Hydromechanical Impacts of CO2 Storage in Coal Seams of the Upper Silesian Coal Basin (Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geology of the Study Site
2.2. Near-Field Model Simulating CO2 Injection and Adsorption-Induced Coal Swelling
2.3. Far-Field Model Assessing the Commercial-Scale Hydromechanical Impact
2.4. Workflow to Couple Near- and Far-Field Simulations
2.5. Injection Well Arrangement
3. Results
3.1. Effective Stress Changes in Near-Field Simulations
3.2. Vertical Displacements in the Far-Field Simulations
3.2.1. CO2 Injection into Seam 510
3.2.2. CO2 Injection into Seam 308
3.2.3. CO2 Injection into Both Seams Simultaneously
3.3. Effects of Rock Parameter Uncertainties
3.4. Stress Field and Fault Reactivation Potential
4. Discussion
5. Summary and Conclusions
- Vertical surface displacements occur at a tolerable extent with no structural damage of surface infrastructure expected.
- Parameter variations of rock strength have no significant influence on the hydromechanical impacts of the CO2 storage operation, if conservative rock properties are taken into consideration.
- Fault reactivation is unlikely and can be further reduced by increasing the amount of in-situ stress measurements to identify regions with high fault reactivation potentials and conductive fault segments.
- Post-operational impact are unlikely due to the degrading pressure in the reservoir formation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Coal Seam | Stress Regime | Rock Properties | Injection Pressure (MPa) | Time (years) | Max. Displacement above Seam (10−2 m) | Max. Displacement at Surface (10−2 m) | Amount of CO2 (t) |
---|---|---|---|---|---|---|---|
510 | SS | soft | 4.5 | 1 | 3.59 | 0.99 | 265,674 |
510 | SS | soft | 4.5 | 15 | 1.97 | 0.89 | 265,674 |
510 | SS | soft | 3 | 1 | 2.64 | 0.53 | 150,613 |
510 | SS | soft | 3 | 15 | 1.43 | 0.50 | 150,613 |
510 | SS | soft | 1.5 | 1 | 1.47 | 0.19 | 60,026 |
510 | SS | soft | 1.5 | 15 | 0.82 | 0.18 | 60,026 |
510 | SS | stiff | 4.5 | 1 | 3.45 | 0.97 | 265,674 |
510 | SS | stiff | 4.5 | 15 | 1.89 | 0.88 | 265,674 |
510 | SS | stiff | 3 | 1 | 2.52 | 0.52 | 150,613 |
510 | SS | stiff | 3 | 15 | 1.37 | 0.49 | 150,613 |
510 | SS | stiff | 1.5 | 1 | 1.37 | 0.19 | 60,026 |
510 | SS | stiff | 1.5 | 15 | 0.78 | 0.18 | 60,026 |
510 | NF | soft | 4.5 | 1 | 3.59 | 0.99 | 265,674 |
510 | NF | soft | 4.5 | 15 | 1.97 | 0.89 | 265,674 |
510 | NF | soft | 3 | 1 | 2.64 | 0.53 | 150,613 |
510 | NF | soft | 3 | 15 | 1.43 | 0.50 | 150,613 |
510 | NF | soft | 1.5 | 1 | 1.47 | 0.19 | 60,026 |
510 | NF | soft | 1.5 | 15 | 0.82 | 0.18 | 60,026 |
510 | NF | stiff | 4.5 | 1 | 3.45 | 0.97 | 265,674 |
510 | NF | stiff | 4.5 | 15 | 1.89 | 0.88 | 265,674 |
510 | NF | stiff | 3 | 1 | 2.52 | 0.52 | 150,613 |
510 | NF | stiff | 3 | 15 | 1.37 | 0.49 | 150,613 |
510 | NF | stiff | 1.5 | 1 | 1.37 | 0.19 | 60,026 |
510 | NF | stiff | 1.5 | 15 | 0.78 | 0.18 | 60,026 |
308 | SS | soft | 1.5 | 1 | 0.77 | 0.34 | 20,185 |
308 | SS | soft | 1.5 | 15 | 0.42 | 0.25 | 20,185 |
308 | SS | soft | 1 | 1 | 0.55 | 0.19 | 12,392 |
308 | SS | soft | 1 | 15 | 0.34 | 0.17 | 12,392 |
308 | SS | soft | 0.5 | 1 | 0.31 | 0.07 | 5599 |
308 | SS | soft | 0.5 | 15 | 0.21 | 0.08 | 5599 |
308 | SS | stiff | 1.5 | 1 | 0.76 | 0.36 | 20,185 |
308 | SS | stiff | 1.5 | 15 | 0.41 | 0.26 | 20,185 |
308 | SS | stiff | 1 | 1 | 0.53 | 0.21 | 12,392 |
308 | SS | stiff | 1 | 15 | 0.33 | 0.18 | 12,392 |
308 | SS | stiff | 0.5 | 1 | 0.29 | 0.08 | 5599 |
308 | SS | stiff | 0.5 | 15 | 0.20 | 0.08 | 5599 |
308 | NF | soft | 1.5 | 1 | 0.77 | 0.34 | 20,185 |
308 | NF | soft | 1.5 | 15 | 0.42 | 0.25 | 20,185 |
308 | NF | soft | 1 | 1 | 0.55 | 0.19 | 12,392 |
308 | NF | soft | 1 | 15 | 0.34 | 0.17 | 12,392 |
308 | NF | soft | 0.5 | 1 | 0.31 | 0.07 | 5599 |
308 | NF | soft | 0.5 | 15 | 0.21 | 0.08 | 5599 |
308 | NF | stiff | 1.5 | 1 | 0.76 | 0.36 | 20,185 |
308 | NF | stiff | 1.5 | 15 | 0.41 | 0.26 | 20,185 |
308 | NF | stiff | 1 | 1 | 0.53 | 0.21 | 12,392 |
308 | NF | stiff | 1 | 15 | 0.33 | 0.18 | 12,392 |
308 | NF | stiff | 0.5 | 1 | 0.29 | 0.08 | 5599 |
308 | NF | stiff | 0.5 | 15 | 0.20 | 0.08 | 5599 |
308 and 510 | SS | soft | 1.5 and 4.5 | 1 | 3.59 | 1.07 | 285,858 |
308 and 510 | SS | soft | 1.5 and 4.5 | 15 | 1.97 | 0.94 | 285,858 |
308 and 510 | NF | soft | 1.5 and 4.5 | 1 | 3.59 | 1.07 | 285,858 |
308 and 510 | NF | soft | 1.5 and 4.5 | 15 | 1.97 | 0.94 | 285,858 |
References
- IPCC. Special Report: Carbon Dioxide Capture and Storage; Technical Report; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Masoudian, M.S. Multiphysics of carbon dioxide sequestration in coalbeds: A review with a focus on geomechanical characteristics of coal. J. Rock Mech. Geotech. Eng. 2016, 8, 93–112. [Google Scholar] [CrossRef] [Green Version]
- White, C.M.; Smith, D.H.; Jones, K.L.; Goodman, A.L.; Jikich, S.A.; LaCount, R.B.; DuBose, S.B.; Ozdemir, E.; Morsi, B.I.; Schroeder, K.T. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery—A review. Energy Fuels 2005, 19, 659–724. [Google Scholar] [CrossRef]
- Sun, L.; Dou, H.; Li, Z.; Hu, Y.; Hao, X. Assessment of CO2 storage potential and carbon capture, utilization and storage prospect in China. J. Energy Inst. 2018, 91, 970–977. [Google Scholar] [CrossRef]
- Vangkilde-Pedersen, T.; Anthonsen, K.L.; Smith, N.; Kirk, K.; Neele, F.; van der Meer, B.; Le Gallo, Y.; Bossie-Codreanu, D.; Wojcicki, A.; Le Nindre, Y.M.; et al. Assessing European capacity for geological storage of carbon dioxide—The EU GeoCapacity project. Energy Procedia 2009, 1, 2663–2670. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.Y. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci. Technol. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Dutta, P.; Zoback, M.D. CO2 sequestration into the Wyodak coal seam of Powder River Basin—Preliminary reservoir characterization and simulation. Int. J. Greenh. Gas Control 2012, 9, 103–116. [Google Scholar] [CrossRef]
- Van Bergen, F.; Pagnier, H.; Krzystolik, P. Field experiment of enhanced coalbed methane-CO2 in the upper Silesian basin in Poland. Environ. Geosci. 2006, 13, 201–224. [Google Scholar] [CrossRef]
- Steadman, E.N.; Anagnost, K.K.; Botnen, B.W.; Botnen, L.A.; Daly, D.J.; Gorecki, C.D.; Harju, J.A.; Jensen, M.D.; Peck, W.D.; Romuld, L.; et al. The Plains CO2 Reduction (PCOR) partnership: Developing Carbon management options for the central interior of North America. Energy Procedia 2011, 4, 6061–6068. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Benderev, A.; Bukolska, D.; Eshiet, K.I.I.; da Gama, C.D.; Gorka, T.; Green, M.; Hristov, N.; Katsimpardi, I.; Kempka, T.; et al. Interdisciplinary studies on the technical and economic feasibility of deep underground coal gasification with CO2 storage in bulgaria. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 595–627. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, M.; Yamaguchi, S.; Nako, M. CO2-ECBM field tests in the Ishikari Coal Basin of Japan. Int. J. Coal Geol. 2010, 82, 287–298. [Google Scholar] [CrossRef]
- Van Bergen, F.; Krzystolik, P.; van Wageningen, N.; Pagnier, H.; Jura, B.; Skiba, J.; Winthaegen, P.; Kobiela, Z. Production of gas from coal seams in the Upper Silesian Coal Basin in Poland in the post-injection period of an ECBM pilot site. Int. J. Coal Geol. 2009, 77, 175–187. [Google Scholar] [CrossRef]
- Van Bergen, F.; Winthaegen, P.; Pagnier, H.; Krzystolik, P.; Jura, B.; Skiba, J.; van Wageningen, N. Assessment of CO2 storage performance of the Enhanced Coalbed Methane pilot site in Kaniow. Energy Procedia 2009, 1, 3407–3414. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Sang, S.; Liu, S. Establishment of dynamic permeability model of coal reservoir and its numerical simulation during the CO2-ECBM process. J. Pet. Sci. Eng. 2019, 179, 885–898. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y. CBM and CO2-ECBM related sorption processes in coal: A review. Int. J. Coal Geol. 2011, 87, 49–71. [Google Scholar] [CrossRef]
- Cai, Y.; Pan, Z.; Liu, D.; Zheng, G.; Tang, S.; Connell, L.; Yao, Y.; Zhou, Y. Effects of pressure and temperature on gas diffusion and flow for primary and enhanced coalbed methane recovery. Energy Explor. Exploit. 2014, 32, 601–619. [Google Scholar] [CrossRef] [Green Version]
- Pone, J.D.; Halleck, P.M.; Mathews, J.P. Sorption capacity and sorption kinetic measurements of CO2 and CH4 in confined and unconfined bituminous coal. Energy Fuels 2009, 23, 4688–4695. [Google Scholar] [CrossRef]
- Masum, S.A.; Chen, M.; Hosking, L.J.; Stańczyk, K.; Kapusta, K.; Thomas, H.R. A numerical modelling study to support design of an in-situ CO2 injection test facility using horizontal injection well in a shallow-depth coal seam. Int. J. Greenh. Gas Control 2022, 119, 103725. [Google Scholar] [CrossRef]
- Ridha, S.; Pratama, E.; Ismail, S. Performance assessment of CO2 sequestration in a horizontal well for enhanced coalbed methane recovery in deep unmineable coal seams. Chem. Eng. Trans. 2017, 56, 589–594. [Google Scholar]
- Ren, J.; Zhang, L.; Ren, S.; Lin, J.; Meng, S.; Ren, G.; Gentzis, T. Multi-branched horizontal wells for coalbed methane production: Field performance and well structure analysis. Int. J. Coal Geol. 2014, 131, 52–64. [Google Scholar] [CrossRef]
- Connell, L.D.; Pan, Z.; Camilleri, M.; Meng, S.; Down, D.; Carras, J.; Zhang, W.; Fu, X.; Guo, B.; Briggs, C.; et al. Description of a CO2 enhanced coal bed methane field trial using a multi-lateral horizontal well. Int. J. Greenh. Gas Control 2014, 26, 204–219. [Google Scholar] [CrossRef]
- Gentzis, T.; Bolen, D. The use of numerical simulation in predicting coalbed methane producibility from the Gates coals, Alberta Inner Foothills, Canada: Comparison with Mannville coal CBM production in the Alberta Syncline. Int. J. Coal Geol. 2008, 74, 215–236. [Google Scholar] [CrossRef]
- Sams, W.; Bromhal, G.; Jikich, S.; Odusote, O.; Ertekin, T.; Smith, D. Simulating Carbon Dioxide Sequestration/ECBM Production in Coal Seams: Effects of Permeability Anisotropies and Other Coal Properties; SPE 84423; Society of Petroleum Engineers: Richardson, TX, USA, 2003. [Google Scholar]
- Zhang, J.; Feng, Q.; Zhang, X.; Hu, Q.; Wen, S.; Chen, D.; Zhai, Y.; Yan, X. Multi-fractured horizontal well for improved coalbed methane production in eastern Ordos basin, China: Field observations and numerical simulations. J. Pet. Sci. Eng. 2020, 194, 107488. [Google Scholar] [CrossRef]
- Liu, G.; Smirnov, A.V. Carbon sequestration in coal-beds with structural deformation effects. Energy Convers. Manag. 2009, 50, 1586–1594. [Google Scholar] [CrossRef]
- Connell, L.D.; Detournay, C. Coupled flow and geomechanical processes during enhanced coal seam methane recovery through CO2 sequestration. Int. J. Coal Geol. 2009, 77, 222–233. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Elsworth, D.; Connell, L.D.; Pan, Z. Impact of CO2 injection and differential deformation on CO2 injectivity under in-situ stress conditions. Int. J. Coal Geol. 2010, 81, 97–108. [Google Scholar] [CrossRef]
- Kedzior, S. Accumulation of coal-bed methane in the south-west part of the Upper Silesian Coal Basin (southern Poland). Int. J. Coal Geol. 2009, 80, 20–34. [Google Scholar] [CrossRef]
- Smoliński, A.; Rompalski, P.; Cybulski, K.; Chećko, J.; Howaniec, N. Chemometric study of trace elements in hard coals of the upper Silesian Coal Basin, Poland. Sci. World J. 2014, 2014, 234204. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.R.; Rees, S.W.; Sloper, N.J. Three-dimensional heat, moisture and air transfer in unsaturated soils. Int. J. Numer. Anal. Methods Geomech. 1998, 22, 75–95. [Google Scholar] [CrossRef]
- Chen, M.; Masum, S.A.; Thomas, H.R. 3D hybrid coupled dual continuum and discrete fracture model for simulation of CO2 injection into stimulated coal reservoirs with parallel implementation. Int. J. Coal Geol. 2022, 262, 104103. [Google Scholar] [CrossRef]
- Chen, M.; Masum, S.; Sadasivam, S.; Thomas, H. Modelling anisotropic adsorption-induced coal swelling and stress-dependent anisotropic permeability. Int. J. Rock Mech. Min. Sci. 2022, 153, 105107. [Google Scholar] [CrossRef]
- Van Wageningen, W.F.; Wentinck, H.M.; Otto, C. Report and modeling of the MOVECBM field tests in Poland and Slovenia. Energy Procedia 2009, 1, 2071–2078. [Google Scholar] [CrossRef] [Green Version]
- Konecny, P.; Kozusnikova, A. Influence of stress on the permeability of coal and sedimentary rocks of the Upper Silesian basin. Int. J. Rock Mech. Min. Sci. 2011, 48, 347–352. [Google Scholar] [CrossRef]
- Pagnier, H.; van Bergen, F.; Krzystolik, P.; Skiba, J.; Jura, B.; Hadro, J.; Wentink, P.; De-Smedt, G.; Kretzschmar, H.J.; Fröbel, J.; et al. Reduction of CO2 Emission by Means of CO2 Storage in Coal Seams in the Silesian Coal Basin of Poland; RECOPOL (Final Report); 2006. Available online: https://ieaghg.org/docs/General_Docs/Reports/2006-10%20Final%20RECOPOL%20Report.pdf (accessed on 3 April 2023).
- Majewska, Z.; Majewski, S.; Zietek, J. Swelling of coal induced by cyclic sorption/desorption of gas: Experimental observations indicating changes in coal structure due to sorption of CO2 and CH4. Int. J. Coal Geol. 2010, 83, 475–483. [Google Scholar] [CrossRef]
- Chen, M.; Hosking, L.J.; Sandford, R.J.; Thomas, H.R. Dual porosity modelling of the coupled mechanical response of coal to gas flow and adsorption. Int. J. Coal Geol. 2019, 205, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Reeves, S.R.; Taillefert, A. Reservoir Modeling for the Design of the RECOPOL CO2 Sequestration Project, Poland; Topical Report, DOE Contract No. DE-FC26-00NT40924; 2002. Available online: https://www.adv-res.com/Coal-Seq_Consortium/ECBM_Sequestration_Knowledge_Base/Coal-Seq%20Topical%20Reports/Topical%20Report%20-%20RECOPOL%20Design%20Modelling.pdf (accessed on 3 April 2023).
- Hol, S.; Spiers, C.J. Competition between adsorption-induced swelling and elastic compression of coal at CO2 pressures up to 100 MPa. J. Mech. Phys. Solids 2012, 60, 1862–1882. [Google Scholar] [CrossRef]
- Itasca Consulting Group, Inc. FLAC3D Software Version 5.01. User’s Manual. Advanced Three-Dimensional Continuum Modelling for Geotechnical Analysis of Rock, Soil and Structural Support; Itasca Consulting Group, Inc.: Minneapolis, MN, USA, 2014. [Google Scholar]
- Otto, C.; Kempka, T.; Kapusta, K.; Stańczyk, K. Fault reactivation can generate hydraulic short circuits in underground coal gasification—New insights from regional-scale thermo-mechanical 3D modeling. Minerals 2016, 6, 101. [Google Scholar] [CrossRef] [Green Version]
- Kempka, T.; Nielsen, C.M.; Frykman, P.; Shi, J.Q.; Bacci, G.; Dalhoff, F. Coupled hydro-mechanical simulations of CO2 storage supported by pressure management demonstrate synergy benefits from simultaneous formation fluid extraction. Oil Gas Sci. Technol. 2015, 70, 599–613. [Google Scholar] [CrossRef] [Green Version]
- Chećko, J. Analysis of geological, hydrogeological and mining conditions in the area of the developed georeactor located in KWK Wieczorek mine. Prz. Górn. 2013, 69, 37–45. [Google Scholar]
- Dubinski, J.; Stec, K.; Bukowska, M. Geomechanical and tectonophysical conditions of mining-induced seismicity in the Upper Silesian Coal Basin in Poland: A case study. Arch. Min. Sci. 2019, 64, 163–180. [Google Scholar] [CrossRef]
- Jarosiński, M. Recent tectonic stress field investigations in Poland: A state of the art. Geol. Q. 2006, 50, 303–321. [Google Scholar]
- Morris, A.; Ferrill, D.A.; Henderson, D.B. Slip-tendency analysis and fault reactivation. Geology 1996, 24, 275–278. [Google Scholar] [CrossRef]
- Ferrill, D.A. Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today 1999, 9, 1–8. [Google Scholar]
- Hobbs, B.E.; Means, W.D.; Williams, P.F. An Outline of Structural Geology; Wiley: New York, NY, USA, 1976; Volume 25. [Google Scholar]
- Moinfar, A.; Varavei, A.; Sepehrnoori, K.; Johns, R.T. Development of a coupled dual continuum and discrete fracture model for the simulation of unconventional reservoirs. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 18–20 February 2013; Volume 2, pp. 978–994. [Google Scholar] [CrossRef]
- Chen, M.; Masum, S.A.; Thomas, H.R. Three-dimensional cleat scale modelling of gas transport processes in deformable fractured coal reservoirs. Gas Sci. Eng. 2023, 110, 204901. [Google Scholar] [CrossRef]
- Chećko, J.; Urych, T.; Magdziarczyk, M.; Smolinski, A. Research on the processes of injecting CO2 into coal seams with CH4 recovery using horizontal wells. Energies 2020, 13, 416. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.; Gunter, W.D.; Mavor, M.J. Economics of CO2 sequestration in coalbed methane reservoirs. In Proceedings of the SPE/CERI Gas Technology Symposium 2000, GTS 2000, Calgary, AB, Canada, 3–5 April 2000. [Google Scholar] [CrossRef]
- Godec, M.; Koperna, G.; Gale, J. CO2-ECBM: A review of its status and global potential. Energy Procedia 2014, 63, 5858–5869. [Google Scholar] [CrossRef] [Green Version]
- Price, N.J.; Cosgrove, J.W. Analysis of Geological Structures; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Van der Zee, W. Dynamics of Fault Gouge Development in Layered Sand-Clay Sequences; Shaker Verlag GmbH: Dueren, Germany, 2002. [Google Scholar]
- Koledoye, B.A.; Aydin, A.; May, E. A new process-based methodology for analysis of shale smear along normal faults in the Niger Delta. AAPG Bull. 2003, 87, 445–463. [Google Scholar] [CrossRef]
- Ligtenberg, J.H. Detection of fluid migration pathways in seismic data: Implications for fault seal analysis. Basin Res. 2005, 17, 141–153. [Google Scholar] [CrossRef]
Parameter | Value | Reference | |
---|---|---|---|
Intrinsic permeability (mD) | Seam 308 | 1.0 | [34] |
Seam 510 | 0.3 | [35] | |
Initial fracture porosity (-) | Seam 308 | 0.015 | [34] |
Seam 510 | 0.006 | [35] | |
Matrix porosity (-) | 0.04 | [36] | |
Gas viscosity (Pa·s) | 1.84 × 10−5 | [37] | |
Unstressed fracture compressibility (MPa−1) | 0.029 | [38] | |
Matrix elastic modulus (GPa) | 11.5 | [39] | |
Langmuir pressure constant (MPa) | 2.6 | [33] | |
Langmuir volume constant (mol/kg) | 0.76 | [33] |
Coal Seam | Constant Injection Pressure (MPa) | Pressure Increase in Relation to Respective Hydrostatic Pressure (-) | Amount of Injected CO2 (t) | Maximum Effective Pressure Change (MPa) | |
---|---|---|---|---|---|
1 year | 15 years | ||||
308 | 1.5 | 1.36 | 2018 | 15.5 | 7.3 |
1.0 | 1.24 | 1239 | 11.8 | 6.3 | |
0.5 | 1.12 | 560 | 7.2 | 4.4 | |
510 | 4.5 | 1.37 | 22,139 | 20.9 | 9.4 |
3.0 | 1.29 | 12,551 | 17.1 | 7.6 | |
1.5 | 1.12 | 5002 | 11.2 | 5.2 |
Property | Quaternary | Neogene and Triassic | Cracow Sandstone Series | Mudstone Series | Coal (308) | Upper Silesian Sandstone | Coal (510) | Stiff Basement | |
---|---|---|---|---|---|---|---|---|---|
Young’s modulus | Soft | 2 | 2 | 3.3 | 3.6 | 1.8 | 5.9 | 2.2 | 80 |
(GPa) | Stiff | 5 | 5 | 7.5 | 8.1 | 1.8 | 8.4 | 2.2 | 80 |
Poisson’s ratio (-) | 0.4 | 0.25 | 0.21 | 0.26 | 0.3 | 0.23 | 0.3 | 0.27 | |
Tensile strength (MPa) | 0.0 | 1.0 | 2.0 | 2.6 | 0.6 | 2.6 | 0.6 | 3.8 | |
Cohesion (MPa) | 0.0 | 2.0 | 14.9 | 18.1 | 3.8 | 14.0 | 3.8 | 10.9 | |
Friction angle (°) | 35 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | |
Density (kg/m3) | 2100 | 2200 | 2115 | 2418 | 1388 | 2378 | 1388 | 2465 |
Constant Injection Pressure (MPa) | Max. Displacements for the Stiff Property Scenario (%) | ||||
---|---|---|---|---|---|
Above Coal Seam | At Ground Surface | ||||
1 year | 15 years | 1 year | 15 years | ||
Coal seam 308 | 1.5 | −2.5 | −1.7 | −6.1 | −5.5 |
1.0 | −3.4 | −2.5 | −6.2 | −5.9 | |
0.5 | −7.3 | −4.6 | −6.3 | −6.3 | |
Coal seam 510 | 4.5 | −3.9 | −3.9 | −1.5 | −1.4 |
3.0 | −4.6 | −3.7 | −1.5 | −1.5 | |
1.5 | −6.4 | −4.9 | −1.5 | −1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wetzel, M.; Otto, C.; Chen, M.; Masum, S.; Thomas, H.; Urych, T.; Bezak, B.; Kempka, T. Hydromechanical Impacts of CO2 Storage in Coal Seams of the Upper Silesian Coal Basin (Poland). Energies 2023, 16, 3279. https://doi.org/10.3390/en16073279
Wetzel M, Otto C, Chen M, Masum S, Thomas H, Urych T, Bezak B, Kempka T. Hydromechanical Impacts of CO2 Storage in Coal Seams of the Upper Silesian Coal Basin (Poland). Energies. 2023; 16(7):3279. https://doi.org/10.3390/en16073279
Chicago/Turabian StyleWetzel, Maria, Christopher Otto, Min Chen, Shakil Masum, Hywel Thomas, Tomasz Urych, Bartłomiej Bezak, and Thomas Kempka. 2023. "Hydromechanical Impacts of CO2 Storage in Coal Seams of the Upper Silesian Coal Basin (Poland)" Energies 16, no. 7: 3279. https://doi.org/10.3390/en16073279
APA StyleWetzel, M., Otto, C., Chen, M., Masum, S., Thomas, H., Urych, T., Bezak, B., & Kempka, T. (2023). Hydromechanical Impacts of CO2 Storage in Coal Seams of the Upper Silesian Coal Basin (Poland). Energies, 16(7), 3279. https://doi.org/10.3390/en16073279