Synergistic Germanium-Decorated h-BN/MoS2 Heterostructure Nanosheets: An Advanced Electrocatalyst for Energy Storage Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of h-BN/MoS2 Heterostructures
2.2. Synthesis of Ge-Decorated h-BN/MoS2 Heterostructures
3. Characterization
Electrode Preparation for Energy Storage Applications
4. Results and Discussion
4.1. Physicochemical Characterizations of Ge/h-BN/MoS2
4.2. Supercapacitor Performances
4.3. Electrocatalytic Examinations of Ge/h-BN/MoS2/GCE
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thakur, A.K.; Majumder, M.; Choudhary, R.B.; Singh, S.B. MoS2 flakes integrated with boron and nitrogen-doped carbon: Striking gravimetric and volumetric capacitive performance for supercapacitor applications. J. Power Sources 2018, 402, 163–173. [Google Scholar] [CrossRef]
- Sarmah, D.; Kumar, A. Symmetric supercapacitors with layer-by-layer molybdenum disulfide-reduced graphene oxide structures and poly (3, 4-ethylenedioxythiophene) nanoparticles nanohybrid electrode. J. Energy Storage 2021, 35, 102289. [Google Scholar] [CrossRef]
- Krishnaiah, P.; Kumar, B.P.P.K.Y.; Asha, P.K.; Nautiyal, P.; Devi, V.A.; Alharthi, F.A.; Parashuram, L.; Raghu, M.S. Fabrication of anode material for asymmetric supercapacitor device using polyaniline wrapped boron carbon nitride nanocomposite with enhanced capacitance. J. Alloy. Compd. 2020, 848, 156602. [Google Scholar] [CrossRef]
- Cheng, P.; Yuan, C.; Zhou, Q.; Hu, X.; Li, J.; Lin, X.; Wang, X.; Jin, M.; Shui, L.; Gao, X.; et al. Core–shell MoS2@ CoO electrocatalyst for water splitting in neural and alkaline solutions. J. Phys. Chem. C 2019, 123, 5833–5839. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Jiang, M.Y.; Wu, L.K.; Hou, G.Y.; Liu, Y.P.T.M. Ultra-thin NiFeSe nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Sustain. Energy Fuels 2020, 4, 582–588. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.L.; Dong, S.; He, D.; Lawrence, M.J.; Han, S.; Cai, C.; Xiang, S.; Rodriguez, P.; Xiang, B.; et al. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy 2018, 53, 458–467. [Google Scholar] [CrossRef]
- Guan, S.; Fu, X.; Lao, Z.; Jin, C.; Peng, Z. NiS–MoS2 hetero-nanosheet array electrocatalysts for efficient overall water splitting. Sustain. Energy Fuels 2019, 3, 2056–2066. [Google Scholar] [CrossRef]
- An, T.; Wang, Y.; Tang, J.; Wei, W.; Cui, X.; Alenizi, A.M.; Zhang, L.; Zheng, G. Interlaced NiS2–MoS2 nanoflake-nanowires as efficient hydrogen evolution electrocatalysts in basic solutions. J. Mater. Chem. A 2016, 4, 13439–13443. [Google Scholar] [CrossRef]
- He, H.Y.; He, Z.; Shen, Q. Efficient hydrogen evolution catalytic activity of graphene/metallic MoS2 nanosheet heterostructures synthesized by a one-step hydrothermal process. Int. J. Hydrogen Energy 2018, 43, 21835–21843. [Google Scholar] [CrossRef]
- Vikraman, D.; Hussain, S.; Akbar, K.; Truong, L.; Kathalingam, A.; Chun, S.H.; Jung, J.; Park, H.J.; Kim, H.S. Improved hydrogen evolution reaction performance using MoS2–WS2 heterostructures by physicochemical process. ACS Sustain. Chem. Eng. 2018, 6, 8400–8409. [Google Scholar] [CrossRef]
- Padmanaban, A.; Padmanathan, N.; Dhanasekaran, T.; Manigandan, R.; Srinandhini, S.; Sivaprakash, P.; Arumugam, S.; Narayanan, V. Hexagonal phase Pt-doped cobalt telluride magnetic semiconductor nanoflakes for electrochemical sensing of dopamine. J. Electroanal. Chem. 2020, 877, 114658. [Google Scholar] [CrossRef]
- Kou, Z.; Wang, T.; Gu, Q.; Xiong, M.; Zheng, L.; Li, X.; Pan, Z.; Chen, H.; Verpoort, F.; Cheetham, A.K.; et al. Rational design of holey 2D non-layered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation. Adv. Energy Mater. 2019, 9, 1803768. [Google Scholar] [CrossRef]
- Qiu, B.; Cai, L.; Wang, Y.; Lin, Z.; Zuo, Y.; Wang, M.; Chai, Y. Fabrication of nickel–cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis. Adv. Funct. Mater. 2018, 28, 1706008. [Google Scholar] [CrossRef]
- Zhao, Y.; Jin, B.; Vasileff, A.; Jiao, Y.; Qiao, S.Z. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. J. Mater. Chem. A 2019, 7, 8117–8121. [Google Scholar] [CrossRef]
- Chang, K.; Hai, X.; Pang, H.; Zhang, H.; Shi, L.; Liu, G.; Liu, H.; Zhao, G.; Li, M.; Ye, J. Targeted synthesis of 2H-and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033–10041. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Reinoza, N.; Santos, A.C.D.; de Lima, L.H.; Landers, R.; de Siervo, A. Atomically precise bottom-up synthesis of h-BNC: Graphene doped with h-BN nanoclusters. Chem. Mater. 2021, 33, 2871–2882. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, Z.; Liu, H.; He, C.; Xue, L.; Qi, X.; Zhong, J. Transition metal atoms absorbed on MoS2/h-BN heterostructure: Stable geometries, band structures and magnetic properties. Phys. Chem. Chem. Phys. 2018, 20, 17387–17392. [Google Scholar] [CrossRef]
- Tronganh, N.; Yang, Y.; Chen, F.; Lu, M.; Jiang, Y.; Gao, Y.; Cheng, L.; Jiao, Z. SiO2-assisted synthesis of layered MoS2/reduced graphene oxide intercalation composites as high performance anode materials for Li-ion batteries. RSC Adv. 2016, 6, 74436–74444. [Google Scholar] [CrossRef]
- Iyyamperumal, E.; Wang, S.; Dai, L. Vertically aligned BCN nanotubes with high capacitance. ACS Nano 2012, 6, 5259–5265. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Kim, J.; Zheng, Q.; Ning, H.; Sun, P.; Huang, X.; Liu, J.; Niu, J.; Braun, P.V. High volumetric capacity three-dimensionally sphere-caged secondary battery anodes. Nano Lett. 2016, 16, 4501–4507. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.; Gao, Y.; Tronganh, N.; Chen, F.; Lu, M.; Jiang, Y.; Jiao, Z.; Zhao, B. Facile synthesis of ultrathin, undersized MoS2/graphene for lithium-ion battery anodes. RSC Adv. 2016, 6, 99833–99841. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Z.; Gao, Y.; Chen, L.; Lu, M.; Jiao, Z.; Jiang, Y.; Ding, Y.; Cheng, L. Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials. Appl. Surf. Sci. 2016, 390, 209–215. [Google Scholar] [CrossRef]
- Palanisamy, R.; Karuppiah, D.; Venkatesan, S.; Mani, S.; Kuppusamy, M.; Marimuthu, S.; Karuppanan, A.; Govindaraju, R.; Marimuthu, S.; Rengapillai, S.; et al. High-performance asymmetric supercapacitor fabricated with a novel MoS2/Fe2O3/Graphene composite electrode. Colloids Interface Sci. Commun. 2022, 46, 100573. [Google Scholar] [CrossRef]
- Seki, T.; Chiang, K.-Y.; Yu, C.-C.; Yu, X.; Okuno, M.; Hunger, J.; Nagata, Y.; Bonn, M. The Bending Mode of Water: A Powerful Probe for Hydrogen Bond Structure of Aqueous Systems. J. Phys. Chem. Lett. 2020, 11, 8459–8469. [Google Scholar] [CrossRef] [PubMed]
- Pálinkó, I.; Sipos, P.; Berkesi, O.; Varga, G. Distinguishing Anionic Species That Are Intercalated in Layered Double Hydroxides from Those Bound to Their Surface: A Comparative IR Study. J. Phys. Chem. C 2022, 126, 15254–15262. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Li, N.; Tian, Q.; Zhou, J.; Sun, Y. Synthesis of MoS2/SrTiO3 composite materials for enhanced photocatalytic activity under UV irradiation. J. Mater. Chem. A 2015, 3, 706–712. [Google Scholar] [CrossRef]
- Giribabu, K.; Oh, S.Y.; Suresh, R.; Kumar, S.P.; Manigandan, R.; Munusamy, S.; Gnanamoorthy, G.; Kim, J.Y.; Huh, Y.S.; Narayanan, V. Sensing of picric acid with a glassy carbon electrode modified with CuS nanoparticles deposited on nitrogen-doped reduced graphene oxide. Microchim. Acta. 2016, 183, 2421–2430. [Google Scholar] [CrossRef]
- Pandit, M.A.; Kumar, D.S.H.; Billakanti, S.; Ramadoss, M.; Muralidharan, K. Chalcopyrite with Magnetic and Dielectric Properties: An Introductory Catalyst for 4-Nitrophenol Reduction. J. Phys. Chem. C 2020, 124, 18010–18019. [Google Scholar] [CrossRef]
- Zhao, Z.; Xie, Y. Electrochemical supercapacitor performance of boron and nitrogen co-doped porous carbon nanowires. J. Power Sources 2018, 400, 264–276. [Google Scholar] [CrossRef]
- Abraham, A.M.; Lonkar, S.P.; Pillai, V.V.; Alhassan, S.M. Three-Dimensional MoS2 Nanodot-Impregnated Nickel Foam Electrodes for High-Performance Supercapacitor Applications. ACS Omega 2020, 5, 11721–11729. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Xin, S.; Yang, Z.; Li, Y.; Zhang, D.; Yao, P. Facile synthesis of MoS2/reduced grapheneoxide@polyaniline for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 21373–21380. [Google Scholar] [CrossRef] [PubMed]
- Manuraj, M.; Nair, K.K.; Unni, K.N.; Rakhi, R.B. High performance supercapacitors based on MoS2 nanostructures with near commercial mass loading. J. Alloys Compd. 2020, 819, 152963. [Google Scholar] [CrossRef]
- Li, R.; Qin, C.; Zhang, X.; Lin, Z.; Jiang, S.L.X. Boron/nitrogen co-doped carbon synthesized from waterborne polyurethane and graphene oxide composite for supercapacitors. RSC Adv. 2019, 9, 1679–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, K.; Zhang, M.; Yang, Y.; Zhao, L.; Qi, W. Synthesis and supercapacitor performance of polyaniline/nitrogen-doped ordered mesoporous carbon composites. Nanoscale Res. Lett. 2018, 13, 1–8. [Google Scholar] [CrossRef]
- Liu, J.; Du, P.; Wang, Q.; Liu, D.; Liu, P. Mild synthesis of holey N-doped reduced graphene oxide and its double-edged effects in polyaniline hybrids for supercapacitor application. Electrochim. Acta 2019, 305, 175–186. [Google Scholar] [CrossRef]
- Guevara, D.; Boscá, A.; Pedrós, A.J.; Climent, P.E.; Andrés, D.A.; Calle, F. Reduced graphene oxide/polyaniline electrochemical supercapacitors fabricated by laser. Appl. Surf. Sci. 2019, 467–468, 691–697. [Google Scholar] [CrossRef]
- Hao, Q.; Xia, X.; Lei, W.; Wang, W.; Qiu, J. Facile synthesis of sandwich-like polyaniline/boron-doped graphenenano hybrid for supercapacitors. Carbon 2015, 81, 552–563. [Google Scholar] [CrossRef]
- Dhanasekaran, T.; Manigandan, R.; Padmanaban, A.; Suresh, R.; Giribabu, K.; Narayanan, V. Fabrication of Ag@Co-Al Layered Double Hydroxides Reinforced poly(o-phenylenediamine) Nanohybrid for Efficient Electrochemical Detection of 4-Nitrophenol, 2,4-Dinitrophenol and Uric acid at Nano Molar Level. Sci. Rep. 2019, 9, 13250. [Google Scholar] [CrossRef] [Green Version]
S. No | Samples | Cs (Fg−1) | Retention | Cycle Number | References |
---|---|---|---|---|---|
1 | Boron and nitrogen co-doped porous carbon | 504 (1 Ag−1) | 91 | 10,000 | [29] |
2 | MoS2 nanodots | 122 (1 Ag−1) | 86 | 1000 | [30] |
3 | MoS2/rGO@PANI | 160 (1 Ag−1) | - | - | [31] |
4 | MoS2 nanostructures/PEDOT | 244 (1 Ag−1) | 92 | 9000 | [32] |
5 | Boron/nitrogen co-doped carbon | 330 (0.5 Ag−1) | 89 | 5000 | [33] |
6 | MoS2-rGO/PEDOTNP | 298 (1 Ag−1) | 93 | 10,000 | [2] |
7 | PANI/Nitrogen-doped carbon composites | 276 (0.2 Ag−1) | 80 | 5000 | [34] |
8 | H-NrGO/PANI | 510 (1 Ag−1) | 74 | 2000 | [35] |
9 | rGO/PANI nanofiber | 442 (0.3 Ag−1) | 84 | 2000 | [36] |
10 | Polyaniline/boron-doped graphene nanohybrid | 406 (0.5 Ag−1) | 83 | 5000 | [37] |
11 | BCN/ MoS2-11 | 283 (1 Ag−1) | - | - | [1] |
12 | Ge/BN/MoS2 | 558 (1 Ag−1) | 85 | 2000 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saravanan, M.; Palanisamy, R.; Sethuraman, V.; Diwakar, K.; Kumar, P.S.; Venkatesh, P.S.; Kannan, N.; Kingston, R.J.; Aravinth, K.; Kim, J. Synergistic Germanium-Decorated h-BN/MoS2 Heterostructure Nanosheets: An Advanced Electrocatalyst for Energy Storage Applications. Energies 2023, 16, 3286. https://doi.org/10.3390/en16073286
Saravanan M, Palanisamy R, Sethuraman V, Diwakar K, Kumar PS, Venkatesh PS, Kannan N, Kingston RJ, Aravinth K, Kim J. Synergistic Germanium-Decorated h-BN/MoS2 Heterostructure Nanosheets: An Advanced Electrocatalyst for Energy Storage Applications. Energies. 2023; 16(7):3286. https://doi.org/10.3390/en16073286
Chicago/Turabian StyleSaravanan, M., Rajkumar Palanisamy, V. Sethuraman, K. Diwakar, P. Senthil Kumar, P. Sundara Venkatesh, N. Kannan, R. Joel Kingston, K. Aravinth, and Jinho Kim. 2023. "Synergistic Germanium-Decorated h-BN/MoS2 Heterostructure Nanosheets: An Advanced Electrocatalyst for Energy Storage Applications" Energies 16, no. 7: 3286. https://doi.org/10.3390/en16073286
APA StyleSaravanan, M., Palanisamy, R., Sethuraman, V., Diwakar, K., Kumar, P. S., Venkatesh, P. S., Kannan, N., Kingston, R. J., Aravinth, K., & Kim, J. (2023). Synergistic Germanium-Decorated h-BN/MoS2 Heterostructure Nanosheets: An Advanced Electrocatalyst for Energy Storage Applications. Energies, 16(7), 3286. https://doi.org/10.3390/en16073286