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Abstract: In thermally modernised buildings, sharing of ventilation heat loss becomes more signifi-
cant. In the case of the application of ventilation with heat recovery, especially during transitional
periods, there arises a question of whether an air system makes it possible to maintain the required
indoor air temperature without the necessity of using a basic hydronic heating system. This paper
presents the application of a simple thermal network model of a building zone to simulate indoor air
temperature in a single room of a multi-storey building with a mechanical ventilation system with
heat recovery. Ventilation air was supposed to be the only heat source and its ability to maintain the
required indoor air temperature was checked in simulations and then compared with measurements.
The 5R1C thermal network model of a building zone was used for simulations. Comparison with
measurements showed the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of
indoor air calculation to be 2.37 ◦C and 2.45 ◦C, respectively. When including heat flux from the
bottom storey through the floor, MAE = 1.28 ◦C and RMSE = 1.38 ◦C were obtained.

Keywords: indoor air temperature; heat recovery; thermal network model; 5R1C; air heating system

1. Introduction

A dominating share of total energy use in Polish residential buildings belongs to space
heating [1]. Therefore, thermal refurbishment of buildings in Poland has focused, so far,
mainly on external walls, roofs, and windows [2–4]. However, in thermally modernised
objects, the energy required to warm up cold external air supplied to the building’s interior
is more important [5–7]. For this reason, various solutions of ventilation heat recovery are
applied both in new and thermally modernised buildings [8–10] resulting in lower heating
energy demand [11–14].

At the design stage of each thermal refurbishment, the design heat load is calculated
following the procedure provided in EN 12831 [15,16] for the external design temperature
given in that standard. It depends on the climatic conditions of the area of interest [17].
The efficiency of the ventilation heat recovery, assumed by the system’s designer, is also
taken into account [18]. The calculated design load is the minimum thermal power that
has to be supplied to the building zone to ensure thermal comfort during the heating
season [19]. However, one should remember that the design external air temperature is
an extreme value that may occur only for a short period of time in the year. Hence, the
designed thermal power is not utilised permanently, which can be noticed in any thermal
load duration curve of a single building or a heating network [20]. For two or more installed
heat sources, this means the possibility to choose the most effective one in certain conditions.
Therefore, in a building with a hydronic heating system and ventilation with heat recovery,
there is a possibility to use only the latter under favourable outdoor weather conditions.
It can be especially interesting in buildings after thermal retrofitting or in other energy
efficient objects.
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Numerous studies confirmed good indoor conditions in buildings with air han-
dling units with cooling and heating coils combined with various, both low- and high-
temperature, hydronic heating systems [21–24]. Several authors have also presented
relevant case studies recently.

Harsem et al. [25] proposed a heating system for a hospital consisting of a ground
source heat pump, gas boiler, borehole thermal energy storage, hydronic radiators, and
an air handling unit. Calculations, performed in a developed simulation tool, allowed
the selection of thermal capacity of heat pumps for their highest seasonal performance
effectiveness. The authors also studied the impact of ventilation heat recovery efficiency
and ventilation coil supply/return temperatures on the annual effectiveness of a system.

Javed et al. [26] studied an application of displacement ventilation to provide heating
to a passive school building located in Norway. At first, experimental tests in a test cell and
simulations in the IDA-ICE tool were performed to ensure that the simulation program is
capable of computing thermal and contaminant stratification in a room with displacement
ventilation. Field tests in the classroom revealed that the ventilation system was able to
maintain an indoor operative temperature within the acceptable comfort range during
winter conditions (outdoor temperature from −7 ◦C to +3 ◦C).

Mao et al. [27] presented an application of stratum ventilation for space heating in a
single room. Using CFD simulations in the Airpak 3.0.16 tool, they analysed the impact
of room dimensions on air distribution, thermal comfort, and ventilation performance,
obtaining the maximum suitable dimensions for the room. Temperature effectiveness of
ventilation and dimensionless temperature were used as energy efficiency indicators of
heating. Experiments in a test room confirmed the accuracy of simulations.

Ameen et al. [28] experimentally studied the usability of a corner-placed stratum
ventilation system to provide cooling and heating in a medium test room. A total of
15 cases with three nominal supply air temperature setpoints of 17.7 ◦C, 21 ◦C, and 25 ◦C
and five different airflow rates from 30 to 70 L/s were investigated. The measured vertical
temperature gradients and the velocity conditions satisfied the requirements of Category
A of ISO7730 in all cases. Similar conclusions were given in the case of corner-impinging
jet ventilation, corner-mixing ventilation, and displacement ventilation in the cooling and
heating modes [29,30].

Kong et al. [31] investigated mixing and stratum ventilation for space heating in a test
chamber. Experimental results confirmed good energy performance of stratum ventilation
while maintaining required indoor thermal conditions. Ventilation effectiveness was also
higher in this case: 0.98 in comparison to 0.74 for mixing ventilation.

In a simulation study [32], authors simulated in TRNSYS the use of exhaust ventilation
air and the air-to-water compressor heat pump for space heating of a multifamily building.
The proposed solution showed its potential for energy consumption reduction in five
analysed locations in Poland. However, indoor comfort was not studied.

The presented studies proved the ability of ventilation to provide space heating while
maintaining indoor thermal comfort during the heating season. Several authors noticed
that this concept fits well with low-energy and passive houses [33–36]. However, the focus
on the technical aspects of ventilation has made the issue of the building’s heat balance
and thermal dynamics recede into the background.

While considering the use of ventilation for space heating of a building, mainly
professional and sophisticated simulation tools were used such as IDA ICE in the case of
a municipal building [37–39]. Markiewicz-Zahorski et al. [40] analysed the conversion of
an office building into a multi-family residential building based on monthly and hourly
energy simulations in OZC and EnergyPlus simulation tools, respectively. Ventilation loss
was included in the energy demand for space heating and cooling, but no information on
considered ventilation systems was provided. Veršić et al. [41] simulated night passive
cooling in an office building depending on the wind velocity using the building model of 3D
Studio MAX 2016 and CFD Simscale software. Hourly energy simulations were performed
implementing the hourly method of EN ISO 52016-1 [42] in Visual Basic 2017. Authors
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not only analysed indoor thermal conditions but estimated cooling energy savings as well.
They also presented selected waveforms of hourly indoor and outdoor air temperature,
wind speed, and cooling load.

A simpler solution was used in [43] for the simulation of the hourly internal air
temperature in a free-running building with a double skin façade. For this application,
authors accordingly modified the 5R1C (five resistors and one capacitor) thermal network
model of a building zone from EN ISO 13790 [44]. It is intended only for the calculation of
sensible heating and cooling power, so the humidification and dehumidification processes
of air cannot be considered here.

That standard has been replaced recently by EN ISO 52016 [42] which, among others,
introduced a more detailed hourly simulation method [45]. However, despite its complex-
ity, authors reported differences in output results between this new method and more
sophisticated professional simulation tools [46–48]. Hence, it was decided to apply the
simpler method of EN ISO 13790, still used in practice [49,50].

This model is of special interest because of several important advantages, such as low
computational requirements [51–53], allowing it to be implemented in a spreadsheet [54,55],
and easy modification for various applications [56–59]. Despite the used simplifications,
such as lumping all partitions into single thermal capacitance, it provides reliable re-
sults [60].

Thanks to these features, it was also used in studies related to various aspects of
ventilation in buildings. Costantino et al. [61] analysed the indoor climate in broiler houses
and the required ventilation flow rate dependent on the broiler’s age. Hedegaard et al. [62]
simulated the district heating consumption of large groups of residential buildings. Natural
ventilation in the 5R1C network was modelled by infiltration and window opening by
occupants. The latter component was described by a relationship between the outdoor
air temperature and the window openings. In [63], energy use in mechanically ventilated
greenhouses was modelled. The 5R1C scheme was applied to solve the sensible energy
balance and then indoor air humidity was computed. Depending on the resulting thermal
conditions, various ventilation strategies of a greenhouse were introduced. Buonomano
et al. [64] modified the model to simulate the behaviour of a building with integrated solar
thermal collectors. The building’s occupancy schedule assumed two values of ventilation
airflow depending on the season and indoor temperature. Jędrzejuk and Rucińska [1]
proposed a method to assess the need for artificial cooling of residential buildings. It was
based on hourly indoor operative temperature, calculated by the 5R1C model, and then
compared with the defined limit.

Two conclusions emerge from the review presented. Firstly, the assessment of ventila-
tion use for space heating was simulated using mainly professional and sophisticated tools.
They are accurate but too time-consuming, especially at the stage of quick preliminary
calculations. Secondly, dynamic simulations, especially hourly, can be performed with
the simple but well-founded 5R1C model. However, so far, studies on space heating by
ventilation with the use of this model have not been presented.

This paper aims to fill this gap by presenting a case study based on simulation and
measurements taken in a single room in a building that was thermally refurbished to the
low-energy standard.

The next section presents the thermal model of a building zone used for simulations
and the experimental setup used during the measurement campaign. Then, statistical
indicators used for the evaluation of the model’s ability to simulate indoor air temperature
are given. In Section 3, detailed results of the measurements and simulations are presented.
Finally, concluding remarks are given.

2. Materials and Methods
2.1. The 5R1C Model

The 5R1C thermal network model of a building zone is composed of five thermal
conductances and a single capacitor and is presented in Figure 1.
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Figure 1. The 5R1C thermal network model of a building zone from EN ISO 13790.

There are distinguished two kinds of building partitions in that circuit. The first group,
included in the Htr,w thermal transmission coefficient, consists of thermally “light” building
elements (doors, windows, curtain walls, and glazed walls). The second one includes
thermally “heavy” elements (walls, ceilings), which are described by the external (Htr,em)
and the internal (Htr,ms) parts connected to the thermal capacity (Cm), representing the
thermal mass of the building [65].

The external air temperature is modelled by the Te source. The Tsup source is the supply
air temperature, which is connected to the heat transfer by ventilation (Hve). The indoor air
temperature is represented by Ti and is connected through the coupling conductance Htr,is
with the central node (Ts).

This model is intended for computations in hourly time steps. As a result, the hourly
sensible heating or cooling power required to maintain a certain set-point indoor air
or indoor operative temperature, ϕHC, is obtained. This procedure has been presented
recently [58,66,67]. Each time step begins with the calculation of heat fluxes due to internal
sources (ϕint) and solar irradiance (ϕsol), which are divided into three components: ϕia,
ϕst, and ϕm, connected to the indoor air, central, and thermal mass temperature nodes,
respectively. These components are obtained from the following relationships:

φia = 0.5φint, (1)

φm =
Am

At
(0.5φint +φsol), (2)

φst =

(
1− Am

At
− Htr,w

9.1At

)
(0.5φint +φsol). (3)

The solution of the network is based on the Crank–Nicholson scheme. The resulting
nodal temperatures Ti and Ts are averages for one hour. The thermal mass temperatures
Tm,t and Tm,t−1 are instantaneous values at time t and t−1, respectively. Tm,t is given by
the equation:

Tm,t =
Tm,t−1

(
Cm

3600 −
Htr,3+Htr,em

2

)
+φm,tot

Cm
3600 +

Htr,3+Htr,em
2

, (4)

where:

φm,tot = φm + Htr,emTe +
Htr,3

Htr,2

(
φst + Htr,wTe + Htr,1

(
φia +φHC

Hve
+ Tsup

))
, (5)
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with:
Htr,1 = 1/(1/Hve + 1/Htr,is) (6)

Htr,2 = Htr,1 + Htr,w (7)

and:
Htr,3 = 1/(1/Htr,2 + 1/Htr,ms). (8)

When considering a zone that has to be heated only by ventilation air and ventilation
airflow is known, then ϕHC = 0 should be assumed.

The ventilation heat transfer coefficient is computed from the relationship:

Hve = $a·ca·qve, (9)

with the volumetric heat capacity of air is assumed to be constant at $aca = 1200 J/m3K
according to EN ISO 13790. However, both ventilation air density and specific heat capacity
may vary following outdoor environmental conditions [68,69].

Finally, average hourly values of nodal temperatures are as follows:

Tm = (Tm,t + Tm,t+1)/2, (10)

Ts =
Htr,msTm +φst + Htr,wTe +

Htr,3
Htr,2

(
Htr,1

(
φia+φHC

Hve
+ Tsup

))
Htr,ms + Htr,w + Htr,1

, (11)

and the internal air temperature:

Ti =
Htr,msTm + HveTsup +φia +φHC

Htr,is + Hve
. (12)

In addition, based on the circuit diagram from Figure 1 and Equation (9), the ventilation
heat flux can be also computed:

φve = Hve·
(
Tsup − Ti

)
. (13)

2.2. Experimental Setup

Measurements were conducted from 22 December 2021 to 3 January 2022 in a single
room in one of the student dormitories in Kraków (south Poland). The whole building
was thermally modernised in the year 2017. Its main heating system consists of hydronic
radiators connected to the district heating network. That system was sized following the
EN 12831 standard and, for the considered room, the design heating load is ϕHL = 366 W
at the design outdoor and indoor air temperatures of −20 ◦C and 20 ◦C, respectively. This
radiator was turned off during the experiment.

The balanced mechanical ventilation system supplies ventilation air to living spaces.
The design ventilation airflow rate of 40 m3/s was assumed for the analysed room. The
design supply ventilation air temperature Tsup = 22 ◦C throughout the year. The air
handling unit’s heating coil is supplied by the central heating system. The heating water
with design supply and return temperature of 60 ◦C and 40 ◦C, respectively, is supplied
from the heat exchanger connected to the district heating network.

The selected room was on a rectangular plane of 4.0 m × 2.7 m with a height of
2.50 m (Figure 2a). The total internal volume of the room (27 m3) can be reduced by the
enclosed furniture, i.e., by 4.84 m3. The locations of the sensors in the room are given in
Figure 2b. The external wall with windows was east-oriented, which minimised the impact
of solar irradiance.
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Figure 2. The test room: (a) View of the room selected for experiment; (b) Schematic location of
sensors in the room.

In the experiment, four heat flux sensors were used: two on the inside surface of the
external wall and two on the floor. Because of low expected values of output signals from
these sensors, following manufacturer recommendations, they were connected in series in
relevant pairs to logger inputs: q1 + q2 and q3 + q4 for the floor and for the external wall,
respectively.

Global solar irradiance incident on the external wall was measured by the CMP11 Kipp
& Zonen pyranometer. Pt100 and Pt1000 platinum resistance sensors were used for the
measurement of indoor air (4 sensors: Ti1, Ti2, Ti3, and Ti4), floor surface (2 sensors: Tf1 and
Tf2), internal surface of walls (2 sensors: Tw1 and tw2), ventilation air (Tsup), and external air
(Te) temperatures. For air temperature measurements, sensors with low emissivity sheaths
were used to minimise the impact of heat transfer by radiation. A globe thermometer with
a Pt100 measured the mean radiant temperature at the height of 1.2 m above the floor
(Figure 3a). Because of the number of sensors, two data loggers were used: MS6D (Comet)
and RSG30 (Endress+Hauser). The measured data were recorded in 10 min intervals. The
main parameters of all sensors are listed in Table 1. The ventilation airflow rate was checked
several times during the study using a Testo 417 anemometer with an additional air cone
(Figure 3b).

Energies 2023, 16, x FOR PEER REVIEW 7 of 17 
 

 

  
(a) (b) 

Figure 3. (a) View of the measurement equipment during assembling; (b) Measurement of ventila-
tion airflow rate with Testo 417 anemometer. 

Additionally, for sky temperature measurement, the IR thermometer based on an 
MLX90614 sensor was applied [70]. Numerous studies confirmed its ability for 
non-contact temperature measurements of temperature in various environmental and 
building-related applications [71,72]. It has a typical accuracy of ±0.5 °C and a measure-
ment range for object temperature from –70 °C to 380 °C and for sensor temperature from 
–40 °C to 125 °C. 

2.3. Evaluation of the Model 
To assess the model’s ability to simulate indoor air temperature under the assumed 

operating conditions of the heating and ventilation system, statistical analysis was per-
formed using several basic indicators such as the mean absolute error (MAE), the root 
mean square error (RMSE), the mean square error (MSE), and the coefficient of determi-
nation (R2) [73–77]. 

Assuming that xi is its actual (reference) value of a given physical quantity, x, taken 
from measurements and xො୧ is its value predicted by the model, xത୧ is the average refer-
ence value of x and n is the total number of samples, then it can be written that the 
aforementioned metrics are given by the following relationships: 

MAE =  |xො୧ − x୧|n୬
୧ୀଵ , (14) 

RMSE = ඩ ሺxො୧ − x୧ሻଶn୬
୧ୀଵ , (15) 

MSE =  ሺxො୧ − x୧ሻଶn୬
୧ୀଵ , (16) 

Rଶ = 1 − ∑ ሺx୧ − xො୧ሻଶ୬୧ୀଵ∑ ሺx୧ − xሻଶ୬୧ୀଵ . (17) 

3. Results and Discussion 
3.1. Measurements 

The measurement campaign was conducted from 22 December 2021 to 3 January 
2022 during the Christmas break when there were no occupants in the room. Hence, the 

Figure 3. (a) View of the measurement equipment during assembling; (b) Measurement of ventilation
airflow rate with Testo 417 anemometer.



Energies 2023, 16, 3456 7 of 17

Table 1. The main metrological parameters of the measuring sensors used.

Sensor Measured Variable Measurement Range Accuracy

Pt100/Pt1000 platinum
resistance sensor Air and floor temperature −50 ◦C ÷ +150 ◦C Class A (1)

TP875.1 with the Pt100 sensor Radiant temperature −30 ◦C ÷ +120 ◦C ±0.2 ◦C
CMP11 Kipp&Zonen Global solar irradiance 0 ÷ 4000 W/m2 Spectrally Flat Class A (2)

HFP01 Hukseflux Heat flux −2000 ÷ 2000 W/m2 ±3%
Testo 417 Airflow rate 0 ÷ 200 m3/h ±0.1 m3/h (3)

(1) According to EN 60751; (2) According to ISO 9060; (3) Resolution for 0 ÷ 99.9 m3/h range.

Additionally, for sky temperature measurement, the IR thermometer based on an
MLX90614 sensor was applied [70]. Numerous studies confirmed its ability for non-contact
temperature measurements of temperature in various environmental and building-related
applications [71,72]. It has a typical accuracy of ±0.5 ◦C and a measurement range for
object temperature from −70 ◦C to 380 ◦C and for sensor temperature from −40 ◦C to
125 ◦C.

2.3. Evaluation of the Model

To assess the model’s ability to simulate indoor air temperature under the assumed
operating conditions of the heating and ventilation system, statistical analysis was per-
formed using several basic indicators such as the mean absolute error (MAE), the root mean
square error (RMSE), the mean square error (MSE), and the coefficient of determination
(R2) [73–77].

Assuming that xi is its actual (reference) value of a given physical quantity, x, taken
from measurements and x̂i is its value predicted by the model, xi is the average reference
value of x and n is the total number of samples, then it can be written that the aforemen-
tioned metrics are given by the following relationships:

MAE =
n

∑
i=1

|x̂i − xi|
n

, (14)

RMSE =

√√√√ n

∑
i=1

(x̂i − xi)
2

n
, (15)

MSE =
n

∑
i=1

(x̂i − xi)
2

n
, (16)

R2 = 1− ∑n
i=1(xi − x̂i)

2

∑n
i=1(xi − x)2 . (17)

3. Results and Discussion
3.1. Measurements

The measurement campaign was conducted from 22 December 2021 to 3 January
2022 during the Christmas break when there were no occupants in the room. Hence, the
troublesome estimation of internal gains was neglected. However, the building’s HVAC
systems were operating normally due to the presence of international students.

During the studied period, outdoor conditions varied significantly (Figure 4a). The
external air temperature ranged from −11.1 ◦C (at 8:00 on 26 December) to 13.2 ◦C (at 12:00
on 2 January). The global solar irradiance (Figure 4 b) incident on the external surface of
the considered wall ranged from 0 to 223.3 W/m2 (at 12:00 on 26 December).
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Figure 4. Meteorological conditions during the experiment: (a) External air temperature; (b) Global
solar irradiance on the external wall.

Indoor air temperature, measured at four heights along the main door-window axis
of the room showed high uniformity (Figure 5a). The highest and the lowest values
were noticed for the Ti3 sensor placed in the centre of the room and for the Ti4 sensor
located about 1.5 m from the window, respectively. Ti4 ranged from 22.1 ◦C to 24.5 ◦C
while Ti3 ranged from 22.4 ◦C to 24.8 ◦C. The hourly difference between these two varied
from 0.2 ◦C to 0.5 ◦C so it is of the same order as temperature measurement uncertainty
(about 0.5 ◦C) and can be treated as negligible. The ventilation air temperature varied
more significantly, from 21.3 ◦C (5:00 on 27 December) to 25.8 ◦C (11:00 on 24 December).
Comparing Figure 4a with Figure 5a it can be noticed that Tsup was influenced by outdoor
conditions (Te). However, during the whole analysed period, Tsup was within the range
between 21 ◦C and 26 ◦C acceptable for indoor comfort requirements.
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and internal wall temperature.

The second important investigated group of parameters included temperatures of
internal surfaces of the floor (Tf1 and Tf2), internal wall (Tw1), and external wall (Tw2). In
addition, the mean radiant temperatures of all internal surfaces facing the tested room
measured by the globe thermometer, Tmr, were also considered [78–80].

The difference between Tf1 and Tf2 was up to 0.2 ◦C while the difference between the
temperature of the internal wall (Tw1) and the averaged floor temperature was up to 0.7 ◦C.
In both cases, these discrepancies may be treated as negligible. However, larger differences
were noted in the case of the temperature of the internal surface of the external wall (Tw2).
Due to heat loss to ambient air, it varied from 21.2 ◦C (22:00 on 27 December) to 23.9 ◦C
(14:00 on 3 January), and in relation to the floor, the temperature was lower by up to 1.8 ◦C.
This was the main reason why the mean radiant temperature (Tmr) was higher than Tw2
and lower than Tf and Tw1. Unfortunately, due to the lack of temperatures of other internal
surfaces, radiant temperature calculated using relevant view factors could not be obtained
for comparison [81].

In the present study, due to the main focus on the ventilation air system and due
to the practical problems with accurate measurement of heating power, the convective
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hydronic radiator was turned off during the experiment. In the studied object, this can
be justified by the relatively small area of the tested room in relation to the entire facility
and the good insulation of its envelope, limiting heat loss to the environment. However, in
a real building, it is impossible to completely limit the heat exchange with neighbouring
rooms as in the adiabatic system. In multi-family buildings, when a radiator in a given
flat is lowered or is out of service, this has an impact on the average indoor temperature
of the whole building [82]. Therefore, the measurement of the heat flux density flowing
through the floor of the room was carried out. This partition was chosen due to the natural
tendency of heat to flow upwards as a result of heat gains on the lower storeys and lower
thermal resistance for this direction in comparison to other cases [83].

The measured heat flux density varied from 1.0 W/m2 (12:00 on 3 January) to 2.6 W/m2

(6:00 on 29 December), which means heat flux from 12.4 W to 30.9 W. These changes were
rather connected with ambient conditions than with heat storage in a floor (or, more
generally, in the whole building’s structure) and its transfer between storeys (Figure 6).
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Finally, from Equation 9, the heat flux due to ventilation can be calculated (Figure 7).
As the variation of Tsup was below 5 ◦C, it was treated as negligible when considering the
resulting air density and specific heat capacity of air and constant $aca = 1200 J/m3K was
assumed. Then, as the indoor air temperature was rather stable, ϕve followed the changes
in Tsup.
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Ventilation heat flux ranged from −30 W (10:00 on 25 December) to 42.7 W (19:00 on
29 December) and, except for the period between 25 and 28 December, was of the same
order as heat flux through the floor (ϕf).

There are no installed thermostats in the building and the indoor air temperature in the
analysed room was the result of current thermal conditions. In case of unfavourable indoor
conditions, occupants may use window opening or roller blinds to prevent overheating or
set the thermostatic valve on the radiator.
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3.2. Simulations

Values of thermal conductances and single capacitance (Table 2) in the network model
of the room were calculated following the procedures given in EN ISO 13790.

Table 2. Thermal network model elements of the building.

Element Value Unit

Htr,w 2.61 W/K
Htr,is 193.48 W/K
Htr,ms 264.32 W/K
Htr,em 0.84 W/K
Hve 16.67 W/K
Cm 2.63 MJ/K

The physical properties of materials were obtained from the manufacturers and from
PN-EN EN ISO 10456 [84]. Thermal resistances were calculated using the procedure of ISO
6946 [83]. Thermal bridges were neglected. Thermal capacitances were calculated using
the detailed method of ISO 13786 [85] for a calculation period of 24 h.

Due to the relatively low variation of the supply air temperature (below 5 ◦C—see
Figure 5a), the volumetric heat capacity of air was assumed to be constant at $aca = 1200 J/m3K
according to EN ISO 13790, as in other studies [65,86,87].

Solar absorptance of the external wall: αsol = 0.9. The total solar energy transmittance
of glazing ggl = 0.54 was taken from the technical data of the manufacturer.

Simulations were performed in two cases. They differed by only one element, namely
heat flux by the floor. In the first case, it was omitted, but in the second one, it was taken
into account as internal heat gain, ϕint.

Figure 8 presents a comparison of measured and calculated internal air temperature.
In the first case, the hourly difference between them varied from 1.1 ◦C (15:00 on 3 January)
to 3.4 ◦C (22:00 on 27 December). In the second case, this discrepancy was lower and
ranged from 0.1 ◦C (12:00 on 3 January) to 2.3 ◦C (22:00 on 27 December). Better quality in
the second case can be also shown by the aforementioned statistical measures (Table 3).
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Table 3. Statistical indicators for indoor air simulation obtained for both cases.

Element Case 1 Case 2

MAE 2.37 1.28
RMSE 2.45 1.38
MSE 5.98 1.91
R2 0.71 0.77

It also should be mentioned that comparing Figure 8 with Figure 4a, it can be noticed
that during the second part of the measurement period, when the outdoor temperature
was positive, the difference between simulated and measured indoor air temperature was
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lower than it was during the remaining time. This may indicate that during the warmer
period, the differences between indoor temperatures between neighbouring rooms, which
were not measured in this study, were less significant.

Measurement results presented in Figure 6 show that heat flux density through the
floor was very small and the inclusion of this quantity into the thermal balance of the room
significantly improved the quality of simulation results (Table 3). When multiplying this
heat flux by 1.8, i.e., by adding heat flux from 22.3 W to 55.6 W to the base case, the following
values of the aforementioned metrics were obtained: MAE = 0.50 ◦C, RMSE = 0.62 ◦C,
MSE = 0.39 ◦C2, and R2 = 0.808. An additional heat gain of 50 W, which is lower than in
the case of moderate activity of a single person [88], could be sufficient to obtain very
good quality modelling results. From this, two conclusions can be drawn. Firstly, internal
temperatures in neighbouring rooms should be measured to determine the possibility
of heat flow between them, because it may be a significant problem in energy-efficient
buildings [89]. Secondly, an additional heater with controlled and measured heating power
can be installed in the considered room to easily control thermal stability between rooms.

However, to obtain a more detailed view of the results there should be also made a
comparison with other works with thermal measurements and simulations in buildings.

Bagheri et al. [90] simulated a simple single-zone building in thermally heavy and
light versions using the TRNSYS program. Outputs from these simulations were used
as datasets for the parameter identification in MATLAB of the 4R3C model of a building.
In [91], authors used thermal network models of various complexities, namely: 2R1C,
3R1C, 4R3C, 5R3C, 5R4C, and 4R2C for the simulation of two residential test houses. The
models were identified in a MATLAB environment using datasets generated by the detailed
simulation TRNSYS program. Then, model outputs were compared with TRNSYS results
and performed measurements.

Boodi et al. [92] used a parameter identification of a 3R2C model for the simulation of
a single room in an educational building. The 3R2C network was used for each external
wall, floor, and roof, resulting in the 22R9C model of the studied zone. It was then validated
against measurements, but no quantitative indicators were used for this purpose.

In [93], the author used the 5R1C model of EN ISO 13790 to model natural stack
ventilation in a residential building. Then, a comparison with the annual hourly simulation
in EnergyPlus was made for hourly ventilation flow. In [43], the model was expanded
for the simulation of indoor air temperature in a test cell with a double skin façade. The
authors also presented a review of various experimental studies of real buildings and test
cells in free-running conditions showing that the mean and maximum typical errors of
internal air temperature were from 0.3 ◦C to 2.9 ◦C and from 1.8 ◦C to 21.9 ◦C, respectively.

In [94], this model was modified to the 4R1C version to better describe varying
ventilation flow. Simulations in EnergyPlus for 10 different locations were performed for
comparison.

Wang et al. [95] used the 3R2C model to simulate the thermal behaviour of a single-
family one-story test home. Measurements were used for the identification of the model
parameters and then also for 24 h indoor temperature prediction.

Danza et al. [96] used the 3R2C network for each element of a building’s envelope.
The model was validated against measurements in a test cell showing an average underes-
timation of an internal air temperature of −0.08 K.

Vivian et al. [97] presented an evaluation of the 5R1C and 7R2C models to compute the
thermal needs of buildings in relation to TRNSYS simulations. Detailed analysis of errors
for heating needs and peak load estimation was presented but no further considerations on
internal air temperature were given.

Barone et al. [98] developed in MATLAB a simulation tool DETECt based on the
thermal resistance-capacitance network approach. They performed an extensive validation
procedure using BESTEST tests and measurements taken in a test room located in an
educational building. The Mean Absolute Error for indoor air temperature from February
to October was 0.39 ◦C.
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Numerous studies devoted to the application of resistance-capacitance models for the
thermal modelling of buildings focused only on thermal load analyses, not providing any
data on indoor air prediction accuracy [60,66,99]. Only several considered the indoor air
temperature (Table 4).

Table 4. Simulations of buildings with the use of thermal network models with error analyses of
indoor air temperature.

Reference Object Model Simulation Measurement MAE RMSE MSE R2

[91] 9 zones 2R1C TRNSYS N n.a. 6.55 ◦C 42.51 ◦C2 n.a.
[91] 9 zones 3R1C TRNSYS N n.a. 8.49 ◦C 17.71 ◦C2 n.a.
[91] 9 zones 4R3C TRNSYS N n.a. 1.06 ◦C 0.76 ◦C2 n.a.
[91] 9 zones 5R3C TRNSYS N n.a. 5.02 ◦C 3.37 ◦C2 n.a.
[91] 9 zones 5R4C TRNSYS N n.a. 0.70 ◦C 0.81 ◦C2 n.a.
[91] 9 zones 4R2C TRNSYS N n.a. 3.08 ◦C 6.72 ◦C2 n.a.
[43] 1 zone 5R1C - Y 0.95–1.13 ◦C n.a. n.a. n.a.
[94] 1 zone 4R1C EnergyPlus N 0.30–0.48 ◦C 0.61–0.93 ◦C 0.37–0.86 ◦C2 0.84–0.93
[95] 1 zone 3R2C - Y 0.34–0.5 ◦C 0.42–0.65 ◦C n.a. n.a.

The presented review reveals that there is no study focusing on the simulation of a
single, selected room or zone in a more complex, multifamily, building. For this purpose,
more detailed simulation tools are used such as EnergyPlus, TRNSYS, ESP-r, or others.
Only Shen et al. [58] proposed a modification of a generic 5R1C scheme with zone thermal
coupling. They performed an extensive validation of the model against detailed EnergyPlus
simulations. The presented values of errors for heating and cooling loads predictions
confirmed the good accuracy of the proposed solution. However, the authors did not show
such an analysis with regard to internal air temperature. In addition, as the temperature of
neighbouring zone is required, this model could not be used in the present study.

An interesting addition to the presented research is the study by Zhang et al. [100] in
which authors compared CFD simulation with measurements performed in a test chamber
to assess the effect of selected parameters on indoor air quality, indoor comfort, and energy
efficiency of stratum ventilation used for space heating. The authors suggested setting
maximum ventilation flow and modulation of supply air temperature following the outdoor
weather condition.

4. Conclusions

This paper presents the application of a simple thermal network model of a building
zone to simulate indoor air temperature in a single room of a multi-storey building with a
mechanical ventilation system with heat recovery. Ventilation air was supposed to be the
only heat source and its ability to maintain the required indoor air temperature was checked
in simulations and then compared with measurements. The performed measurements
showed the practical applicability of the analysed ventilation system to provide space
heating while maintaining indoor air temperature within the required range under studied
outdoor conditions.

For simulations, the simple but well-known 5R1C thermal network model of a building
zone from EN ISO 13790 was used. Comparison with measurements showed the Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE) of the calculated indoor air
temperature to be 2.37 ◦C and 2.45 ◦C, respectively.

As these values were not satisfying, further analysis was performed. When including
heat gains from the bottom storey, a significant improvement in the quality of prediction
was obtained with MAE = 1.28 ◦C and RMSE = 1.38 ◦C. Further introduction of artificial
heat flux with a value of 80% resulted in MAE = 0.50 ◦C and RMSE = 0.62 ◦C. Hence, in
future measurements, it can be checked whether the quality of the model will be better
during normal use of the room when internal gains for occupants can be added.
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It also would be advisable to measure the temperature of internal surfaces facing the
considered room in terms of indoor comfort and the impact of solar irradiance. The indoor
temperature in surrounding rooms should also be known to determine the possibility of
heat transfer direction between them and the analysed space. The simulation model can be
also extended to include additional couplings with neighbouring zones.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Symbols

Af total conditioned (heated and/or cooled) floor area, m2

Am effective thermal mass area, m2

Cm thermal capacity of the building, J/K
Htr,em external part of the Htr,op thermal transmission coefficient, W/K
Htr,is coupling conductance, W/K
Htr,ms internal part of the Htr,op thermal transmission coefficient, W/K
Htr,op thermal transmission coefficient for thermally heavy envelope elements, W/K
Htr,w thermal transmission coefficient for thermally light envelope elements, W/K
Hve thermal transmission coefficient by ventilation air, W/K
Te external (outdoor) air temperature, ◦C
Te;mn;an mean annual temperature of outdoor air, ◦C
Te;max;m maximum mean monthly temperature of outdoor air, ◦C
Ti internal (indoor) air temperature, ◦C
Ti,C,set set-point indoor air temperature for cooling, ◦C
Ti,H,set set-point indoor air temperature for heating, ◦C
Tm average air temperature in the duct, ◦C
Ts central node temperature, ◦C
Tsup supply air temperature, ◦C
ca specific heat capacity of air, J/(kg·K)
$a air density, kg/m3

ϕia heat flow rate to internal air node, W
ϕint heat flow rate due to internal heat sources, W
ϕm heat flow rate to mass node, W
ϕsol heat flow rate due to solar heat sources, W
ϕst heat flow rate to central node, W
ϕve heat flow rate by ventilation, W
ϕHC heating or cooling power supplied to or extracted from the indoor air node, W
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40. Markiewicz-Zahorski, P.; Rucińska, J.; Fedorczak-Cisak, M.; Zielina, M. Building Energy Performance Analysis after Changing Its
Form of Use from an Office to a Residential Building. Energies 2021, 14, 564. [CrossRef]
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