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Abstract: The article is devoted to solving the problem of managing the mode parameters of an urban
electrical network in case of a discrepancy between the actual electrical load and the specific load.
Such an issue leads to a deviation of the parameters, in particular, voltage asymmetry in phases due
to current asymmetry. To optimize the mode parameters, it is required that the effective value of
the electrical load corresponds as much as possible to the values of the specific electrical load. This
depends on the following: actual power consumption, external (climatic and meteorological) factors,
internal factors (structural design of residential buildings, uneven load when distributed over the
phases of three-phase lines and inputs, different number of electrical receivers for consumers), and
the provision of consumers with other sources of energy (both gas and heat supply, and hot water
supply). To establish the influencing factors on the actual power consumption, it is proposed to
generalize the uncertainty accounting coefficient which generalizes both more well-known and less
considered factors. Therefore, the authors propose models for determining the electrical loads based
on the possibility of assessing the mode parameters of the electrical network by electrical loads. The
accuracy of the proposed models is based on the use of the proposed forecasting method considering
the actual power consumption and the generalized uncertainty coefficient. Applying the obtained
data based on models of electrical loads to the constructed model of a part of a distribution electrical
network with real parameters of the electrical network in the MathWorks Simulink environment,
the correspondence to the mode parameters of the distribution electrical network is determined. As
a result, a device for balancing the voltage depending on the load asymmetry is proposed that is
related to the discrepancy between the mode parameters allowing control of the mode parameters by
bringing them to acceptable values.

Keywords: demand forecasting; domestic consumers; generalized coefficient; load models; normalized
load level; varying factors

1. Introduction

Transitioning to clean energy and decarbonization of the power industry by 2050 re-
quires solving several complex problems. One such problem is related to the revision
of the current regulatory framework of normalized load profiles [1]. However, this revi-
sion can be completed only when a connection between actual power consumption by
consumers (domestic ones in particular) and load is found. Features of domestic con-
sumers include single-phase operation and the effect on electrical parameters of urban
distribution grids [2–5].
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Most of the electricity consumers located in hard-to-reach places receive electricity
from autonomous sources due to their limited capacity (changes in solar insolation during
the day, frost in the mountains, and a decrease in water inflow, as well as changes in wind
speed) and cannot maintain constant generation of electricity. The problem of substantiating
the allowable electricity consumption by household consumers in urban areas can be solved
if consumers do not have other sources of energy (except electricity) and use one source of
energy, for example, hydropower plants. The Republic of Tajikistan can be attributed to
such a country, where most of the population lives in highland areas at an altitude of 700 m
or more above sea level and is deprived of other sources of energy.

Statistical data of actual power consumption by domestic consumers, which is mea-
sured by meters, can be used to estimate the present state of a grid under consideration.
The further development of these distribution grids under conditions of decarbonization
transformation would require new methods of demand forecasting considering various
factors, dynamic parameters in particular (time domain).

The problem of domestic consumption of domestic demand forecasting has become
increasingly important for utility companies recently due to its rapid growth. Forecasting
accuracy affects not only reliability that manifests through the technical state of grid
equipment, but also the efficiency of grid operation in the form of power losses. The
problem of demand forecasting is still relevant. Various methods and techniques are
being proposed [6–10].

Due to the lack of their standards for specific loads required for the design and
reconstruction of the power supply system of residential buildings in the Republic of
Tajikistan, the standards developed in the Russian Federation are applied. To control
the mode parameters of the electricity networks in the nodes of urban consumers by
the electricity supply organization, Open Joint Stock Holding Company, “Barki Tojik”,
for houses with typical projects during peak hours, a permitted capacity of 4–5 kW is
established. The reason for setting these requirements is due to the fact that 90–95% of the
electricity generated comes from hydraulic power plants and, as a consequence, is directly
linked to the level of water inflow into the reservoir, which in turn depends on glacier melt.
In winter, due to the reduced inflow of water, it is a priority for the central control room to
maintain the water level in the reservoir.

The challenge of moving towards cleaner energy and achieving a decarbonization plan
for the electricity industry by 2050 will require several complex tasks to be addressed. One
of the main tasks is the revision of the current regulatory framework in the regulation of
specific electrical loads [1–5]. This is achieved primarily by determining the correspondence
between the actual power consumption, in particular by household consumers, and the
electrical load, since their features are single-phase and they impact the regime parameters
of urban distribution electrical networks [2–5].

The problem of forecasting electricity consumption by household consumers has
become relevant in recent years due to the dynamics of its change and it is also becoming
increasingly important for power supply organizations. The accuracy of the forecast
depends not only on reliability, which manifests itself in the form of the technical condition
of the elements of the electrical network and their service life but also on efficiency—the
loss of electricity during its distribution. In turn, a further plan for the development of
these electrical networks in the context of the transition to decarbonization is required
to propose new methods for predicting electricity consumption, considering factors that
create uncertainties [6–10].

At this stage, all forecasting methods are divided into statistical methods and methods
based on machine learning, although the boundary between them is becoming more and
more blurred [11–25].

Traditional statistical methods include those based on periodic time series [26], Kalman
filtering [27], methods of exponential smoothing [28], etc. Nevertheless, the accuracy of
traditional statistical methods may not be high enough due to nonlinear demand character-
istics. Furthermore, these types of processes are characterized by high volatility. This is an
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especially distinctive feature of the Tajikistan Republic’s power systems because of their
relatively small size. Forecasting methods that are based on machine learning include those
based on fuzzy logic, artificial neural networks (ANN) [29], the support vector machine
(SVM) [30], memory networks [31], and ensemble methods [32]. These methods can be con-
sidered non-traditional or modern in terms of demand and generation forecasting. In most
cases, the forecasting accuracy of the methods based on machine learning is significantly
higher than that of traditional methods. However, the optimization of parameters for each
model is complicated, which has an impact on forecasting efficiency. In addition, it should
be noted that the application of the proposed methods in the field of real-time demand
control and monitoring expands.

Still, the proposed methods [26–31] often use a factor out of all to be considered
simultaneously, which results in significant error. For example, when atmospheric factors
are to be taken into account in demand forecasting [32–40], elevation of consumers may
be omitted. This factor is likely to influence demand values, thus making it essential to
consider; or a case when a simultaneous connection of electrical consumers at peak load
level is considered, although the number of electrical devices of a consumer is not. This
might lead to such problems as current asymmetry that reduce the reliability of distribution
grid operation.

Table 1 shows a comparison of load prediction algorithms.

Table 1. Comparison of load prediction algorithms.

Class of Algorithms Examples Features

Statistical algorithms
Periodic time series [26] The accuracy of traditional statistical

methods may not be high enough due
to nonlinear demand characteristics.

Kalman filtering [27]
Methods of exponential smoothing [28]

Machine learning

ANN [29] The optimization of parameters for
each model is complicated, which has

an impact on forecasting efficiency.

SVM [30]
Memory networks [31]
Ensemble methods [32]

Hence, an effective method of demand forecasting should retain the advantages of the
mentioned methods and at the same time negate their drawbacks to maintain high accuracy.
Additionally, its necessary ability would be to recommend models of electrical load with
additional non-static factors being considered, which, in turn, would allow correcting
existing normalized load profiles.

It is crucial to avoid fixed normalized load profiles for relatively long periods (when
the value of the load at a certain level does not change). Since achieving the full decar-
bonization of the power industry is to be carried out in stages, it is impossible to perform
the complete transition from conventional generation to that based on renewable sources
of energy [32–40]. Therefore, normalized load levels are bound to change with time.

As a result, the dependence of domestic demand on factors that vary over time should
be found and set to come up with a new advanced and accurate method of demand
forecasting [32–40].

This study comprises two main sections. The section called Materials and Methods
presents the generalized coefficient of varying factors that are based on the set significance
criteria, which have an impact on domestic demand. The proposed method of demand
forecasting uses the mentioned generalized coefficient, which also forms the basis for
the load model recommendations. The section called Results and Discussions describes
the testing of the proposed method and load models. The calculated demand values are
compared with the actual ones. Moreover, operation parameters of the urban distribution
grid are suggested to be controlled using voltage summarization when load currents
are asymmetrical.
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2. Materials and Methods

As it was mentioned in the Introduction, the nature of demand and the actual load
of domestic consumers are quite blurred. First of all, it is affected by energy supply from
combined energy sources (domestic hot and cold water, gas) or electrical sources only
(like hydropower). At the same time, the step-by-step minimization of the operation of
conventional sources of energy and the transition towards clean energy is the main goal
of decarbonization. Hence, varying factors that will not consider the presence of some
conventional sources of energy would be detected and set for several cities when demand
uncertainty is accounted for.

In Figure 1, a prediction algorithm with a description of each of the stages is presented
in the form of a block diagram.
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Figure 1. Block diagram of the prediction algorithm.

In the first case, the combination of heat and electrical supply is considered; in the
second case, the combination of electrical and hot water supply is considered.

All factors were divided into two groups, well-known and not-so-well-known, to form
the generalized coefficient of uncertainty. However, parameters from both groups have an
impact on the operation of urban distribution grids.

Well-known factors include:

- atmospheric phenomena;
- construction features of buildings;
- uneven load among all three phases.

Less-known factors include:

- elevation;
- the different amounts of electric devices for consumers.

Consequently, the accuracy of demand forecasting depends on both groups of factors.
However, it is the second group that makes the major contribution.

The following factors, which affect demand forecasting and load values, were found
based on studies and set significance factors using the Fisher criterion [41]. The generalized
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coefficient with a combined source (conventional (C) and non-conventional (NC) energy
supply) is:

Ai(combinedpowersupply) = (tih + c)/(s + k) (1)

The generalized coefficient with NC:

Ai(NC) = (ti·h·c)/(s·k). (2)

where ti is the temperature coefficient (atmospheric factor), h is elevation coefficient, c is
coefficient of building constructional features, s is coefficient of uneven load distribution
among three phases and inputs, and k is coefficient that considers different amounts of
electrical devices of a consumer.

Equations (3)–(7) are suggested to calculate these coefficients.
The temperature coefficient ti is found depending on air temperature at the consumer’s

location t1, ◦C with conditions:
ti ≥ −3 ◦C

ti =
|t1|+ |t2|

t3
, (3)

where t2 is the supplementary temperature that describes the difference between outside
and inside temperatures, ◦C; t3 is the air temperature at elevation 0 m, ◦C;

−6 ≤ ti ≤ −4 ◦C

ti =
|t1|
t3

; (4)

ti ≤ −7 ◦C

ti =
|t1| − |t2|

t3
. (5)

The supplementary temperature is not used for the range from −4 to −6 ◦C when the
house is built from ferroconcrete. It is explained by the fact that building construction does
not affect the temperature inside a building. Dependence of the temperature coefficient on
air temperature should be found using either Equations (2) or (4) for cases of other heat
insulation materials.

The elevation coefficient is:
h =

t1

t2
, (6)

The coefficient of building constructional features is:

c =
t1

t4
, (7)

where t4 is the temperature inside a flat, ◦C.
Such consumer’s parameters as living standard, income in the form of the Tornquist

function s, and coefficient of dynamically and periodically changing living standard k are
found using matrices containing zeros and ones (0 is the minimal capability of a consumer to
use electrical devices for minimal and maximal air temperatures, 1—the maximal capability
of a consumer to use electrical devices for minimal and maximal air temperatures).

Denominators of Equations (1) and (2) can be used to adjust the degree of used energy
sources apart from electrical ones, as well as to set their impact on domestic demand. In
particular, it is seen in the denominator in Equation (1) that if a consumer has no heat
water supply, then the resultant value of the generalized coefficient is lower than that
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in the denominator in Equation (2). Therefore, a presence of dependence on electricity
consumption by household consumers considering the generalized coefficient Ai is given
in the form of the following function [42,43]:

f (Ai, W) = W(1− Ai(NC)). (8)

To forecast consumption, it is necessary to know the actual previous electricity con-
sumption (obtained from electricity meter readings) depending on the electrical load, the
duration of the peak loads, and both external and internal factors that create the dura-
tion of the maximum and minimum indicators. Considering both the above-stated and
the established additional factors, we could generalize them into a single coefficient of
Equations (1) and (2). The concept of bifurcation has been applied, meaning that when
moving from one system to another, previously known parameters will be applied, and
also newly introduced ones will be added. Referring to our case, this is the difference
between the actual power consumption for the previous year (day and month), taking
into account both external and internal previously known factors, to the current estimated
actual power consumption, taking into account the generalized coefficient. This difference
shows the expected forecast for power consumption. Based on the foregoing, we propose a
method for predicting power consumption as follows:

W f orec = (N·P speci f .time·Tp.l.·αm.l.t)− (Pp.l.h·Tp.l.·(Ai(NC))
2) = Wact.prev.year −Wact.cur.estim., (9)

where N is number of household electricity consumers, pcs.; Pspeci f .time is effective specific
electric load, kW; Pp.l.h is proposed maximum electricity load (specific) per household
consumer (for household consumers in cities of the Republic of Tajikistan, the established
specific electricity load per consumer is 5 kW [41–43]), kW; Tp.l. is the number of hours
during peak load, h; αm.l.t is load peak time factor, determined by taking into account
known factors [42,43]; Ai(NC) is a generalized coefficient that takes into account known and
proposed coefficients depending on the source of electricity supply: when there is a com-
bined source (conventional and unconventional sources of electricity supply)—determined
by Equation (1) and when there are only unconventional sources of electricity supply (in
Tajikistan, these are hydroelectric power plants)—determined by Equation (2); Wact.prev.year
is actual electricity consumption by household consumers for the previous year (day,
month), kWh (MWh); Wact.cur.estim is estimated actual electricity consumption by household
consumers for the current period (day, month), kWh (MWh).

In turn, it should be noted that electricity consumption is monitored according to the
previously proposed algorithm, Figure 2.

In order to control the specific rates of electricity consumption in the terrain of the
Republic of Tajikistan, the following algorithm for controlling the specific rates of electricity
consumption during peak hours, based on the introduction of an additional function in the
electricity metering system performed by HUAWEI, Figure 2, is proposed.

The algorithm will work as follows. Electricity metering information will be transmit-
ted via RS-485 communication wires to the Data Centre Union (DCU). In turn, a SIM card
with an internet connection will be installed in the DCU to transmit information from the
DCU to the data collection center (DCC). The transmission of information from the DCU to
the DCC is transmitted via a wireless WAN. The DCC proposes to place this information in
the central dispatch service of Open Joint Stock Holding Company, Barki Tojik, to control
the load in the electricity system, and in the operational dispatch service of the Dushanbe
city electricity network, to control specific loads and electricity consumption of subscribers.

If the conditions are fulfilled, the specific electricity consumption during the maximum
hours is Wforecast = Wactual, which corresponds to the normalized specific consumption,
and the information obtained is automatically transferred to the saving. Whereas, if
Wforecast > Wactual, the customer data are monitored, the electricity consumption during the
peak hours is monitored for 3 days, and the information is stored in the DCC. In case
the condition Wforecast > Wactual does not change to Wforecast ≤ Wactual within 3 days, the
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subscriber is notified of overconsumption, which, according to the authors of the article,
should be an incentive for the consumer.
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The day after the notification, the electricity consumption during peak hours is moni-
tored again. If the condition Wforecast ≤Wactual is met, the information is saved. In the event
of further non-compliance, the subscriber is advised to replace the single-phase meter with
a three-phase meter. This recommendation is made in terms of the need to symmetrize the
current loads between the phases and reduce the asymmetry in the network to keep the
voltage within the limit values. However, given that more than 95% of the electricity is
generated in hydraulic power plants and in winter, due to reduced water inflow, power
generation is significantly reduced, and maintaining voltage at consumer nodes remains an
almost impossible task.
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Considering that the sources of electricity supply to household consumers in the
Republic of Tajikistan are non-traditional energy sources, the following equation can be
proposed to determine the average electrical load considering Ai(NC) and the projected
power consumption:

Pmean =
Wact.cur.estim.

Tmonth·Ai(NC)
(10)

where Wact.cur.estim. is estimated actual electricity consumption by household consumers,
obtained according to the data of electricity consumption accounting for the current year
(month), kWh (MW·h); Tmonth is number of hours in a month, h, and Ai(NC) is generalized
efficient with an unconventional power supply source.

The application of Equation (10) makes it possible to determine the average electrical
load, according to which, in turn, the capacities of urban transformer substations are
selected. To determine the maximum electrical load, which will correspond to the specific
value, taking into account the predicted power consumption and the coefficient Ai(NC), the
equation will have the following form:

Pp.l.h =
Wact.cur.estim.

Tp.l.
·Ai(NC), (11)

where Wact.cur.estim. is estimated actual electricity consumption by household consumers for
the current period (day); kWh (MWh), Tp.l. is the number of hours during peak load, h [42],
and Ai(NC) is the generalized coefficient with a non-conventional source of electricity supply.

The values obtained using Equation (11) will improve the accuracy of the electrical
load calculation, thereby increasing the efficiency and reliability of the power supply system.
This problem is particularly acute in conditions of limited electricity generation, which
occurs in winter periods [41–44].

In the Results and Discussion section, a comparison will be given of electrical load
values obtained based on the proposed Equation (11) with previously proposed ‘normative’
values developed for the conditions of the area where there are combined sources of
power supply to consumers. Special attention will be given to the problem of mismatch
of specific electrical loads, which causes several problems in the network, in particular
voltage and current unbalances, as household consumers are single-phase. To solve this
problem, a current-symmetering device will be proposed. To demonstrate the effectiveness
of the device proposed for a real section of the urban electricity network with household
consumers using MATLAB/Simulink software, an implementation scheme and control
algorithm will be proposed.

3. Results and Discussion

Estimation of the actual load is to be carried out using normalized load levels. At the
same time, the normalized load level represents the result of a division of the total mean
load for all three phases by a singular load value (electrical load is assumed to be even
among the three phases).

Normalized load levels were obtained and analyzed for several cities in the Chelyabinsk
oblast, the Russian Federation (the first object, the first system of energy supply), and the
Republic of Tajikistan (the second object, the second system of energy supply). The actual
monthly data (energy measurements) during year 2021 for both objects were obtained.

Generalized coefficients Ai were found for both. The results are shown in Tables 2 and 3,
respectively. Both Tables 2 and 3 show that the absence of conventional energy sources
result in a sudden reduction of the generalized uncertainty coefficient, which demonstrates
increased domestic demand (8). It is especially distinctive during winter and summer
months. The mean relative difference is 1.8 or 80%.
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Table 2. The calculated values of the generalized uncertainty coefficient for the first object.

2021 t1, ◦C t2, ◦C t3, ◦C ti, h t4, ◦C c s Ai(NC)

January −13.70 −9.70 19.10 0.21 1.41 22.00 0.62 1.00 0.46
February −10.80 −6.80 20.30 0.20 1.59 22.00 0.49 1.00 0.40

March −6.00 −2.00 22.80 0.26 3.00 22.00 0.27 1.00 0.53
April 5.30 1.30 26.80 0.25 4.08 22.00 0.24 1.00 0.62
May 13.90 9.90 31.00 0.77 1.40 22.00 0.63 1.00 0.85
June 17.10 13.10 32.90 0.92 1.31 22.00 0.78 1.00 0.99
July 19.00 15.00 34.90 0.97 1.27 22.00 0.86 1.00 1.05

August 17.80 13.80 35.10 0.90 1.29 22.00 0.81 1.00 0.99
September 10.50 6.50 32.70 0.52 1.62 22.00 0.48 1.00 0.66

October 3.30 −0.70 29.50 0.09 4.71 22.00 0.15 1.00 0.28
November −5.50 −1.50 25.20 0.22 3.67 22.00 0.25 1.00 0.53
December −10.50 −6.50 21.20 0.19 1.62 22.00 0.48 1.00 0.39

Table 3. The calculated values of the generalized uncertainty coefficient for the second object.

City
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D
ec
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r

Khorog, Ai(NC) 0.25 0.35 0.60 0.70 0.75 0.77 0.80 0.79 0.77 0.70 0.61 0.38
Dushanbe, Ai(NC) 0.34 0.37 0.48 0.54 0.60 0.64 0.67 0.64 0.61 0.54 0.43 0.36

Then, yearly load for both objects was calculated to find normalized load levels
using meter measurements (9). It was conducted to estimate the relationship between
the operational parameters of grids under consideration and the boundary parameters of
domestic consumers.

Table 2 uses the following designations: t1 is the average monthly air temperature at
the consumer’s site and during peak load, ◦C; t2 is the difference between temperatures
inside and outside of a building, ◦C; t3 is the average monthly air temperature at zero
elevation, and ◦C. t4 is optimal inside temperature, ◦C.

Using the proposed Equation (11), a calculation of the electrical load during peak
hours has been carried out.

The purpose of this calculation is to confirm the factor of influence of the lack of
traditional energy in combination with electrical energy on the value of actual electrical
load. The results obtained were compared with the current values of specific electric load
according to which the design of electricity supply systems of the cities of the Republic of
Tajikistan is carried out (Figures 3 and 4).

The results in Figures 3 and 4 show that during the winter peak hours, the currently
applied design capacity (specific electricity load including the number of consumers) does
not correspond to the real value.

In order to establish the impact of the discrepancy between the actual electricity load
and the specific load, for one real section with 148 consumers, shown in Figure 3, a model of
the section of the urban electricity distribution network was built using MATLAB/Simulink,
as shown in Figure 5.

At the same time, the actual electrical load given in phases (at consumer nodes) was
calculated using Equation (11) from the actual electricity consumption data. The results
should allow an assessment of the degree of consistency of the urban electricity network
operating parameters.

Figure 5 shows the following elements of the electricity distribution network: 1—source
of electricity (high-voltage substation); 2—consumer transformer substation 6/0, 4 kV;
3—three-phase measuring device which measures currents and voltages in phases and in
neutral conductor in operating and complex form, as well as electric loads in consumer
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phases up to overhead transmission line of 380 V); 4—overhead transmission line of 380 V
with preset parameters; 5—three-phase measuring unit which measures currents and volt-
ages in phases and neutral conductors in operating and complex form, and electric loads in
consumer phases at consumer nodes; 6—total electric load in phases.
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Table 4. Parameters of the model.

Power and Type of
Transformer, kVA

Brand, Length, and Cross-Section of 380 V Power
Transmission Line Total Electrical

Load, kW
Brand and Cross-Section, mm2 Length, m

TM-1000 XPLE 3 × 185 307 740

The simulation results are shown in Table 5.

Table 5. Individual phase load values during peak load hours for the first object.

Number of Flats
Phase A Voltage, V Phase B Voltage, V Phase C Voltage, V The Highest Deviation of

Phase Loads, %Phase A Load, kW Phase B Load, kW Phase C Load, kW

148

330.24 392.94 368.74

15.96

Phase A voltage, V Phase B voltage, V Phase C voltage, V
Rated voltage, V

400 400 400
Voltage deviation, V

361 357 361.3
Voltage deviation, V

9.75 11 9.74
Neutral current, A Neutral voltage, V

9.5 7

As can be seen from Table 5, when a number of previously unaccounted for factors in
Equation (2) are taken into account, the value of the actual load becomes higher than the
normative specific load. Additionally, taking into account the capability of the three-phase
meters 3 and 5 in the model (Figure 5), the voltage deviation is, on average, greater than
9%, whereas at the consumer node itself, this value will be even greater.

This is confirmed by the fact that when using the current design load of the electricity
supply company, Barki Tojik, taking into account the set values for one consumer equal to
5 kW, for the given number of consumers, the total load in phases should be 740 kW, while
in phases—247 kW.

This, in turn, has led to voltage deviation which exceeds acceptable limits when load
asymmetry is equal to 15.96%. In addition, voltage and current in neutral appear, which
may cause fire and/or neutral disconnection (line voltage value at a consumer’s site).

A similar situation will be observed in all sections of the urban electricity distribution
network in Tajikistan, which together will lead to frequent disconnections of electricity con-
sumers (households) from the electricity system during winter periods due to overloading
of the network.

Taking into account the capabilities of the power system of the Republic of Tajikistan,
in particular in winter, the solution to this problem in the near future is to revise the existing
regulatory framework for the design of power supply systems. This will resolve the issue
with the forecast, thereby leveling the balance of generated and consumed electricity with
the least under-output.

However, despite the planned revision, the issue of asymmetry remains open in the
nodes of household consumers in the mountainous terrain of the Republic of Tajikistan.
This problem can also aggravate the issue with the reliability of forecasts, since large
asymmetries lead to frequent emergency shutdowns, which, as a result, will increase the
under-output of electricity.

This problem can be solved by using the developed voltage symmetry device for
unbalanced currents using semiconductor converters, for which an invention patent has
been granted and which was previously described in detail in [41].
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Further, the effectiveness of the proposed device will be considered in detail, applying
it to equalize the electrical load by connecting to the model of the urban distribution
network section shown in Figure 5.

Considering that in the nodes of household single-phase consumers, the active compo-
nent of the electrical load is greater than the inductive one, the proposed scheme is aimed
precisely at equalizing the active current.

The implementation scheme of the symmetry device is shown in Figure 6.
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The implementation principle is based on: G1–G6 are main power valves of voltage;
G7 and G8 are additional valves of voltage symmetrization; R1–R3 are load resistances; VS
is a sensor of neutral voltage about «—» bus of power supply; SVSR is a system of valve
switching rate; VCPD is valve control pulse distributor; CPVSS is a system that sets the
voltage of common point, and DCR is the discrete current regulator.

The operation principle of the system is the following. The value of valve switching
rate fs = 300 Hz is set by the SVSR and is transmitted to the VCPD, which creates valve
control pulses with a frequency of 50 Hz and a duration of 180 degrees. This results in a
three-phase voltage on the inverter output. When the operation is symmetrical, then the
common point neutral about «—» changes from 0.33 Vs to 0.66 Vs. Since potential changes
periodically from one period to another then it can be assumed that potential is high on
even periods and low on odd periods. One of the outputs, VCPD pulses, for example, x1, is
taken as the time reference point. Then it becomes possible to set common point voltage
Vvp on all periods using the CPVSS. If the load is asymmetrical, then the form of the signal
at the neutral point VNP would change. When the difference between voltages Vvp and VNP
is found, the DCR can be used to transmit a current that would compensate asymmetry
with signals x4, y4. A regulator can be based on the proportional-integral control law [41].
The DCR sends a signal to valves G7 and G8, thereby changing the relative pulse duration
of voltage. When the frequency is high, these valves and the DCT make the current source.

The proposed implementation of the symmetry device (Figure 6) is based on the
principle of changing the resistance at the node where the asymmetry has occurred. This is
conducted by means of the added resistance shown in Figure 7b, which will be controlled by
the G8 switch. In this way, it is possible to reduce the voltage drop by adding or removing
current at the common star point, for example, by changing the value of resistance R2,
which will change the source voltage by an amount equal to 2/3 Vsource.
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In the following, the mathematical description of voltage symmetrization by changing
the added resistance in the node with load R2 will be considered in detail.

The required current is determined by the equations:

iidling =

( 2
3 Vsource

)
VR2

R2
(12)

where VR2 is the existing phase voltage across resistor R2;

VR2 = i1·R2, (13)

i1 is current consumed from the mains,

i1 =
Usource

Uequivalent
; Vequivalent =

R1·R2

R1 + R2
. (14)

Now, knowing iidling, it is possible to calculate the corrected phase voltage:

V′R2
VR2

= (i 1 + iidling

)
·R2. (15)

Based on the calculation results, a time diagram of the symmetry current was obtained
as shown in Figure 8.

Energies 2023, 16, x FOR PEER REVIEW 14 of 19 
 

where 𝑉ோమ is the existing phase voltage across resistor 𝑅ଶ; 𝑉ோమ = 𝑖ଵ ∙ 𝑅ଶ, (13)

 𝑖ଵ is current consumed from the mains, 𝑖ଵ = ௎ೞ೚ೠೝ೎೐௎೐೜ೠ೔ೡೌ೗೐೙೟; 𝑉௘௤௨௜௩௔௟௘௡௧ = ோభ∙ோమோభାோమ.  (14)

Now, knowing 𝑖௜ௗ௟௜௡௚, it is possible to calculate the corrected phase voltage: 𝑉ோమᇱ 𝑉ோమ = (𝑖ଵ + 𝑖௜ௗ௟௜௡௚) ∙ 𝑅ଶ.  (15)

Based on the calculation results, a time diagram of the symmetry current was 
obtained as shown in Figure 8. 

Ba
la

nc
in

g 
cu

rr
en

t, 
A

 

 
0         0.01      0.02     0.03     0.04      0.05      0.06     0.07      0.08     0.09     0.1 

Time, s 

Figure 8. The current of symmetry. 

The model of the symmetry device of the control system based on the PI controller 
in the MATLAB/Simulink program is shown in Figure 9. 

 
Figure 9. The model of the symmetry device based on the PI controller in MATLAB/Simulink [41]. 

In order to verify the effectiveness of the proposed voltage symmetry system for 
current unbalance, a system control algorithm was constructed (Figure 9), according to 

1 
0.8 
0.6 
0.4 
0.2 

0 
−0.2 
−0.4 
−0.6 
−0.8 
−1 

Figure 8. The current of symmetry.



Energies 2023, 16, 3497 14 of 18

The model of the symmetry device of the control system based on the PI controller in
the MATLAB/Simulink program is shown in Figure 9.
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In order to verify the effectiveness of the proposed voltage symmetry system for cur-
rent unbalance, a system control algorithm was constructed (Figure 9), according to which
the symmetry device was connected to a model section of a city distribution network to the
inputs of phase A, phase B, phase C, and to the neutral conductor as shown in Figure 5.

The phase voltage waveform of the inverter with symmetrical load is shown in
Figures 10–12.
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The phase voltage waveform of the inverter with unbalanced load is shown in Figure 12.
The results obtained using three-phase meters 3 and 5 (Figure 5) are shown in Table 6.

Table 6 shows that the proposed voltage symmetrization system successfully solves the
problem of unbalanced currents. In this regard, it should be noted that this scheme is
most effective for consumers located in mountainous areas and powered by off-grid energy
sources. This is due to the fact that such consumers may be limited in their ability to
obtain a reliable, stable, and sustainable power supply. However, in the case of complex
problem solution, using proposed Equations (2), (9) and (11) in absence of traditional energy
resources allows optimizing mode parameters, and the proposed voltage symmetrization
system realization can be also used for consumers supplied from a centralized power
supply system [45,46].
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Table 6. Grid operation parameters of the urban distribution grid model after adding the voltage
symmetrization system.

Number of Flats Phase A Voltage, V Phase B Voltage, V Phase C Voltage, V

148

330.24 392.94 368.74
Rated voltage, V

400 400 400
Voltage deviation, V

398.9 395.3 399.5
Symmetrical voltage, %

<1 <1 <1
Neutral current, A Neutral voltage, V

2.5 4

4. Conclusions

A new method of load estimation that uses generalized uncertainty coefficients based
on varying factors was proposed in this study.

The proposed generalized uncertainty coefficients based on varying factors were
shown to be effective in demand forecasting. Proposed load models of domestic consumers
were proven to be adequate and applicable. The actual monthly measurement data for the
year 2021 was used to calculate the average monthly domestic demand for the summer and
winter seasons. The following factors were considered: elevation, atmospheric and climate
conditions, and type of energy supply apart from an electrical one.

The obtained results of a comparison (actual) justify the above-stated considering
the generalization of the uncertainty coefficient with the results of the normalized values
presented in the form of diagrams in Figures 1 and 2. It is shown for cities transitioning to
the fulfillment of decarbonization conditions, that is, these consumers do not have energy
sources obtained by burning products and carbon dioxide emissions, and the entire load
lies on the shoulder of electric energy.

For the cities shown in Figures 3–5, there are other sources of energy together with
electricity. Therefore, in the absence of household consumers of other energy sources, the
actual electrical load during peak hours during winter periods, on average, exceeds the
normalized values by 1.5–1.7 times. Whereas for consumers with the presence of other
energy sources, the normalized values, on average, exceed the actual values of the electrical
load by 1.5–2.0 times.

As result, the transition to decarbonization conditions should consider that this picture
is the cause of such problems as a violation of the operating parameters of the distribution
electrical network due to an increase in the asymmetry of voltage and current.

The method based on generalized uncertainty coefficients demonstrated its efficiency.
The effect of asymmetry on the operational parameters of an urban distribution grid
during peak load hours was studied on the model of the real grid. The simulation results
have shown that parameters exceeded acceptable thresholds. The voltage symmetrization
system [41] was used to improve and even optimize operational parameters, namely,
voltage asymmetry.
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