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Abstract: A number of canisters need to be lightweight designed to store the spherical fuel elements
(SFE) used in high-temperature gas-cooled reactors (HTGR). The main challenge for engineering
is pursuing high-accuracy and high-efficiency optimization simultaneously. Accordingly, a hybrid
surrogate model-based multi-objective optimization method with the numerical method for the
lightweight and safe design of the SFE canister is proposed. To be specific, the drop analysis model
of the SFE canister is firstly established where the finite element method—discrete element method
(FEM–DEM) coupled method is integrated to simulate the interaction force between the SFE and
canister. Through simulation, the design variables, optimization objectives, and constraints are
identified. Then the hybrid radial basis function—response surface method (RBF–RSM) surrogate
method is carried out to approximate and simplify the accurate numerical model. A non-dominated
sorting genetic algorithm (NSGA-II) is used for resolving this multi-objective model. Optimal design
is validated using comprehensive comparison, and the reduction of weight and maximum strain can
be up to 2.46% and 44.65%, respectively. High-accuracy simulation with high-efficiency optimization
is successfully demonstrated to perform the lightweight design on nuclear facilities.

Keywords: SFE canister; lightweight design; surrogate model; hybrid RBF–RSM model

1. Introduction

The high-temperature gas-cooled reactor (HTGR) is one of the inherently safe Gen-IV
advanced reactors. HTGR uses spherical fuel elements (SFE) with a diameter of about
60 mm [1–3]. A number of canisters need to be manufactured to contain the SFEs in
the plant. On the one hand, the canisters are required to be designed safe enough to
ensure containment for the SFEs under accidental conditions, while on the other hand, the
attention on reducing cost and saving resources has been drawn in the whole commercial
project [4–6]. Therefore, balancing safety performance and lightweight design has been an
urgent task for engineers and manufacturers.

The free drop event is one of the most likely causes, leading to serious damage to
the canister. The failure criterion of the storage canister is the safe containment of content
under impact loading. The importance of the drop test is indisputable, but the expensive
and inconvenient actual test has been the main obstacle. Performing hundreds of canister
drop events is impossible and unacceptable. Simulation has become a powerful tool to
predict dynamic responses through computer-aided design (CAD) and computer-aided
engineering (CAE) projects. The accuracy of the finite element (FE) method based on non-
linear explicit technology is well confirmed by the comparison between experiments and
simulations in several nuclear cask projects [7–9]. The FE method, coupled with the discrete
element method, called FEM–DEM, has been further developed [10] and verified [11] by
Lin to simulate the interaction between the SFE and canister in a pebble-bed reactor. His
valuable work improves the numerical technology in the field of SFE. Such a method could
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consider the force and displacement of each SFE. In the previous study in our lab, the
verified FEM–DEM method was employed to predict the safety performance according to
the analysis of the HTR-PM600 fresh fuel storage canister [12], and the deformation and
displacement of SFEs and containment could be precisely obtained.

The FE-analysis-based optimization has accelerated the process of design. The lim-
itation factor for large-scale optimization based on the high-accuracy FEM–DEM is the
computational cost, which is inevitable. There are two mainstream optimization methods.
The first is the direct search method. It is often used for one-dimension or linear prob-
lems [13]. Combining the classical optimization algorithm and the numerical result, the
optimal solutions could be obtained after several iterations. However, for the real-world
complex optimization problem, it is hard for FE analysis to explore the whole design space
in a short time. Several iterations with a mount of simulations are needed to obtain the
optimal solution so that a high computational cost has been observed. At the same time,
the unexpected numerical noise sometimes has a negative effect on the processing of direct
optimization. The second method is the so-called surrogate model-based optimization. The
main idea is introduced as follows: (1) conduct the design of the experiment to generate
the sampling points, (2) obtain the responses of the sampling points using the FE method,
and (3) construct the surrogate model. The surrogate model has demonstrated the dra-
matic merits of enhancing computational efficiency and reducing numerical noise. The
rapid development of the surrogate model could bring the possibility for high-efficiency
optimization based on high-accuracy simulation.

Studies of optimization on the nuclear cask could benefit this work. Generally, their
optimization aims to reduce stress or acceleration. Kim optimizes the cushion in the storage
wells by changing the thickness of the steel, the density of the foam, and the section of
the structure to reduce the Tresca stress of the canister and basket [14]. Hao performs
the FE analysis of the impact limiters in spent nuclear fuel casks [15]. Several parameters
involving the diameter, height of the impact limiters, and density of foam are chosen as
the design variables to minimize the acceleration through the response surface method
(RSM). There is a growing body of literature that recognizes the trend of multi-objective
optimization. Sharma studies the optimization for a cask that up to a 4.6% reduction in
weight and an 8.6% reduction in stress can be observed [16]. The optimization algorithm is a
complex search method. Hao performs multi-objective optimization for container transport
under multiple impact loading conditions [17]. The optimization of many objectives is well
performed to realize a 15.7% improvement in lightweight.

This paper proposes a high-efficiency multi-objective optimization method with a
high-accuracy method for the SFE canister. The FEM–DEM method is first used to simulate
the interaction between the SFE and the canister, and then the drop model is established.
The multi-objective optimization based on the above model on the lightweight and safety
performance is established using the hybrid radial basis function—response surface method
(RBF–RSM) surrogate model and NSGA-II algorithm. The performance of optimal design
has been verified by numerical simulation. The remainder of the paper is structured as
follows: Section 2 introduces the proposed optimization procedure, principle, and theory
of the FEM–DEM method, surrogate model, and non-dominated sorting genetic algorithm
(NSGA-II). Section 3 shows the SFE canister model, boundary conditions, and the initial
analysis. Section 4 performs the multi-objective optimization on safety performance and
lightweight for the canister. Section 5 discusses and validates the optimal design, while the
conclusion is summarized in Section 6.

2. The Optimization Procedure
2.1. Description of the Problem

In this study, the challenge of the high-accuracy and high-efficiency lightweight
method for SFE canister is overcome based on integrating the FEM–DEM coupled method,
the hybrid surrogate model, and the NASGA-II algorithm. Firstly, the design variables,
optimization objectives, and constraints are selected through the FEM–DEM-based simula-
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tion result. Then, the Latin hypercube sampling method is adopted to generate uniform
points in the design space. After that, the responses of each point are calculated and
abstracted through numerical simulation. On this basis, the hybrid RBF–RSM surrogate
method is constructed and verified to establish the relationship between the inputs and
outputs of the simulation model. The NSGA-II is chosen as the solver for the multi-objective
problem to create a set of solutions named the Pareto front. Finally, the optimal solution is
validated based on comparing it with the initial solution. The entire process of the proposed
optimization method is shown in Figure 1.
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2.2. FEM–DEM Method

The discrete element method (DEM) is first introduced to calculate the contact force
between SFEs. The soft sphere model was proposed by Cundall [18] in 1979 and has been
widely used in many fields. During the process of contact, an overlap between particles
is used to present the deformation at contacting surface. In this model, the normal force
adopts the combination of a spring force and a damping force, while the tangential force
adopts the combination of three terms: a spring force, a damping force, and a slide force.
For the three-dimension SFE considered in this study, the normal force Fnij and tangential
force Ftij could be calculated as follows:

Fnij =
(
−kna3/2 − ηnGnij

)
nij (1)

Ftij = −ktδ− ηtGct (2)

where a is the overlap in the normal direction, δ is the tangential displacement, nij is the
vector between the center of two particles, G is the relative velocity, Gct is the sliding
velocity; ηn and ηt are the normal and tangential damping coefficient, respectively; kn and
kt are the normal and tangential stiffness coefficient, respectively.

The interaction force between the SFE and the canister is carried out by referring to the
FEM–DEM coupled model [10]. Figure 2 summarizes the FEM–DEM procedure. First, the
penetration between the SFE and the canister is detected according to the distance. Then
the corresponding contact force and friction force could be obtained based on the penalty
method. After that, the displacement of the SFE is obtained with Newton’s second law.
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2.3. Surrogate Model

Many optimization problems need a number of simulations or experiments to investi-
gate the responses of the design variables. For a real-world problem, a single simulation
could take several hours or even days. For example, a single drop simulation for 100 ms
takes approximately 10 h using one 2.1 GHz core of an Intel Xeon CPU. The conventional
direct search method has the shortcoming of low efficiency and high cost. To address it,
the surrogate model is proposed based on the simplification and approximation of the
high-order complex model. There are two main surrogate models considered in this paper,
RBF and RSM (Figure 3).
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RSM (response surface method) employs the polynomial model to explore the rela-
tionship between the design and responses, which has the basic formula as follows:

f (x) = β0 + ∑ βixi + ∑ βijxixj+ . . . (3)

where f (x) is the predicted value, xi and xj are the design variables, and β0, βi and βij are
the model parameters. It can be seen that the RSM could be more precise if a high-order
model is used. However, the increased fitting parameters, which need more simulation
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runs, will significantly affect the system’s robustness. In fact, the linear model or second-
order model is often applied. The polynomial approximations in this study have a linear
order with the interaction. The model parameters could be obtained based on the least
squares method.

RBF, the so-called radial basis function neural network, is reported as the best neural
network-based surrogate model. It has demonstrated the advantages of high efficiency
and precision for many non-linear problems. The RBF uses the radial basis function as
its activation function. RBF consists of three layers, including an input layer, a single
hidden layer, and an output layer. The input layer is linear and transparent and passes
a value to the neuron in the hidden layer. The hidden layer is non-linear and contains a
variable number of neurons. Each neuron has a radial basis function based on a center
point. The output layer performs a linear combination of the results from the hidden
layer. The weights between the hidden layer and the output layer are obtained based on
Moore–Penrose generalized pseudo-inverse [19]. If the Gaussian function is used as radial
basis function φ, the output of the RBF ϕ can be written as follows [20]:

φ(‖x− ci‖) = e−‖x−ci‖2/(2σi
2) (4)

ϕ =
h

∑
i=1

λiφ(‖x− ci‖) (5)

where ‖x− ci‖ is the Euclidean distance; ci and σi are the center vector and width of the
neuron i in the hidden layer, respectively; h is the number of neurons in the hidden layer.
λi is the weight between the hidden layer and the output layer. Equation (5) presents
the relationship between the neural network input x and output ϕ. Equation (4) presents
the Gaussian function. The search for optimum values of centers, width parameters, and
network weights is the basis of the RBF network training process [21]. The data required
for the training of the networks are obtained from the numerical simulation and the design
of experiment (DOE) results. To be specific, the non-linear mapping relationship between
the input parameters (thickness parameters) derived from DOE results and the output
parameters (mass, plastic strain, and radial expansion) obtained from numerical simulation
is used to train the RBF neural network.

In this paper, the hybrid surrogate method is investigated to approximate the numeri-
cal result. In detail, the RBF and RSM methods are both used to construct the relationship
between the design variables and structural response. Then the accuracy of the surrogate
model for each response is evaluated and compared. After that, the different surrogate
technology is selected for a different response to construct the best surrogate model for
further optimization.

2.4. NSGA-II Algorithm

An optimization problem often involves two and more conflicting objectives, and a
trade-off between these objectives needs to be taken. Differing from the optimization on
single objective, there is a set of solutions (i.e., Pareto front) for multi-objective optimization.
All of them are equally good. NSGA-II is a powerful multi-objective optimization algorithm
with the elitist principle proposed by Deb [22]. It has been widely used in many fields
of science and technology. In the procedure of the NSGA-II (Figure 4), the initial parent
population Pt is generated randomly, and the offspring population Qt is created based
on the mutation and crossover. Then the non-dominated sorting is performed for the
combination of Pt and Qt to classify them in an ascending order (F1, F2, F3). The best Pareto
fronts such as F1, F2 are first chosen to transfer to a new parent population Pt+1. For fronts
such as F3, crowding distance is calculated to select the extra number of individuals with
more distance to fill with the remainder of the population Pt+1. Half of the combination
of Pt and Qt is deleted. The new offspring population Qt+1 is generated based on the
mutation and crossover. The Pareto front could be identified after the given generations.
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3. SFE Canister Model
3.1. Canister Model

Figure 5 shows the three-dimension model of the SFE canister for containing SFEs and
graphite spheres. The cubical shape is designed to save storage space. The size is about
800× 800× 1800 mm3. The canister is a thin-wall structure to realize the lightweight design,
including the body, top cover, top flange, frame, and barrier. The top cover is connected to
the top flange through 28 ×M20 bolts. The topology and shape of the canister are fixed.
The optimal combination of the thickness of the main components will be investigated in
the next section.
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Figure 6 presents the FE model of canister, which is submitted to the LS-DYNA
solver. The Belytschko–Tsay shell elements are adopted to simulate the behavior of thin-wall
components because the size of thickness is far less than that of other directions. The thickness
of the shell elements is given based on actual data. The integrated point through the thickness is
set as 5. The closure bolt with pre-load force is modeled based on the beam element to reflect
the tensile and shear stress. The relative sliding and friction between the top cover and the top
flange are considered based on the contact algorithm. To improve computational precision,
the FE model mainly adopts quadrilateral elements rather than triangular elements. Moreover,
element refinement is considered for the area with possible large deformation. The size of the
element is set as 20 mm. Based on the above strategies, the FE model has 76,635 elements and
80,581 nodes, where more than 95% of elements are quadrilateral.

The canister is fully manufactured using stainless steel 304. According to the ASME
material manual [23], the yield stress and tensile stress are 205 and 520 MPa, respectively.
To well simulate the behavior of the material, the piecewise linear plasticity models with
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failure are used. The failure criterion is that once the effective plastic strain in one element
reaches 40% or the effective stress reaches 520 MPa, the element will be deleted.

Energies 2023, 16, x FOR PEER REVIEW 7 of 17 
 

 

the thickness is set as 5. The closure bolt with pre-load force is modeled based on the beam 
element to reflect the tensile and shear stress. The relative sliding and friction between the 
top cover and the top flange are considered based on the contact algorithm. To improve 
computational precision, the FE model mainly adopts quadrilateral elements rather than 
triangular elements. Moreover, element refinement is considered for the area with possi-
ble large deformation. The size of the element is set as 20 mm. Based on the above strate-
gies, the FE model has 76,635 elements and 80,581 nodes, where more than 95% of ele-
ments are quadrilateral. 

 
Figure 6. The FE model of the SFE canister. 

The canister is fully manufactured using stainless steel 304. According to the ASME 
material manual [23], the yield stress and tensile stress are 205 and 520 MPa, respectively. 
To well simulate the behavior of the material, the piecewise linear plasticity models with 
failure are used. The failure criterion is that once the effective plastic strain in one element 
reaches 40% or the effective stress reaches 520 MPa, the element will be deleted. 

3.2. SFE Model 
For the SFE stored in the canister, the diameter is 60 mm. The material properties are 

obtained referring to the previous literature [11] as the density of 1.95 g/cm3, the elastic 
modulus of 9.8 GPa, and the Poisson ratio of 0.12. 

The SFEs employ regular stacking based on the body-centered cubic method to re-
duce the volume of the pebble bed as much as possible. To be specific, 4800 SFEs are 
equally loaded into four zones. Each zone has 40 layers, while each layer has 6 × 5 SFEs. 
Figure 7 shows the SFEs stacking in one zone. The soft-sphere-model-based DEM method 
is used. The DEM parameters are referred to in the previous literature [12]. The interaction 
force between the canister and SFE is difficult for the conventional FE method to calculate. 
The FEM–DEM coupled method is used here. The sliding friction coefficient between the 
SFE and the canister is 0.2, and the rolling friction coefficient is 0.005. 

Figure 6. The FE model of the SFE canister.

3.2. SFE Model

For the SFE stored in the canister, the diameter is 60 mm. The material properties are
obtained referring to the previous literature [11] as the density of 1.95 g/cm3, the elastic
modulus of 9.8 GPa, and the Poisson ratio of 0.12.

The SFEs employ regular stacking based on the body-centered cubic method to reduce
the volume of the pebble bed as much as possible. To be specific, 4800 SFEs are equally
loaded into four zones. Each zone has 40 layers, while each layer has 6 × 5 SFEs. Figure 7
shows the SFEs stacking in one zone. The soft-sphere-model-based DEM method is used.
The DEM parameters are referred to in the previous literature [12]. The interaction force
between the canister and SFE is difficult for the conventional FE method to calculate. The
FEM–DEM coupled method is used here. The sliding friction coefficient between the SFE
and the canister is 0.2, and the rolling friction coefficient is 0.005.
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3.3. The Simulation of Drop Process

The possible accident of the SFE canister is to suffer from a free drop due to the failure
of the lifting device. The canister has a maximum height of 15 m from the ground, which is
selected as the initial condition in the analysis. To save computational runtime, the distance
between the canister and the ground is moved to 0.1 m instead of 15 m with an additional
initial velocity of 17.1 m/s, as follows:

v =
√

2× 9.81× (15 − 0.1)= 17.1 m/s (6)

During the process of lifting, the canister mainly keeps in a vertical orientation, so
it is assumed that the drop test mainly includes a vertical impact which is chosen as the
scenario in the following optimization procedure. When the canister contacts the ground,
both the canister and the ground may have the deformation to absorb the energy. To
conservatively validate the safety performance of the canister under impact loading, the
unyielding ground is chosen to increase the damage to the canister as much as possible.

The contact between the canister and ground is considered by activating the keyword
in LS-DYNA *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE. Meanwhile, the self-
contact of each component is carried out using the keyword *CONTACT_AUTOMATIC_
SINGLE_SURFACE. The well-performed contact algorithm could avoid unacceptable
penetration and negative sliding energy in the process of simulation.

3.4. Initial Analysis

The LS-DYNA code is used to solve the FE model under impact loading. Three
important indicators are abstracted from the simulation result as below:

1. The weight of the SFE canister is 569 kg, which is expected to be designed as light
as possible.

2. The effective plastic strain is selected as the safety indicator to describe the deforma-
tion of the containment boundary of SFE, with a value of 23.76%.

Figure 8 presents the radial expansion of the sidewall of the containment boundary. It
could be found that node 784485 has an expansion with a value of 35.26 mm, which exceeds
the limitation of 35 mm.
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Therefore, the optimization objective and constraint could be identified for the further
lightweight design. Note that the topology and shape of the thin-wall canister are fixed;
thus, the thickness of the main component is chosen as the design variable.
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4. Multi-Objective Optimization Problem
4.1. Design Variables and Objective

The aim of optimization for SFE canisters is to improve the performance of lightweight
and safety simultaneously. The effective plastic strain of containment boundary (EPS) and
the weight of the SFE canister (M) are selected as the conflicting objective functions. The
maximum radial expansion of the canister (EX) is chosen as the constraint.

For the canister optimization problems, the thickness parameters of the main components
are identified as the design variables. As illustrated in Figure 9, they are the thickness of the
canister sidewall (t1), frame (t2), and barrier (t3). Table 1 presents the initial value and range of
design variables. The upper and lower limits are determined by engineering experience.
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Table 1. Initial value and range of design variables.

Design Variables Initial Value Lower Bound Upper Bound

t1 (mm) 3 2 6
t2 (mm) 4 2 6
t3 (mm) 3 2 6

Once the design variables and the optimization objectives are identified, the multi-
objective optimization model could be summarized as follows:

find t = (t1, t2, t3)
min f (t) = { fM(t), fEPS(t)}
s.t. fEX(t) ≤ 35 mm
tL ≤ t ≤ tU

(7)

where fM(t) represents the mass of the SFE canister, feps(t) denotes the effective plastic
strain of the boundary containment of the canister; fR(t) stands for the maximum radial
expansion of the sidewall; t = (t1, t2, t3) represents the three thickness parameters of
the canister sidewall, frame, and barrier; tL and tU denote the lower and upper limits of
thickness parameters, respectively.

4.2. Surrogate Model Based on LHS

The Latin hypercube sampling (LHS) method is adopted to generate the sampling
points as inputs to the surrogate model. To balance the precision and efficiency, 50 points
are created based on the LHS method. It can be seen from Figure 10 that the uniform and
random distribution of the design variable t1 demonstrates effective and reliable sampling.
The responses (optimization objective and constraint) of each design under impact loading
are analyzed using the FE code LS-DYNA, which is summarized in Table 2.
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Table 2. The response of each design.

No.
Design Variables Objective Constraint

t1 (mm) t2 (mm) t3 (mm) M (kg) EPS EX (mm)

1 3.00 3.00 3.00 552 0.22 38.20
2 5.03 2.00 2.82 618 0.12 34.15
3 3.85 2.41 3.81 600 0.15 33.00
4 2.14 3.42 4.77 568 0.28 41.28
5 5.61 5.50 3.12 711 0.23 26.05
. . . . . . . . . . . . . . . . . . . . .

49 5.00 4.38 3.98 688 0.19 33.36
50 4.64 2.53 2.04 590 0.14 33.20

The next step is to construct the relationship between the design variable and the
optimization objective based on the surrogated model. To select the best surrogate model
method, the RSM and RBF are used. For the RSM model, the model with quadratic terms
has better performance than a linear model for fitting non-linear data. To evaluate the
accuracy of the selected surrogate models, two indicators are chosen, they are the coefficient of
determination R2 and root mean square error (RMSE), which could be calculated as follows:

R2 =
∑P

i (ŷi − y)2

∑P
i (yi − y)2 (8)

RMSE =

√
∑P

i (yi − ŷi)
2

P
(9)

where, yi is the actual response, y is the average of the actual response, ŷi is the predicted
value from the surrogate model, P is the number of designs. The bigger the coefficient of
determination R2 and the smaller the RMSE, the higher precision the model has. When
R2 > 0.85 and RMSE < 0.1, the surrogate model is able to well establish the relationship
between the design variables and objectives for further optimization

Table 3 presents the accuracy of the RBF and RSM surrogate models. The R2 of RBF
and RSM for the mass (M) are basically equal to 1 as the RMSE of the two models is smaller
than 0.01%. The fitting accuracy is significantly higher than others because the mass is a
linear response according to the design variables. The RBF method has a higher value of R2

and a lower value of RMSE for the effective strain, while the RSM model has a higher value
of R2 and a lower value of RMSE for the radial expansion. Therefore, the hybrid RBF–RSM
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method is finally used to generate the surrogate model to approximate the relationship
between the design variables, optimization objective, and constraint. Especially the mass
and effective response are fitted using the RBF method, as the radial expansion response
is fitted using the RSM method. The R2 in the hybrid surrogate model is more than 0.85,
while the RMSE is lower than 0.1. Figure 11 shows the fitting result of the surrogate model.
To better understand the fitting accuracy, the comparison between the simulation result
and the predicted value is shown in Figure 12. The x-axis denotes the value based on
numerical simulation, while the y-axis denotes the predicted value based on the surrogate
model. From Figure 12, most of the points are close to the 45-degree line, indicating that
the predicted value is approximately equal to the calculated value. Combined with the R2,
RMSE, and the simulation-prediction comparison, it can be summarized that the hybrid
approximate surrogate model has great accuracy and reliability, which could be used for
predicting the responses well.

Table 3. The accuracy of the surrogate model.

RBF RSM

R2 RSME R2 RSME

Mass 1 0.00233% 1 0.00218%
Effective strain 0.985 2.33% 0.897 7.72%
Radial expansion 0.818 4.42% 0.874 4.1%
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5. Result and Discussion

The optimization of minimizing the mass and effective strain with the constraints
of the maximum radial expansion is, in fact, a multi-objective problem. To address it,
the multi-objective optimization procedure NSGA-II is used as the solver. The detailed
parameters of the algorithm are summarized in Table 4. After 25,000 runs, the optimization
could be completed because of the high efficiency of NSGA-II.

Table 4. NSGA-II parameters.

Parameter Value

Population size 100
Number of generations 250
Crossover distribution 10
Crossover probability 1
Mutation distribution 100
Mutation probability 0.33

On the basis of the NSGA-II, the Pareto front could be obtained, as shown in Figure 13.
The x-axis in the figure presents the mass, while the y-axis presents the effective strain of
the containment boundary of SFEs under impact loading. The value of maximum radial
expansion is illustrated using a color gradient with a range from 32.54 to 34.98 mm. It
could be found that the radial expansions of all designs are lower than 35 mm, indicating
that the Pareto solutions could satisfy the optimization model in Equation (1). The Pareto
front denotes a set of effective solutions which are equally important. The so-called non-
dominated solution indicates that one solution could not dominate others when considering
the whole objective simultaneously. Note that the maximum effective strain (0.135) is far less
than the limit (0.4), which is totally acceptable. Thus, the design with the maximum stain
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and minimum mass is selected as the optimal design (t1 = 4.06 mm, t2 = 2 mm, t3 = 2 mm).
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Table 5 shows the relative error between the predicted value from the surrogate model
and the calculated value from the numerical simulation. It could be seen that the relative errors
of the responses are less than 5%, which indicates that the surrogate model we chose is reliable.

Table 5. The error between the surrogate model and numerical simulation.

Response Predicted Value Calculated Value Relative Error

Mass (kg) 554.8 555 0.04%
Effective strain 13.55% 13.15% 3.04%
Radial expansion (mm) 35.0 34.8 0.57%

To verify the merits of the optimal design, the comparison is carried out using the FE
analysis between the initial design and the optimal design, as listed in Table 6. It can be
seen that all the indicators have been improved. The canister has a mass reduction of 14 kg
and a successful improvement of 2.46%, which is well lightweight designed compared to
the initial design. In addition, the effective strain of containment and the radial expansion
is finally reduced by 44.65% and 2.3%, respectively. The result shows that the optimal
design is within the great performance threshold.

Table 6. Performance comparison.

Response Initial Design Optimal Design Improvement

Mass (kg) 569 555 2.46%
Effective strain 23.76% 13.15% 44.65%
Radial expansion (mm) 35.79 34.97 2.3%

Figure 14 shows the radial expansion curve of the initial design and the optimal design
at node 784485. It can be seen that the two curves are overall similar. However, the initial design
has a larger peak than the optimal design. It is because the optimal design has more stiffness
after the optimization, which decreases the expansion of the side wall of the SFE canister.
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Figure 15 shows the maximum interaction force between the pebble bed and the
canister from the simulation result. The value and distribution are compared between the
initial design and the optimal design. It could be seen that the maximum force is 6.295 and
6.223 kN before and after optimization, which has a reduced ratio of 1.14%. In fact, the
decreased interaction force could ensure the integrity of the fuel element.
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In summary, the multi-objective optimization could not only reduce the weight of the
canister but also improve safety performance.

6. Conclusions

This paper presents an efficiency–accuracy balanced lightweight optimization proce-
dure for the SFE canister, integrating the FEM–DEM coupled method, the Latin hypercube
sampling, the RSM-RBF-based hybrid surrogate model, and the NSGA-II algorithm. Based
on the study, the following conclusion could be summarized:

1. The deformation and displacement of the canister and SFEs under impact loading could
be obtained through the drop analysis model integrating the FEM–DEM method.



Energies 2023, 16, 3587 15 of 16

2. The hybrid RBF–RSM model has been validated with high accuracy based on R2,
RMSE, and the simulation-prediction comparison. It is believed to approximate
precisely the accurate but high-cost simulation model.

3. The calculation result shows that up to 2.45% reduction of mass and 44.65% reduction of
the plastic strain could be realized, while the optimal canister can protect SFEs well in the
extreme event, indicating the multi-objective lightweight canister is designed successfully.

4. In future investigations, it might be possible to consider shape optimization, topologi-
cal optimization, and multidisciplinary design optimization for expansion.
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