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Abstract: Remaining useful life prediction is of great significance for battery safety and maintenance.
The remaining useful life prediction method, based on a physical model, has wide applicability and
high prediction accuracy, which is the research hotspot of the next generation battery life prediction
method. In this study, the prediction methods of battery life were compared and analyzed, and
the prediction methods based on the physical model were summarized. The prediction methods
were classified according to their different characteristics including the electrochemical model, equiv-
alent circuit model, and empirical model. By analyzing the emphasis of electrochemical process
simplification, different electrochemical models were classified including the P2D model, SP model,
and electrochemical fusion model. The equivalent circuit model was divided into the Rint model,
Thevenin model, PNGV model, and RC model for the change of electronic components in the model.
According to the different mathematical expressions of constructing the empirical model, it can be
divided into the exponential model, polynomial model, exponential and polynomial mixed model,
and capacity degradation model. Through the collocation of different filtering methods, the different
efficiency of the models is described in detail. The research progress of various prediction methods as
well as the changes and characteristics of traditional models were compared and analyzed, and the
future development of battery life prediction methods was prospected.

Keywords: lithium-ion battery; residual life; physical model; prediction method

1. Introduction

Lithium-ion batteries have the advantages of high energy density, high output power,
no pollution, no memory effect, small self-discharge, etc., and has become the main battery
type of current new energy vehicles [1]. Common lithium-ion batteries on the market
include lithium cobaltate, lithium manganate, and lithium iron carbonate batteries [2].
Lithium cobalt-acid batteries are the most widely used and have high specific energy,
but the production of raw materials is more expensive; lithium manganate batteries have
excellent multiplier performance and stability, but low energy density and poor safety [3];
lithium iron carbonate batteries have high energy density and good cycling performance,
but poor low-temperature discharge performance [4]. There are many factors to measure
the performance of the above lithium-ion batteries, and battery life is one of the key indica-
tors and an important factor to be considered by users when purchasing electric vehicles [5].
During long-term use, the lithium-ion battery undergoes a series of electrochemical reac-
tions and physical changes that degrade the performance and capacity until the end of its
life [6].

State of health (SOH) estimation and remaining useful life (RUL) prediction are the
basic problems of battery health management [7]. SOH represents the aging degree of
lithium-ion batteries, which is mostly defined as the percentage of the capacity released
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by the battery from the full charge state to the cut-off voltage and the rated capacity of the
battery under certain conditions [8]. RUL is a parameter that characterizes the deterioration
of the battery to obtain the operating time from the beginning of the prediction to the end of
the battery life [9]. The accurate prediction and estimation of SOH and RUL can effectively
judge their future working capacity and identify problems in time to avoid unnecessary
problems and losses [10].

RUL prediction methods based on the model from the perspective of the first princi-
ples are given a full explanation of the cell aging process, applicable to almost all of the
conditions and operation mode. The analysis of a battery control strategy is also more
detailed and accurate than other methods, which should be paid attention to and further
developed in the process of RUL prediction research [11]. This paper will introduce the
concepts related to RUL prediction, review the model-based RUL prediction methods of
lithium-ion batteries, and make a comparison.

RUL refers to the number of charge point cycles a battery can perform before its life
ends. There are many factors that affect the battery life, from the physical level including
temperature, charging current, charging voltage, battery structure, etc. [12] and on the
chemical level including the electrode material, electrolyte, battery resistance, etc. [13]. Gen-
erally, when the capacity of a battery is lower than 80% of the factory capacity, the battery
is considered to be invalid. A common RUL definition is shown in Formula (1) below:

RUL = CEOL − Ci (1)

where CEOL represents the number of charging and discharging cycles that can be car-
ried out when the service life terminates, and Ci represents the number of charging and
discharging cycles at the current moment [14].

In this paper, the existing model-based lithium-ion battery life prediction methods
at home and abroad were divided into three categories: the electrochemical model-based
method, equivalent circuit-based method, and empirical model based method [15,16], as
shown in Figure 1.
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2. Methods Based on Electrochemical Models

An electrochemical model is a model built by simulating the electrochemical reaction
process of a battery [17]. It describes the laws of the cell from the point of view of internal
physical and chemical processes including kinetic parameters, mass conversion processes,
thermodynamic properties, mechanical, thermal, and electrical properties of materials [18].
It can provide a reference for battery research and development, so electrochemical models
are often used for the analysis of battery principles and for battery research and develop-
ment [19]. Electrochemical models include pseudo two-dimensional (P2D), single particle
(SP) models, and coupled electrochemical models developed based on both.

2.1. P2D Model

The P2D model is shown in Figure 2. The battery was divided into three areas:
negative electrode, diaphragm, and positive electrode [20]. Several governing equations
were established in the P2D model to describe the diffusion of lithium ions in solid particles,
mass transfer in the liquid phase, and the electrochemical reaction on the particle surface.
Among these control equations, the most important is the Butler–Volmer kinetic response
equation, as shown in Equation (2):

j = i0

[
exp
(

αaF
RT

η

)
− exp

(
−αcF

RT
η

)]
(2)
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In the formula, i0 is the exchange current density, αa is the anode transfer coefficient,
usually taken as 0.5, F is the Faraday constant, R is the molar gas constant, T is the cell
temperature, η is the spherical particle surface overpotential, and αc is the cathode transfer
coefficient, usually taken as 0.5.

The P2D model can deeply understand the mass transfer and kinetic reaction inside
the battery, and lay a foundation for the degradation mechanism of the reactive battery
and the optimal solution control of the battery [21]. In order to improve the prediction
efficiency and accuracy of the model, researchers have optimized it from two aspects, one
of which is to simplify the P2D model. Li et al. [22] used the finite difference method
to discretely degrade the P2D model and obtained a simplified pseudo-two-dimensional
model. On this basis, the electrochemical decay model (ADME) was proposed based
on the decay aging phenomenon caused by the side reaction between the cathode and
the anode. By comparing the experimental results, it was concluded that the model
is simpler, and the maximum errors of predicting the terminal voltage variation trend
under the hybrid pulse power characterization (HPPC) condition and 0.33 C constant
current and constant power experiment were reduced by 3.92% and 3.94%, respectively.
Compared with the simplified pseudo-two-dimensional model, the prediction accuracy
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was improved by 76% and 55%, respectively. Deng et al. [23] simplified the P2D model
by polynomial approximation and proposed a polynomial approximation pseudo-two-
dimensional (PP2D) model. The number of operations of this model was only one sixtieth
of that of the P2D model. The calculation time of each step was less than 2 ms, which greatly
improved the calculation efficiency. Another approach is to simplify electrolyte diffusion. Li
et al. [24] combined the simplified electrolyte diffusion process and other kinetic processes
of a lithium-ion battery, and a complete five-state diagonal system was obtained, which
improved the prediction accuracy of the electrolyte concentration, electrolyte diffusion
overpotential, and terminal voltage. All of these methods can simplify the P2D model.
After obtaining the simplified model, the researchers optimized the parameter identification
stage. Kim et al. [25] proposed a practical method to identify and select valid P2D model
parameters, which changed significantly with battery aging. The average error of the P2D
model output voltage between the experimental data and identification parameters was
only 18.79 mV, which had high accuracy. Li et al. [26] used the heuristic algorithm for
parameter identification, adopted a divide and conquer strategy, divided the P2D model
parameter set into two groups, and identified each group of parameters separately. The
complete identification of the P2D model can be completed within 10 h, which is 50%
more efficient than the traditional identification method. Laue et al. parameterized the
most prevalent electrochemical P2D model for Li-ion batteries [27]. A three-step technique
was performed with quasi-static electrode measurements of open-circuit potentials, C-
rate testing, and electrochemical impedance spectroscopy all taking place. Each step’s
identifiability was thoroughly addressed, and basic guidelines for future parameterizations
were generated. According to the findings, open-circuit potentials and C-rate measurements
are insufficient to properly parameterize electrochemical models. To address the ambiguity
of diffusion and electrical processes in quasi-static circumstances, highly dynamic tests such
as impedance spectroscopy are required. The findings of this study offer recommendations
for the usage of electrochemical models in applied science and industry. To parameterize the
most often used electrochemical pseudo-two-dimensional model, Xu et al. [28] suggested
a unique nondestructive parameter identification approach. First, the sensitivity of the
model parameters was examined and divided into three groups based on the situations
under which the parameters were most sensitive. Second, for these unknown values, a
deep learning technique was utilized to provide plausible first predictions. Finally, two
alternative approaches for parameter identification were coupled in order to progressively
estimate the parameters with great sensitivity. The results indicate that utilizing both
the simulation and experimental data, one electrochemical parameter could be properly
calculated in 14 h. The root-mean-square error of the model forecast voltage was less than
14 mV after evaluating the model parameters.

2.2. SP Model

Compared with other electrochemical models, the single-particle model is widely
used because of its simple construction and fast prediction speed [29]. In the literature,
the SP model was simplified to degrade to improve the calculation speed and prediction
accuracy of the model [30,31]. At the same time, various factors that may affect the battery
were taken into account in the model, and internal indicators were selectively extracted
to track the battery health status [32,33]. Sadabadi et al. [34] proposed a RUL prediction
algorithm based on single particle model parameter estimation. The algorithm uses the
moles of circulating lithium and battery resistance as indicators of the state of health, and
uses the derived composite SOH metric to design particle filter-based RUL predictions [35],
where the greater the SOH-related estimates, the more accurate the RUL estimate. Based
on the SP model, Li et al. [36] proposed an improved simplified model, obtained physical
parameters with the aging mechanism, and selected new health indicators by analyzing
the relationship between the physical parameters and battery health status [37], which
is helpful in accurately predicting the remaining life of the battery, and has important
theoretical significance and practical value for improving the level of battery management
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technology. Prasad et al. [38] simplified the model by two key parameters, battery resistance,
and cathode solid-phase diffusion time [39]. The model uses the gradient parameter real-
time update method under the excitation of the HPPC current [40]. Within 200 s, the
estimated value of the total battery resistance and diffusion time could converge to the
optimal value within 99%. The calculation speed was fast, and can be used for the online
estimation of the remaining life of the car battery. Deng et al. [23] employed a sequence of
polynomial functions to simulate the electrolyte phase concentration profile, the solid phase
concentration profile, and the nonuniform reaction flow profile, respectively, to simplify
the P2D model. The accuracy of the second- and third-order polynomial estimates for the
reaction fluxes was compared, and the higher order’s more robust correctness was proven.
The created model was simulated using a variety of constant flow rates, mixing pulses, and
driving times, and the results were compared to the P2D model and the original SP model.
The findings revealed that the proposed model captures the cell properties adequately
while significantly reducing the computational complexity.

2.3. Electrochemical Coupling Model

The above electrochemical models can be optimized in their respective fields to com-
pensate for deficiencies to a certain extent, but some deficiencies are inherent to the models
themselves and cannot be eliminated. In this case, the integration with other models is
needed to improve the accuracy. The P2D model is an isothermal model without con-
sidering the coupling relationship between heat generation and chemical reaction. In
the actual charging and discharging process, the battery will inevitably generate heat.
Kuangke et al. [41] put forward a kind of large capacity motor such as the lithium-ion bat-
tery electrochemistry-thermal coupling efficient modeling method through the classification
of the parameters, and the measured/identification parameters for precise measurement
and parameter identification, using pulse charging experiments under different temper-
ature calibration solid phase diffusion coefficient of the DS and reaction rate constant k,
further established the battery heat production model. The simulation data of the voltage
and temperature agreed well with the test data, and the parameters of the model were
more accurate at room temperature. The average voltage error was less than 10 mV, and
the average temperature error was less than 1.1 ◦C. The established model had good accu-
racy and adaptability. Wang et al. [42] also developed an electrochemical-thermal model
utilizing P2D and detailed how some parameters varied with temperature. The propor-
tional mean square variance between the model’s anticipated and observed residual life
was only 0.625%, which compensated for the simulation error caused by the temperature
change. Zhang et al. [43] discovered that the P2D model’s impedance parameters were
only consistent with the actual battery at low frequencies. It obtained high simulation
precision in the wide bandwidth range from 10 mHz to 1 kHz by integrating the P2D
model with the EIS model. Under the sinusoidal electrical excitation of 5 Hz, 10 Hz, and
20 Hz, the root mean square error of the improved model decreased by 24.8%, 30.6%, and
33.0%, respectively, when compared to the P2D model. Li et al. [36] found that the existing
SP model did not consider the degradation mechanism, and proposed a new prediction
model combining the capacity degradation model and SP model. This model could quickly
predict the capacity attenuation and voltage distribution changes with the number of cycles
and temperature. Compared with the experimental results, the root mean square error
of the model prediction was 0.0103. A coupled electrochemical-thermal coupling (ECT)
model of LiCoO batteries was proposed by Li et al. [44] to describe their charging and
discharging behavior. Calculations of heat generation, conduction, and dissipation were
added to the simplified electrochemical model by means of a total set thermal analysis
and a rational reduction and recombination of the cell mechanism parameters to reduce
the estimation complexity. Specifically designed identification conditions were used to
obtain the mechanism parameters based on the excitation response analysis. The applica-
bility of the model under different operating conditions was verified by simulations. The
simulation results of the end voltage and surface temperature were in good agreement
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with the actual experimental measurements at lower C-rates and dynamic load currents.
Jiang et al. [20] created a one-dimensional (1D) electricity generation-three-dimensional
(3D) thermal connection model to investigate the heat transfer mechanism of hexagonal
Li-ion cells cooled on various exterior surfaces. The simulation parameters studied were
the forced convection cooling coefficient, h, the thermal diffusion surface area, and the
dimension of the cell. The variation in temperature of the prismatic cells with conduction
force cooling on tiny side surfaces was found to be more uniform than that of prismatic
cells with massive front area cooling. The highest temperature differential of the prismatic
cell with tiny side surface cooling was kept constant at h = 100 W/m2 K as the cell size rose.
Furthermore, the influence of operating temperature on the capacity degradation of Li-ion
batteries during cycling was examined. The greater the operating temperature, the faster
the parasitic lithium/solvent reduction process, which resulted in the depletion of lithium
ions and enhanced the rate of capacity degradation throughout cycling.

2.4. Comparison of Electrochemical Models

In order to more clearly show the advantages and disadvantages of the prediction
methods based on electrochemical models, the prediction methods are summarized. In this
paper, “F“ was used to indicate the accuracy and complexity of the prediction methods.
The results are shown in Table 1.

Table 1. Electrochemical model.

Model Advantages Disadvantages Prediction Accuracy Complexity

P2D model

It can describe the internal
dynamic behavior of the

battery, and has the
advantages of accurate model
and high calculation accuracy.

There are many parameters in
the model and the calculation is
complicated and the efficiency

is low.

High
FFFFI

High
FFFFI

SP model
The modeling complexity is

low and the calculation
accuracy is high.

The physical properties of
electrolyte are ignored and the
problem of order reduction is

not considered.

Higher
FFFFF

Lower
FFIII

Electrochemical
fusion model

Strong robustness and high
prediction accuracy.

The model is complicated due to
the large amount of calculation

and many
optimization parameters.

High
FFFFI

High
FFFFI

3. Method Based on Equivalent Circuit Model

The equivalent circuit model is a kind of model that expresses the external charac-
teristics of the battery through the combination of circuit components. The relationship
between the various influencing factors of the battery and the state of charge can be given,
so it is widely used. This mainly includes the Rint model, Thevenin model, PNGV model,
and RC model. The RC model was divided into the integer model and fractional model.

3.1. Rint Model

The Rint model equates the battery to a series of the ideal voltage sources and the
internal resistance, which is the simplest equivalent circuit model. Resistors were used to
simulate the ohmic and polarizing internal resistance of batteries. The circuit structure is
shown in Figure 3.



Energies 2023, 16, 3858 7 of 20
Energies 2023, 16, 3858 7 of 20 
 

 

 
Figure 3. The Rint circuit structure diagram. 

The structure is simple and the parameters are easy to calculate. However, it cannot 
describe the dynamic process and is seldom used in practical applications [45]. Research-
ers have improved the accuracy by connecting several circuit models in series and parallel 
[46]. 

3.2. Thevenin Model 
The Thevenin model considers the polarization phenomenon in the battery reaction, 

and uses the parallel link of resistance and capacitance to simulate the complex internal 
reaction of the battery in the charging and discharging process [47] (see Figure 4). 

 
Figure 4. The Thevenin circuit structure diagram. 

In the model, the ideal voltage source describes the open circuit voltage of the battery, 
the resistance is the ohm internal resistance of the battery, and the parallel connection of 
capacitance and resistance describes the polarization of the battery [48]. The Thevenin 
equivalent circuit model can simulate the dynamic and static characteristics of the battery 
very well, taking into account the nonlinearity of the battery [49], and the parameters are 
obtained in a simple way that can be easily translated into a state space model [50–52]. 
However, in the actual operating environment, some model parameters of the battery may 
change with environmental conditions such as temperature. Hossain [53] proposed a tem-
perature compensation model parameter extraction method based on the Thevenin model 
was proposed, which can accurately extract the battery parameters within the operating 
temperature range of −5~45 °C. Nikohan et al. [54] proposed a smoothing and adaptive 
adjustment method for parameter estimation, which enabled the model to have good pre-
diction accuracy under different temperatures and load profiles. Ding et al. [55] proposed 
improving the Thevenin model by taking temperature into account when calculating bat-
tery voltages in open circuits for lithium-ion batteries. The precision of the battery con-
nection voltage computation was increased without expanding the model’s order. The 
model was suggested based on the Thevenin model and the association between the open-
circuit voltage and charge state; then, the battery model parameters were determined us-
ing polynomial fitting and the genetic algorithm, correspondingly, based on the findings 
from the experiments of the open-circuit voltage test and the combined power pulse 

Figure 3. The Rint circuit structure diagram.

The structure is simple and the parameters are easy to calculate. However, it cannot
describe the dynamic process and is seldom used in practical applications [45]. Researchers
have improved the accuracy by connecting several circuit models in series and parallel [46].

3.2. Thevenin Model

The Thevenin model considers the polarization phenomenon in the battery reaction,
and uses the parallel link of resistance and capacitance to simulate the complex internal
reaction of the battery in the charging and discharging process [47] (see Figure 4).
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In the model, the ideal voltage source describes the open circuit voltage of the battery,
the resistance is the ohm internal resistance of the battery, and the parallel connection of
capacitance and resistance describes the polarization of the battery [48]. The Thevenin
equivalent circuit model can simulate the dynamic and static characteristics of the battery
very well, taking into account the nonlinearity of the battery [49], and the parameters are
obtained in a simple way that can be easily translated into a state space model [50–52].
However, in the actual operating environment, some model parameters of the battery
may change with environmental conditions such as temperature. Hossain [53] proposed
a temperature compensation model parameter extraction method based on the Thevenin
model was proposed, which can accurately extract the battery parameters within the op-
erating temperature range of −5~45 ◦C. Nikohan et al. [54] proposed a smoothing and
adaptive adjustment method for parameter estimation, which enabled the model to have
good prediction accuracy under different temperatures and load profiles. Ding et al. [55]
proposed improving the Thevenin model by taking temperature into account when cal-
culating battery voltages in open circuits for lithium-ion batteries. The precision of the
battery connection voltage computation was increased without expanding the model’s
order. The model was suggested based on the Thevenin model and the association between
the open-circuit voltage and charge state; then, the battery model parameters were deter-
mined using polynomial fitting and the genetic algorithm, correspondingly, based on the
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findings from the experiments of the open-circuit voltage test and the combined power
pulse characteristic test. The suggested model was evaluated and verified under dynamic
stress test settings at various temperatures and driving schedules on an urban multimeter.
The suggested model was very accurate, with less than 1% error in parameter identification.
Lyu et al. [56] suggested a prototype-based and driven by data technique to estimate the
lithium-ion battery health. To test the resilience of the stated aging feature, an independent
experimental design and a two-way ANOVA were utilized. The Box–Cox conversion was
implemented to improve the consistency of the aging parameters at low temperatures
when looking at the influence of temperature on battery performance. Experiments on the
battery lifespan validated the estimate efficacy of the suggested strategy. The experimental
findings demonstrated that the suggested approach had good estimation precision at vari-
ous temperatures. Back propagating networks and support vector regression techniques
were used with the same aging characteristics to test the estimate framework’s universality.
Sun et al. [57] refined the equivalent ohmic resistance in the Thevenin model and replaced
the original ohmic resistance R0 with Rchg when the battery is charged and Rdis when the
battery is discharged. The improved Thevenin model is shown in Figure 5. The improved
Thevenin model consisted of three main components including the open-circuit voltage
Uoc, the internal resistance, and the equivalent capacitance. The internal resistance consists
of the ohmic resistance R0 (including Rchg and Rdis) and the polarization resistance Rp.
The equivalent capacitance Cp is used to describe the transient response during charg-
ing and discharging. Rise is the voltage across Cp and IP is the outflow current from Cp.
Equations (3) and (4) are as follows:

Ut = Uoc −Up − iLR0 (3)

.
Up =

iL
Cp
−

Up

CpRp
(4)

where iL is the load current, which is positive when discharging and negative when
charging, and Ut is the terminal voltage.

Energies 2023, 16, 3858 8 of 20 
 

 

characteristic test. The suggested model was evaluated and verified under dynamic stress 
test settings at various temperatures and driving schedules on an urban multimeter. The 
suggested model was very accurate, with less than 1% error in parameter identification. 
Lyu et al. [56] suggested a prototype-based and driven by data technique to estimate the 
lithium-ion battery health. To test the resilience of the stated aging feature, an independ-
ent experimental design and a two-way ANOVA were utilized. The Box–Cox conversion 
was implemented to improve the consistency of the aging parameters at low temperatures 
when looking at the influence of temperature on battery performance. Experiments on the 
battery lifespan validated the estimate efficacy of the suggested strategy. The experi-
mental findings demonstrated that the suggested approach had good estimation precision 
at various temperatures. Back propagating networks and support vector regression tech-
niques were used with the same aging characteristics to test the estimate framework’s 
universality. Sun et al. [57] refined the equivalent ohmic resistance in the Thevenin model 
and replaced the original ohmic resistance 𝑅𝑅0 with 𝑅𝑅𝑐𝑐ℎ𝑔𝑔 when the battery is charged and 
𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 when the battery is discharged. The improved Thevenin model is shown in Figure 5. 
The improved Thevenin model consisted of three main components including the open-
circuit voltage 𝑈𝑈𝑜𝑜𝑜𝑜, the internal resistance, and the equivalent capacitance. The internal 
resistance consists of the ohmic resistance 𝑅𝑅0 (including 𝑅𝑅𝑐𝑐ℎ𝑔𝑔 and 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑) and the polari-
zation resistance 𝑅𝑅𝑝𝑝. The equivalent capacitance 𝐶𝐶𝑝𝑝 is used to describe the transient re-
sponse during charging and discharging. Rise is the voltage across 𝐶𝐶𝑝𝑝 and 𝐼𝐼𝑃𝑃 is the out-
flow current from 𝐶𝐶𝑝𝑝. Equations (3) and (4) are as follows: 

𝑈𝑈𝑡𝑡 = 𝑈𝑈𝑜𝑜𝑜𝑜 − 𝑈𝑈𝑝𝑝 − 𝑖𝑖𝐿𝐿𝑅𝑅0 (3) 

𝑈𝑈𝑝̇𝑝 =
𝑖𝑖𝐿𝐿
𝐶𝐶𝑝𝑝

−
𝑈𝑈𝑝𝑝
𝐶𝐶𝑝𝑝𝑅𝑅𝑝𝑝

 (4) 

where 𝑖𝑖𝐿𝐿  is the load current, which is positive when discharging and negative when 
charging, and Ut is the terminal voltage. 

 
Figure 5. Schematic diagram of the improved Thevenin battery model. 

3.3. PNGV Model 
The PNGV model is based on Thevenin’s model with a capacitor C_0 in series to 

describe the change in battery open-circuit voltage due to the accumulation of load current 
over time (see Figure 6). 
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3.3. PNGV Model

The PNGV model is based on Thevenin’s model with a capacitor C_0 in series to
describe the change in battery open-circuit voltage due to the accumulation of load current
over time (see Figure 6).
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Figure 6. The PNGV circuit structure diagram.

Its significant feature is that the capacitance is used to describe the change characteris-
tics of the open circuit voltage generated with the time accumulation of the load current
when the battery absorbs and emits electricity. The capacitance reflects the capacity of the
battery. However, the disadvantages are also obvious. The model cannot well-describe the
ground polarization characteristics of the battery and it is difficult to identify the battery
online. To solve these problems, researchers have obtained the improved PNGV model by
connecting a RC parallel circuit in series to the PNGV model to represent the polarization
reaction, as shown in Figure 7.
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The RC parallel circuit is composed of polarization resistance R1 and polarization
capacitance C1. Compared with the off-line estimation, the maximum error of this method
was reduced by 35.106%, and the root mean square error was reduced by 25.38%, which
improved the prediction accuracy of the mode [58–60]. Lin [61] et al. transformed the
PNGV model into a difference equation that could be identified online by the discrete
method, laying a solid foundation for various state estimations. Liu et al. [62] established a
partnership of new generation vehicle (PNGV) battery models for the inaccuracy of state
of charge (SOC) estimation and proposed an open circuit voltage method. The model
parameters for different SOC states were calculated by the charging and discharging
process of the Li-ion battery. Depending on the PNGV model, both the internal resistance
compensation technique and the Kalman filter approach are suggested. On this basis,
simulations and experiments were conducted for both methods to obtain the open circuit
voltage and battery SOC. The experimental findings revealed that the PNGV model is
reliable and can represent the battery’s properties during the discharge operation. The
ampere–hour (or current integration) method’s accumulated inaccuracy and inaccurate
measurement of the beginning value can be prevented by correctly applying the SOC
calculation. Furthermore, the estimated SOC may be kept extremely exact. Gao et al. [63]
created a PNGV-based battery model for immediate form parameter recognition based on
the characterization of LiFePO4 Li-ion batteries. The gradual memory distribution recurrent
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least squares approach was used to identify the PNGV model parameters in real-time.
The simulation findings suggest that the approach can more successfully discover model
parameters in real-time and decrease the inaccuracy of the data overload recursive least
squares method. It may be used to improve the accuracy of the SOC estimate for LiFePO4
Li-ion batteries. Yuyang et al. [64] suggested a novel verification model that takes into
account variances in battery charging and discharging and used an organic light emitting-
resistance parallel circuit instead of the usual PNGV model’s inner resistance. To assess the
changing and static characteristics of the battery, a resistor-capacitor (RC) parallel network
was utilized. The tripartite lithium-ion battery was investigated, and the improved model
was employed for online parameter recognition by employing the forgetting component
recursive least squares approach. The primary charge and discharge experiments were
described in order to mimic and assess the lithium battery’s operational properties. The
experimental findings suggest that the modified 2RC-PNGV model may more accurately
depict the Li-ion battery’s operational characteristics. The HPPC experiment’s mean voltage
error was 0.17%, and the model was quite accurate. During the primary charging phase,
the typical error of SOC estimation was 0.957%, with a maximum estimate error of 5.03%.
The average error of SOC estimation for the primary discharge process was 0.807%, with an
elevated estimation error of 3.38%. The findings demonstrate that the SOC can be estimated
using both the revised 2RC-PNGV model and the joint estimation technique.

3.4. RC Model

In practical applications, the equivalent circuit model is generally used as the bat-
tery model, which needs to be selected according to the chemical characteristics of the
battery and the computing capability of the processor. The accuracy of first-order RC
is lower [65–67], while high-order (third-order and above) models are cumbersome in
calculation and have a general effect on improving the accuracy. The second-order RC
equivalent circuit model can describe the actual terminal voltage of the battery well, and
the complexity of the model was low (see Figure 8).
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The second-order RC model is often combined with algorithms in battery life esti-
mation such as the differential evolution (DE) algorithm, extended Kalman algorithm
(EKF) algorithm, adaptive genetic algorithm (AGA), which can improve the accuracy and
speed of prediction [68–71]. Guha et al. [72] proposed a new parameter estimation method
for fractional-order battery model by using recursive least squares (RLS) combined with
fractional-order state variable filters (FOSVF). The resistance model developed from the
predicted parameters is capable of reconstructing the EIS spectra of the genuine lithium-ion
battery with high accuracy. Furthermore, the impacts of aging on the battery metrics and
EIS characteristics were investigated. Nejad et al. [73] provided a sensitivity analysis of
two time-constant RC circuit models for the resistive-capacitive elements they formed, and
determined the model parameters of a cylindrical lithium iron phosphate battery using
electrochemical impedance spectroscopy techniques and nonlinear least squares. The re-
sults show that the model parameters varied with the state of charge of the battery, and the
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importance of each parameter for calculating the average available power (power state) of
the battery in a given frequency band was analyzed. Ji et al. [74] investigated the estimate
and modeling of lithium-ion battery state of charge (SOC). The ampere–hour (Ah) incor-
poration approach based on external features was investigated as well as the open-circuit
voltage (OCV) technique, to integrate the two approaches to determine SOC. Given the
model’s precision and intricacy, a second-order RC analog circuit model of the Li-ion battery
was adopted. The lithium-ion battery’s associated properties were derived using pulsing
discharge and exponential matching. Fixed-resistance capacitance and variable-resistance
capacitors were used in the experiments. The variable-resistance capacitor model had an
accuracy of 2.9%, proving the validity of the suggested model.

3.5. Comparison of Equivalent Circuit Models

In order to more clearly show the advantages and disadvantages of prediction methods
based on equivalent circuit model, the prediction methods are summarized, and the results
are shown in Table 2.

Table 2. Equivalent circuit model.

Model Advantages Disadvantages Prediction Accuracy Complexity

Rint model
The model is simple and the

parameter calculation
is simple.

Unable to describe dynamic
processes, poor accuracy when

using high current, ignoring
battery characteristics.

Lower
FFIII

Lower
FFIII

Thevenin model

In practical engineering
applications, the polarization

effect and battery
characteristics are considered.

The stability of the model is poor,
and factors such as battery aging

and temperature change have
great influence on the accuracy

of the model.

Medium
FFFII

Medium
FFFII

PNGV model
Considering the influence of

temperature, the model is
robust and accurate.

The cumulative error of series
capacitance will reduce the
model accuracy and cannot

reflect the polarization
phenomenon well.

High
FFFFI

Medium
FFFII

RC model

The calculation is moderate
and the model has high

precision, which is closer to the
real battery characteristics.

The calculation of structure and
parameters is complicated.

High
FFFFI

High
FFFFI

4. An Empirical Model-Based Approach

The empirical model-based RUL prediction method builds the degradation model
by fitting the historical degradation data of lithium ion battery with the empirical model,
and updates the model parameters by the filtering method [75]. Finally, the battery life
prediction is realized [76]. This model does not need to analyze the internal electrochemical
reaction and has a wider application range [77]. The empirical models mainly include the
exponential model, polynomial model, multi-mixture model, and capacity regeneration
model, and the filtering methods mainly include Kalman filtering (KF), particle filtering
(PF), and their improved algorithms [78].

4.1. Exponential Model

The mathematical formula used to construct the empirical model in this model is the
first single exponential formula, as shown in Formula (5):

Ck = a1exp(a2k) (5)

where Ck is the capacity of the battery at the KTH cycle and a1 and a2 are the model param-
eters. This empirical model made some improvements in the RUL prediction and attracted
the attention of some researchers [79,80]. However, this model classifies the very short
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battery rest time as the capacity regeneration period, leading to a large error in prediction.
The examination of a vast number of findings from the experiments revealed that the
battery capacity deterioration is directly connected to a rise in internal resistance, which
can be described as an exponentially increasing sum. The experiments and experience
revealed that the dual exponential empirical decline model fit the nonlinear battery capacity
deterioration well [81], then the double exponential formula was introduced as shown in
Formula (6):

Ck = a1exp(a2k) + a3exp(a4k) (6)

The number of model parameters was raised to four. Qin et al. [82] used the particle
filter PF method as the foundation and the two-dimensional exponential model as the
state solution. The deterioration curve of the battery was established after continuous
sampling, and the remaining service life was assessed. The experimental findings demon-
strated that the model has a strong prediction effect and can effectively fit the battery
deterioration curve, and the forecast accuracy will steadily improve as the cycle increases.
Zhang et al. [83] devised a technique for predicting residual usable life (RUL) based on an
exponential model and particulate filtering, which takes into account the nonlinear and
non-Gaussian capacity decline features of lithium batteries. The prediction performance
was evaluated using the prognostic horizon index and the new specific accuracy index.
In addition, the prediction errors under different prediction starting points were given.
The suggested methodology outperformed methods such as the integrated autoregressive
moving average model, the merged nonlinear deficient self-regressive model, and the
established particle filter algorithm in terms of prediction performance. The suggested
prediction approach exhibited a higher prediction accuracy and integration according to
the precision index. The RUL prediction of lithium batteries can help maintenance and
support systems make better decisions in order to improve the maintenance methods
and save on maintenance costs. Ma et al. [84] suggested a particle filter-based enhanced
exponential model for a data-driven method to lithium-ion battery remaining lifespan.
Four case studies were conducted to validate the suggested forecast method’s excellent
accuracy in predicting and low uncertainty. Using the particle filtering approach, we
compared the residual service life forecast findings linked to the original exponentially
model. The experimental findings revealed that the revised exponential model needed
less parameters than the original model; the suggested prognostic approach had a steady
and high prediction accuracy, and the suggested approach had a low level of uncertainty.
Yang et al. [85] suggested a Bayesian model-based technique to predict the remaining
usable life (RUL) of various sorts of batteries. First, two logit models were created to
represent the battery deterioration pattern. It was empirically proven that the new model
surpassed the previous empirical cell deterioration models by fitting the data. A particle
filter-based prediction approach was subsequently incorporated into the model to forecast
the battery’s potential deterioration trajectory. The findings revealed that the suggested
prognostic technique outperformed the two existing exponential models in terms of the
prediction accuracy. Tseng et al. [86] used statistical approaches to create a regression model
for battery prediction. The resultant regression framework not only analyzed the battery’s
deterioration trend, but also estimated its remaining usable life (RUL) at an early stage.
To obtain the optimal regression model parameters, a particle swarm optimization (PSO)
approach was used. The simulation findings suggest that the regression models utilized as
aging parameters can produce more accurate health status profiles than the count of cycles.

4.2. Polynomial Model

The exponential model obtained the best fit in the nonlinear stage of capacity degra-
dation, while the polynomial model obtained the best fit in the linear stage of capacity
degradation [87–89]. Formula (7) is shown below:

Ck = a1k3 + a2k2 + a3k + a4 (7)
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Sun et al. [90] applied a third-order polynomial model to fit the battery health degra-
dation process, applied particle filter algorithm to predict the remaining service life of
the battery, and gave the probability density function of the remaining service life of the
battery. The health degradation model and the battery remaining life prediction were
verified using examples. Su et al. [78] improved the original polynomial model, so that the
model had fewer parameters and was more suitable for the PF prediction method. The
cell was modeled using a polynomial model by Azis et al. [91]. A generalized lowered
gradient (GRG) optimization approach was then used to forecast the parameters. A double
elongated Kalman filter (DEKF) approach was then utilized to estimate both the SOC and
SOH. The DEKF technique findings were compared to the EKF method to determine the
estimator’s performance. The numerical results indicate that the DEKF approach accurately
calculated the battery’s SOC, internal resistance, and volume. The DEKF also provided
superior results when estimating the battery’s SOC. The nonlinear relationship between the
circuit parameters and SOC was explicitly described using an analytic polynomial function
by Wang et al. [92]. The influence of the polynomial order was explored systematically
through fitting and prediction accuracy, with the leave-one-out cross-validation (LOOCV)
method employed to assess the prediction performance. The EIS measurements were
performed on a 20 A–h commercial lithium battery to verify the validity of the proposed
model. The results showed that the seventh-order polynomial function is sufficient to
capture the nonlinear effects of SOC on the circuit parameters.

4.3. Exponential and Polynomial Mixed Model

The exponential and polynomial mixed model is an integrated model that combines
an exponential model and a polynomial model, which takes into account the global and
local regression characteristics, and is a more accurate parametric model than the two single
models [86]. Because model parameters fluctuate with the dynamic features of battery
degradation, it is preferable to utilize PF to estimate and adapt model variables to track the
battery deterioration process with quadratic and non-Gaussian properties. Formula (8) is
shown below:

Ck = a1exp(a2k) + a3k2 + a4 (8)

Xing et al. [93] tracked the degradation trend of the battery during the cycle life
based on a multi-finger model, and used the PF method to adjust the model parameters
online. The prediction performance of the ensemble model, the exponential model, and
the polynomial model was compared through experiments, and it was proven that the
exponential model had strong robustness. A new interaction-based multi-model particle
filtering (IMMPF) data-driven prediction method for determining the remaining useful life
(RUL) of lithium-ion (Li-ion) batteries and the probability distribution function (PDF) of
the uncertainty associated with the RUL was proposed by Wang et al. [94]. The IMMPF
was used for various state problems. Models of battery capacity deterioration are useful in
predicting the RUL of Li-ion batteries. Using three enhanced models, the IMMPF approach
was used to calculate the RUL of Li-ion batteries. The experimental results revealed that
the one-dimensional formula of state particle filter (PF) is better suited to predicting the
long-term trend of the capacity of batteries. The suggested technique, which involves the
collaboration of various models, has demonstrated stability and good prediction accuracy
as well as the capacity to reduce the uncertainty of forecasting the RUL PDF for lithium-ion
batteries. Gou et al. [95] introduced a combined RUL prediction approach, ORV-MDMHD,
which combined the optimum association vector (RV) with an enhanced degradation model
(MDM) and Hausdorff distance (HD). To improve the long-term impact of ability data on
the forecast, a phase space restoration was employed to generate inputs to the RVM; the
curve resemblance metric HD was used to choose the best fit that most closely resembled
the actual deterioration curve. The anticipated RUL of the battery may be computed by
extending the optimum curve to the failure threshold. The experimental findings on the
two battery examples demonstrate that the suggested prediction approach may provide
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stabler forecasts and greater accuracy, particularly for the long-term prediction of the
lithium battery RUL.

4.4. Capacity Regeneration Model

Lithium-ion battery data have the problem of capacity regeneration. The longer the
cycle interval, the more obvious the capacity regeneration phenomenon. Describing the
problem of capacity regeneration in a model remains a huge challenge. In general, the
capacity loss of the battery from the first cycle to the Nth cycle is shown in Formula (9):

Q(N)
loss = Sneg ∑N

n=1

∫ tcc,n

0
J(n)s dt (9)

In the above formula, J(n)s represents the density of the side reaction currents of the
nth cycle, tcc,n represents the charging time in the nth cycle’s continuous current stage, and
Sneg represents the total interface area of the negative electrode—the side reaction current
density of the first cycle. Guha et al. [96] combined the battery capacity degradation model
based on the battery capacity test data and the internal resistance growth empirical model
based on the EIS test data, and used it in the PF framework to obtain a new remaining
service life estimation method, which improved the prediction accuracy. Pan et al. [97]
mixed particle filter, exponential smoothing, and the capacity degradation model to obtain
a new prediction method, which had a higher accuracy and stability than the pure particle
filter method. Such estimation methods, combined with filtering algorithms, have gradually
become the mainstream [98]. Pang et al. [99] introduced a new approach for estimating the
RUL of lithium-ion batteries that combined a wavelet breakdown technique (WDT) with
the nonlinear autoregressive neural network (NARNN) model. First, the multiscale WDT
was used to distinguish between the global decline and local renewal of the battery capacity
sequence; next, a RUL prediction architecture based on the NARNN model was built for the
recovered global degradation and local renewal. Finally, the two prediction result portions
were merged to obtain the final RUL prediction results. The experiments demonstrate that
the suggested technique not only captured the capacity renewal phenomenon successfully,
but it also had high forecast accuracy and was less impacted by varied prediction starting
points. Ma et al. [100] used a combination of particle filtering (PF) and the Mann–Whitney
U test (PF-U) to determine the capacity renewal point (CRP). For the RUL prediction, the
autoregressive (AR) model and PF algorithm were utilized. The PF algorithm’s deteriorated
model parameters were updated utilizing the capacity projected by the AR model, and the
method’s efficacy was validated using the NASA Li-ion battery dataset. As a result, the
technique provided in this study has the best accuracy, offers a platform for detecting the
point of capacity regeneration, and minimizes the RUL error in forecasting even more.

4.5. Comparison of Empirical Models

In order to more clearly show the advantages and disadvantages of the prediction
methods based on the empirical model, the prediction methods are summarized, and the
results are shown in Table 3.

Table 3. Empirical model.

Classification Advantages Disadvantages

Exponential model For the nonlinear stage of capacity
degradation, the fitting degree is high.

The linear stage of capacity degradation
is poorly treated.

Polynomial model The fitting degree is high for the linear
stage of capacity degradation.

The nonlinear stage of capacity
degradation is poorly treated.

A hybrid exponential and
polynomial model High accuracy and strong robustness. Complex structure and many parameters.

Capacity degradation model
Besides the charge and discharge state of
the battery, the rest state of the battery is

also considered.

Insensitive to capacity degradation
and regeneration.
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After the above model is constructed, the model parameters need to be updated by
the filtering method, and finally, the battery life prediction is realized. Here is a brief
introduction of the filtering method.

4.5.1. KF Algorithm

Kalman filtering [101] is a linear optimal state estimation method, which is known
as one of the most famous Bayesian filtering theories. The equation of state is a linear
representation of wk, uk−1 and xk−1.The observation equation is a linear representation of
xk and vk. The state equation of the Kalman filter is shown in Formula (10):

xk = Axk−1 + Buk−1 + wk (10)

The observation equation is shown in Formula (11):

zk = Hxk + vk (11)

In the above formula, xk represents the state vector, zk represents the observation vector,
A represents the state transition matrix, H represents the observation matrix, wk represents
the system noise vector, uk−1 represents the system control vector, and vk represents the
observation noise vector.

There are relatively few studies on RUL prediction based on KF, because lithium-ion
batteries have strong nonlinear non-Gaussian characteristics, and KF is not suitable to deal
with this kind of problem [84], so PF is the focus of research in this field. Models are mostly
combined with PF to increase the budget accuracy.

4.5.2. PF Algorithm

The process of resembling the probability density function by seeking a collection of
random specimens propagating in the state distance, and replacing an integral operation
with the sample implies this; then, getting the smallest possible variance estimates of the
system state is referred to as the particle filter. These samples are referred to as “particles”
visually, thus the name particle filter [102]. The equation is shown in Formula (12):

P(xt|z1:t) ≈ PN(xt|z1:t) = ∑N
i=1 wi

tδ
(

xt − xi
t

)
(12)

In the above formula, xi
t represents the state value of the ith particle at time t, z1:t

represents the observation value at time 1~t, wi
t represents the weight of particle i at time t,

and δ represents the Dirac function.
The superiority of particle filter in nonlinear and non-Gaussian system determines its

wide application in the battery life field.

5. Conclusions

In this paper, we systematically reviewed the current research status of power battery
remaining life prediction, compared and analyzed the advantages and disadvantages of
existing battery models and prediction methods, and summarized the future research and
development trends as follows:

(1) To improve the efficiency of electrochemical model prediction, current research fo-
cuses on simplifying the model while considering as many factors as possible and
determining the parameters by different methods. In addition, with the continuous
development of modern technology, health factors are no longer limited to tradi-
tional parameters such as voltage and current. In the future, some new factors can
be extracted by ultrasonic and infrared technologies to meet the requirements of
small number and comprehensive reflection, thus improving the accuracy and range
of prediction.

(2) The simulation accuracy of a single equivalent circuit is low, so series resistors or capac-
itors were used to improve the dynamic stability during the study, which reduced the
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influence of environmental factors and incorporated parameter identification into the
algorithm to compensate for the poor prediction accuracy. However, as the number of
series-connected components increased, the cumulative error also increased. How to
reduce this error is one of the focuses of future research on equivalent circuit models.

(3) The empirical model-based RUL prediction method constructed a degradation model
by fitting the historical degradation data of lithium-ion batteries with an empirical
model, and used a filtering method to update the model parameters to achieve the
RUL prediction of batteries. The simple empirical model established the relationship
between the battery characteristics through complex mathematical formulas, which
had a low prediction accuracy and poor stability. Based on this, PF, KF, and their
improved filtering methods were used to update the data, and influence factors were
added to improve the accuracy and reduce the error. Future research will focus on
finding more comprehensive mathematical methods to construct empirical models
and update the model data by other intelligent optimization methods.

From the current research status of the remaining life prediction methods, combining
optimization algorithms with battery models has become the mainstream method. How-
ever, there are some problems with this method such as how to design an effective method
to predict the lifetime of lithium batteries in multiple scenarios and improve the accuracy of
the prediction, which is still a challenge. In order to improve the accuracy of this method’s
prediction, researchers should actively explore more pervasive parameter optimization
algorithms. With the rapid development of Internet technology and artificial intelligence, it
is believed that breakthrough progress will be made in the life prediction technology of
lithium-ion batteries in the near future.
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