes and alcohols by aromatic peracids. New synthetic developments. J. Org. Chem. 1996, 61, 9409–9416. [Google Scholar] [CrossRef]
- Parker, W.E.; Ricciuti, C.; Ogg, C.; Swern, D. Preparation, Characterization and Polarographic Behavior of Longchain Aliphatic Peracids2. J. Am. Chem. Soc. 1955, 77, 4037–4041. [Google Scholar] [CrossRef]
- Greenspan, F.P. The convenient preparation of per-acids. J. Am. Chem. Soc. 1946, 68, 907. [Google Scholar] [CrossRef]
- Thornton, M.J.; Alleman, T.L.; Luecke, J.; McCormick, R.L. Impacts of biodiesel fuel blends oil dilution on light-duty diesel engine operation. SAE Int. J. Fuels Lubr. 2009, 2, 781–788. [Google Scholar] [CrossRef] [Green Version]
Kin. Viscosity [mm2/s] | |
---|---|
Methyl oleate | 4.5 |
Solketal | 5.1 |
GC: | |||||
Temperature Program | Column | ||||
Start temp.: 60 °C for 3 min | Dimension: 30.0 m × 0.25 mm × 0.20 µm | ||||
Heating rate: 10.0 K/min | Type: Phenomenex ZB-FAME | ||||
Finale temp.: 250 °C for 10 min | Max. temp.: 280 °C | ||||
Total run time: 32 min | |||||
Injector temp.: 250 °C | |||||
Pressure [kPa] | Total Flow [mL/min] | Split Ratio | Column Flow [mL/min] | Injection Volume [µL] | |
72.9 | 64.5 | 1:50 | 1.21 | 1.0 | |
MS: | |||||
Ion Source Temperature | 200 °C | ||||
Interface Temperature | 250 °C | ||||
Ionization mode | Electron Ionization | ||||
Scan mode | Total Ion Count | ||||
m/z | 20.00–600.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Türck, J.; Schmitt, F.; Anthofer, L.; Lichtinger, A.; Türck, R.; Ruck, W.; Krahl, J. Oxidation Kinetics of Neat Methyl Oleate and as a Blend with Solketal. Energies 2023, 16, 3253. https://doi.org/10.3390/en16073253
Türck J, Schmitt F, Anthofer L, Lichtinger A, Türck R, Ruck W, Krahl J. Oxidation Kinetics of Neat Methyl Oleate and as a Blend with Solketal. Energies. 2023; 16(7):3253. https://doi.org/10.3390/en16073253
Chicago/Turabian StyleTürck, Julian, Fabian Schmitt, Lukas Anthofer, Anne Lichtinger, Ralf Türck, Wolfgang Ruck, and Jürgen Krahl. 2023. "Oxidation Kinetics of Neat Methyl Oleate and as a Blend with Solketal" Energies 16, no. 7: 3253. https://doi.org/10.3390/en16073253
APA StyleTürck, J., Schmitt, F., Anthofer, L., Lichtinger, A., Türck, R., Ruck, W., & Krahl, J. (2023). Oxidation Kinetics of Neat Methyl Oleate and as a Blend with Solketal. Energies, 16(7), 3253. https://doi.org/10.3390/en16073253