Analysis of Different Third-Generation Solar Cells Using the Discrete Electrical Model d1MxP
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Perovskite Solar Cells
3.2. Dye-Sensitized Solar Cell
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marques Lameirinhas, R.A.; Torres, J.P.N.; de Melo Cunha, J.P. A Photovoltaic Technology Review: History, Fundamentals and Applications. Energies 2022, 15, 1823. [Google Scholar] [CrossRef]
- dos Santos, S.A.A.; Torres, J.P.N.; Fernandes, C.A.; Lameirinhas, R.A.M. The impact of aging of solar cells on the performance of photovoltaic panels. Energy Convers. Manag. X 2021, 10, 100082. [Google Scholar] [CrossRef]
- Pinho Correia Valério Bernardo, C.; Marques Lameirinhas, R.A.; Neto Torres, J.P.; Baptista, A. Comparative analysis between traditional and emerging technologies: Economic and viability evaluation in a real case scenario. Mater. Renew. Sustain. Energy 2023, 12, 1–22. [Google Scholar] [CrossRef]
- Pinho Correia Valério Bernardo, C.; Marques Lameirinhas, R.A.; Neto Torres, J.P.; Baptista, A. The Shading Influence on the Economic Viability of a Real Photovoltaic System Project. Energies 2023, 16, 2672. [Google Scholar] [CrossRef]
- Chaar, L.E.; lamont, L.A.; El Zein, N. Review of photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 2165–2175. [Google Scholar] [CrossRef]
- Asdrubali, F.; Desideri, U. Chapter 7—High Efficiency Plants and Building Integrated Renewable Energy Systems. In Handbook of Energy Efficiency in Buildings; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Green, M.; Ho-Baillie, A.; Snaith, H. The emergence of perovskite solar cells. Nat. Photon. 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Ananthakumar, S.; Kumar, J.R.; Babu, S.M. Third-generation solar cells: Concept, materials and performance-an overview. Emerg. Nanostruct. Mater. Energy Environ. Sci. 2019, 23, 305–339. [Google Scholar]
- Wei, D. Dye Sensitized Solar Cells. Int. J. Mol. Sci. 2010, 11, 1103–1113. [Google Scholar] [CrossRef] [Green Version]
- Futscher, M.H.; Ehrler, B. Efficiency Limit of Perovskite/Si Tandem Solar Cells. ACS Energy Lett. 2016, 1, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275. [Google Scholar] [CrossRef]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok, S.I.; McGehee, M.D.; Sargent, E.H.; Han, H. Sargent and Hongwei Han. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacak, J.E.; Jacak, W.A. Routes for Metallization of Perovskite Solar Cells. Materials 2022, 15, 2254. [Google Scholar] [CrossRef] [PubMed]
- Ndione, P.F.; Yin, W.J.; Zhu, K.; Wei, S.H.; Berry, J.J. Monitoring the stability of organometallic perovskite thin films. J. Mater. Chem. A 2015, 3, 21940–21945. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, I.; Andrade, L.; Mendes, A. Temperature Impact on Perovskite Solar Cells Under Operation. ChemSusChem 2019, 12, 2186. [Google Scholar] [CrossRef]
- Torres, J.P.N.; Marques Lameirinhas, R.A.; Correia, V.; Bernardo, C.P.; Veiga, H.I.; dos Santos, P.M. A Discrete Electrical Model for Photovoltaic Solar Cells—d1MxP. Energies 2023, 16, 2018. [Google Scholar] [CrossRef]
- Zhaoxu, S.; Kun, F.; Xiaofang, S.; Ying, L.; Wei, L.; Chuanzhong, X.; Gongyi, H.; Fei, Y. An Effective Method to Accurately Extract the Parameters of Single Diode Model of Solar Cells. Nanomaterials 2021, 11, 2615. [Google Scholar] [CrossRef]
- Castro, R.; Silva, M. Experimental and Theoretical Validation of One Diode and Three Parameters–Based PV Models. Energies 2021, 14, 2140. [Google Scholar] [CrossRef]
- Yuqiang, L.; Li, Y.; Wu, Y.; Yang, G.; Mazzarella, L.; Procel-Moya, P.; Tamboli, A.C.; Weber, K.; Boccard, M.; Isabella, O.; et al. High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Mater. Sci. Eng. Rep. 2020, 147, 100579. [Google Scholar]
- Firoz, K.; Singh, S.N.; Husain, M. Effect of illumination intensity on cell parameters of a silicon solar cell. Sol. Energy Mater. Sol. Cells 2010, 94, 1473–1476. [Google Scholar] [CrossRef]
- Alves, T.; Torres, J.P.N.; Marques Lameirinhas, R.A.; Fernandes, C.A.F. Different Techniques to Mitigate Partial Shading in Photovoltaic Panels. Energies 2021, 14, 3863. [Google Scholar] [CrossRef]
- Matsunaga, Y.; Oya, T. Development of Paint-Type Dye-Sensitized Solar Cell Using Carbon Nanotube Paint. J. Nanotechnol. 2019, 2019, 5081034. [Google Scholar] [CrossRef] [Green Version]
N | [] | [V] |
---|---|---|
1 | 7924.5283 | 0 |
2 | 125,003.0453 | 0.0377 |
3 | 46,155.2119 | 0.1915 |
4 | 583.5560 | 0.6396 |
5 | 478.6033 | 0.6566 |
6 | 1178.7960 | 0.7208 |
7 | 615.0313 | 0.7406 |
8 | 273.0927 | 0.8047 |
9 | 1882.2774 | 0.8236 |
10 | 123.9662 | 0.8415 |
11 | 152.9023 | 0.8755 |
12 | 118.9689 | 0.8943 |
13 | 76.5353 | 0.9104 |
14 | 134.0653 | 0.9274 |
15 | 29.8052 | 0.9443 |
16 | 35.1641 | 0.9736 |
17 | 171.0759 | 0.9877 |
18 | 34.5110 | 1.0009 |
19 | 18.0137 | 1.0245 |
20 | 33.0539 | 1.0330 |
N | [] | [V] |
---|---|---|
1 | 4.1176 × 10 | 0 |
2 | 8099.7302 | 1.00 × 10 |
3 | 1532.4422 | 0.3000 |
4 | 956.0864 | 0.3477 |
5 | 259.9907 | 0.5307 |
6 | 167.4610 | 0.6091 |
7 | 515.5360 | 0.6409 |
8 | 439.5374 | 0.6818 |
9 | 46.0024 | 0.7239 |
10 | 180.2672 | 0.7534 |
11 | 51.3815 | 0.7955 |
12 | 28.6649 | 0.8250 |
13 | 42.8730 | 0.8489 |
14 | 90.4095 | 0.8818 |
d1MxP | 1M5P | (%) | ||
---|---|---|---|---|
Spiro-OMeTAD as HEL | [W] | 0.01341 | 0.01342 | 0.07 |
[V] | 0.84151 | 0.83427 | 0.87 | |
[A] | 0.01594 | 0.01608 | 0.87 | |
Pristine spiro-OMeTAD | [W] | 0.01121 | 0.01151 | 2.61 |
[V] | 0.72386 | 0.68485 | 5.70 | |
[A] | 0.01548 | 0.01680 | 7.86 |
N | [] | [V] |
---|---|---|
1 | 6523.2558 | 0 |
2 | 41,313.9546 | 0.0064 |
3 | 4464.4584 | 0.0174 |
4 | 115,194.7864 | 0.0297 |
5 | 16,133.7241 | 0.0512 |
6 | 11,119.1890 | 0.0657 |
7 | 3.6893 × 10 | 0.0866 |
8 | 1.5372 × 10 | 0.1006 |
9 | 8895.3522 | 0.1076 |
10 | 29,651.1770 | 0.1221 |
11 | 18,758.9090 | 0.1512 |
12 | 7256.7369 | 0.1872 |
13 | 5930.2383 | 0.1959 |
14 | 2320.5295 | 0.2134 |
15 | 21,348.8867 | 0.2291 |
16 | 7116.2976 | 0.2360 |
17 | 4151.1763 | 0.2436 |
18 | 10,377.9474 | 0.2517 |
19 | 4447.6947 | 0.3157 |
d1MxP | 1M5P | (%) | |
---|---|---|---|
[W] | 45.18468 | 47.57921 | 5.03 |
[V] | 0.21337 | 0.18210 | 17.17 |
[A] | 211.76470 | 261.27779 | 18.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, J.P.N.; Marques Lameirinhas, R.A.; Pinho Correia Valério Bernardo, C.; Lima Martins, S.; Mendonça dos Santos, P.; Veiga, H.I.; Marques Martins, M.J.; Santos do Rego Figueiredo, P.M. Analysis of Different Third-Generation Solar Cells Using the Discrete Electrical Model d1MxP. Energies 2023, 16, 3289. https://doi.org/10.3390/en16073289
Torres JPN, Marques Lameirinhas RA, Pinho Correia Valério Bernardo C, Lima Martins S, Mendonça dos Santos P, Veiga HI, Marques Martins MJ, Santos do Rego Figueiredo PM. Analysis of Different Third-Generation Solar Cells Using the Discrete Electrical Model d1MxP. Energies. 2023; 16(7):3289. https://doi.org/10.3390/en16073289
Chicago/Turabian StyleTorres, João Paulo N., Ricardo A. Marques Lameirinhas, Catarina Pinho Correia Valério Bernardo, Sofia Lima Martins, Pedro Mendonça dos Santos, Helena Isabel Veiga, Maria João Marques Martins, and Paula Manuela Santos do Rego Figueiredo. 2023. "Analysis of Different Third-Generation Solar Cells Using the Discrete Electrical Model d1MxP" Energies 16, no. 7: 3289. https://doi.org/10.3390/en16073289
APA StyleTorres, J. P. N., Marques Lameirinhas, R. A., Pinho Correia Valério Bernardo, C., Lima Martins, S., Mendonça dos Santos, P., Veiga, H. I., Marques Martins, M. J., & Santos do Rego Figueiredo, P. M. (2023). Analysis of Different Third-Generation Solar Cells Using the Discrete Electrical Model d1MxP. Energies, 16(7), 3289. https://doi.org/10.3390/en16073289