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Abstract: Distributed generation, which is mainly deployed with PV systems that benefit economi-
cally prosumers, has soared in use in Brazil. Despite this, PV capacity in excess may cause technical
issues which concern planning engineers who have adopted rules of thumb to screen interconnection
requests without any detailed study. Recently, the hosting capacity concept has been employed
to assess how much PV capacity a distribution grid can host without deteriorating grid parame-
ters, reliability, or power quality. A steady-state and worst-case-based scenario was used to run
deterministic power flow simulations to estimate the hosting capacity of a specific radial circuit at a
campus of the University of São Paulo, referred to as “USP-105”. Although the result may be not
completely accurate, it was found that USP-105 can accommodate 103% of its peak load or 4970.6 kW
of PV power, which reduced the circuit’s annual peak load by 9%. Another finding was that hosting
capacity increased when PV-DG deployment was dispersed along the circuit rather than concentrated
on a single location (e.g., closest, or furthest to the substation). Utilities may therefore benefit from a
simple and quick assessment to obtain an overview of how specific circuits behave on PV deployment
and indicate which locations are technically more beneficial.

Keywords: photovoltaic; distributed generation; hosting capacity; power flow; utility

1. Introduction

In recent years, solar photovoltaic (PV) module prices have plummeted, bringing
down total costs per installed capacity [1] and consequently making solar PV electric-
ity very competitive compared with traditional energy resources in utility-scale projects;
therefore, PV capacity reached about 710 GW worldwide by the end of 2020 [2]. Due to
the affordability of the technology—even for very low-capacity installations—and local
regulation, distributed generation (DG) has expanded intensely, especially with the de-
ployment of residential rooftop PV systems which are interconnected to the distribution
grid. In Brazil, since the Brazilian Electricity Regulatory Agency (ANEEL) regulated DG
nationwide in 2012, PV-DG has reached 17.2 GW as of December 2022 [3]; three-quarters of
PV systems are residential installations, and almost a third of the total installed capacity
comprises commercial-size systems.

Most countries have adopted net energy metering (NEM) as an energy compensation
scheme, thus PV-DG system capacity is commonly oversized to meet daily energy demand.
While owners of such systems—also called prosumers—are benefiting from reduced bills,
distribution utilities may have technical issues if PV-DG capacity is in excess. When PV
power is not consumed instantaneously by the local load, it is then injected into the grid
and may cause technical problems, of which voltage variation is one of the most significant
issues [4]. This leads the grid to operate in conditions that are abnormal to those for which
it was originally designed, i.e., under the paradigm that power flows unidirectionally from
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substations to passive consumer loads [5]. Power injection in excess may cause voltage
rise at low load situations [6], leading to overvoltage and fast voltage variation. This is
particularly the case when high penetration of PV-DG is concentrated near the end of
long and lightly loaded feeders [7], but voltage impacts tend to be the least severe when
concentrated near the substation [8]. On the other hand, properly located PV-DG can
reduce feeder losses [9] and mitigate voltage drops along distribution feeders [6].

Reverse power flow might still cause thermal overloading of cables and transformers,
frequency variation, harmonic distortions, and premature failure of equipment, as well
as malfunctioning of protection devices. All these issues are of great concern considering
the fact that PV-DG power generation is uncontrollable and has a variable nature due to
weather conditions. Moreover, utilities do not know in advance where and how much
capacity will be installed, nor they can reject interconnection requests that comply with
the requirements, so unrestricted growth of PV-DG capacity may lead to undesirable
consequences to reliability and power quality. The imminence of those serious issues
would require reinforcement and upgrades to allow more capacity to be interconnected.
However, if it is known how much capacity a feeder can accommodate without changes,
there will be no adverse impacts and thus no reinforcement or upgrades are needed. On
the contrary, utilities could benefit from that and even postpone infrastructure investments.
The amount of PV-DG a feeder can host is known as hosting capacity (HC).

1.1. Concept and Assessment of Hosting Capacity

The term HC was first introduced in the context of DG by André Even in 2004, who
presented a methodology to determine HC as a general approach for renewable energy
integration in distribution grids [10]; the term was refined by Bollen and Hassan in 2011 [9]
and theoretical applications were included. The authors defined HC as the amount of new
production or consumption that can be connected to the grid without endangering the
reliability or voltage quality of other customers [11]. The maximum capacity of PV-DG or
any other distributed energy resource (DER) a feeder can host without causing adverse
impacts [12] or requiring infrastructure upgrades [13] outline the same concept but in
other words.

A common rule of thumb used in the U.S. permitted interconnection requests without
a detailed impact study if the PV-DG capacity was up to 15% of the feeder´s peak load,
saving time and reducing costs to the utilities [8]. This was a fast-screening approach many
distribution-planning engineers used based on the observation that typical residential
distribution feeders have minimum daily loads of approximately 30% of their annual peak
loads [13]. The 15% rule of thumb is conservative to prevent any operating grid parameter
from being violated. Ismael et al. (2019) discussed other international experiences and
practical rules of thumb for DG interconnection that also served as a preliminary HC
estimate. However, as the aggregate PV-DG capacity increases, additional impact studies
should be performed and become more important over time.

1.2. Performance Indices and Limits

To begin any HC study, it is essential to know which grid parameters—also referred
to as performance indices—and their respective acceptable limits will be considered in
the assessment [10]. That said, HC is not when the performance begins to deteriorate, but
when the deterioration becomes unacceptable [14]. Shayani and Oliveira (2011) presented a
theoretical framework to determine the maximum amount of PV-DG in radial distribution
systems considering two basic steady-state grid parameters as performance indices: voltage
rise and conductor ampacity [15]. In many other real case studies examined by Ismael et al.
(2019), both overvoltage and thermal overloading were the common performance indices
considered. Crucially, HC depends on both PV-DG capacity and location and voltage
impacts tend to be worst issue when PV-DG is concentrated at the feeder end [16]; thus, HC
is lower in the sections of a radial feeder far from the substation and higher when PV-DG is
closest to a substation [13].



Energies 2023, 16, 3934 3 of 17

Besides this, the availability of data and a suitable method play a key role in determin-
ing the HC. Mulenga et al. (2020) presented a literature review on methods and compared
deterministic, stochastic, and time series methods that can be used to determine the HC.
Each method has its advantages and drawbacks and choosing one of them is a trade-off
between which accuracy is needed, what data is available (from the grid, load, and PV-DG),
how much time can be dedicated to method implementation, and what is the computational
effort for resolution.

Deterministic methods are straightforward; they use known data that do not change
in simulation runs, so no uncertainty is taken into consideration. The amount of PV-DG is
the only variable that is incremented each time the power flow analysis—which is used as
a tool—checks if the limits of the performance indices have not been reached yet. Although
deterministic methods are easier to implement and quick to resolve, impact and HC tend to
be overestimated and underestimated, respectively. Stochastic methods simulate aleatory
uncertainties such as PV power and demand, and epistemic uncertainties such as PV
system capacity and its location [10]. Often, probabilistic approaches with Monte Carlo
simulations are used. Although results provided by stochastic methods are probabilistically
more realistic, simulations can run for hours.

This paper is a case study of a real radial circuit referred to as “USP-105” in the campus
Cidade Universitária “Armando de Salles Oliveira” (CUASO, São Paulo, Brazil) of the
University of São Paulo (USP, São Paulo, Brazil), located in the city of São Paulo, Brazil.
For this study, voltage rise and current-carrying capacity (ampacity) of conductors were
selected as performance indices, and a static and worst-case-based scenario approach was
considered. An algorithm was implemented to run deterministic power flow analysis and
perform HC estimation based on certain conditions. In addition to that, three different
simulations returned HC values concerning (i) circuit load, (ii) a well-accepted conception
that HC is higher when PV-DG is closer to the substation, and finally (iii) what the HC
is if PV-DG is concentrated or dispersed along the USP-105 main feeder. Therefore, the
main question this paper intends to answer is how much PV-DG capacity USP-105 can
host, considering the methods and conditions selected, compared to the circuit´s peak
load. Thus, this paper aims to demonstrate that the applied method provides a rational,
technically based alternative to the usual conservative rule of thumb approaches. Therefore,
utilities can use it as a better method to actively admit and locate PV-DG for their own and
other consumers’ benefit.

2. Case Study: USP-105 Feeder

The CUASO grid is constituted of five circuits directly buried underground. USP-105
is a 13.8 kV radial circuit whose main feeder extends 3.3 km from the campus substation
(ETD-USP) through the west and south side of the campus. The cross-sectional area of the
main feeder is 3 × 240 mm2 and laterals are 3 × 70 mm2 or 3 × 35 mm2 (represented by
the red, blue, and green lines on Figure 1, respectively). Twelve CUASO educational and
research centers (load centers) are served by USP-105: Institute of Energy and Environment
(IEE, São Paulo, Brazil), PUSP-C (Prefecture of the USP Campus, São Paulo, Brazil), NUCEL
(Cellular and Molecular Therapy Center, São Paulo, Brazil), HU (University Hospital, São
Paulo, Brazil), FOFITO (Department of Physiotherapy, Speech Therapy and Occupational
Therapy, São Paulo, Brazil), ICB (Institute of Biomedical Sciences, São Paulo, Brazil), FO
(School of Dentistry, São Paulo, Brazil), FMVZ (School of Veterinary Medicine and Animal
Science, São Paulo, Brazil) and IB (Institute of Biosciences, São Paulo, Brazil). Figure 1
shows a map of CUASO and the USP-105 main feeder and its laterals.

The USP-105 circuit can be represented by a 23-bus diagram numbered from 0 (substa-
tion ETD-USP) to 22. Some buses are tap-off nodes (buses 1, 3, 5, 7, 9, 10, 13, 15, 18, and 21)
and the others are load buses: IEE (bus 2), PUSP-C (bus 4), NUCEL (bus 6), HU (bus 8), ICB
III (bus 11), FOFITO (bus 12), FO (bus 14), ICB IV (bus 16), FMVZ (bus 17), ICB II (bus 19),
ICB I (bus 20) and IB (bus 22). Figure 2 shows the USP-105 single-line diagram.
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Figure 2. USP-105 feeder single-line diagram.

2.1. USP-105 Load

A supervisory system implemented at CUASO, based on a Supervisory Control and
Data Acquisition (SCADA) platform, performs minute-by-minute measurements of power
(active, reactive, and apparent), power factor, voltage, and current in the campus. The
active and reactive power values of the twelve load centers served by the USP-105 were
used in this case study, however, average values were considered at 1-h intervals (from
hour 1 to 8760) for a whole year, considering data acquired up to March 2021. Figure 3
shows the aggregate USP-105 load power.
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Figure 3. Aggregate USP-105 load power.

The circuit´s peak load (4804.6 kVA) occurred on 16 March at 3 p.m. (hour 1791 of the
year) and the minimum load (1867.5 kVA) occurred on 25 November at 3 a.m. (hour 7875).
According to the data, the highest load power values were concentrated in the afternoon,
mainly between 2 p.m. and 5 p.m.

2.2. Existing PV-DG at CUASO

CUASO already has 624 kW of PV-DG, composed of various PV arrangements, of
which two are interconnected to USP-105 at IEE: (i) a 156.0 kW ground installation and (ii) a
78.0 kW rooftop installation at an IEE office building. A third 84.5 kW rooftop system is
installed at HU. The PV power in kW refers, unless otherwise specified, to the rated power
of the solar modules, i.e., the direct current (DC) power.

2.3. PV-DG Power Modelling at CUASO

The existing PV-DG data was not available, so a synthetic 8760-h data series was
created to model the PV power generation for the existing as well as the simulated PV
systems. All PV systems simulated were assumed to have fixed arrays whose tilt angle
is 24◦, approximately equal to the local latitude (23◦36’ south) and faced north (azimuth
angle is 0◦).

The irradiation data was acquired from the website of the Reference Center of Solar
and Wind Energy Sérgio Brito (CRESESB) which is part of Electric Power Research Center
(CEPEL) [17] and receives financial support from the Brazilian Ministry of Mines and
Energy. Table 1 shows the daily average irradiation incident on the plane of the PV arrays.

Table 1. Daily average irradiation for each month.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R [kWh·m−2·day−1] 4.72 5.20 4.81 4.68 4.23 4.10 4.14 4.98 4.46 4.58 4.73 5.04

The method used to determine the output power generated by a PV system consists of
three steps depicted in Figure 4:

(1) Irradiation data on CUASO location is determined for each day of the year based on
the CRESESB data;

(2) The irradiance is derived from the amount of energy that can be incident on a PV
array over the length of the day;

(3) The electrical output power in alternating current (AC) is determined as a percentage
of the PV capacity in direct current (DC), i.e., the rated DC PV power.
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Figure 4. Method used to determine the output power generated by a PV system.

Determining step 3 from step 2 required the assumption that the overall PV system
performance ratio was 75% and that inverters’ power factor was unitary.

The method described above thus produced 365 curves (as in step 3) which gives the
ratio of the AC output power over the rated DC PV power. This ratio is of great importance
when many power flow runs should be performed with multiple PV system capacities
(Section 2.2). With each curve then it is possible to determine the corresponding AC power
output along any specific day and hour given any PV system capacity. Hence the synthetic
series has 8760 hourly data.

Figure 5 is a set of superposed PV power ratio curves, grouped by month. Hence,
values on the vertical axis are dimensionless while the horizontal axis indicates the hours
of the day.
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3. Materials and Methods

This section presents detailed information used for the implemented methodology.

3.1. An Algorithm for Power Flow Analysis

To determine HC in distribution grids, it is necessary to run steady-state power flow
simulations as a tool to check whether voltage or current limits will be violated. An
algorithm was implemented based on the method proposed by Teng (2003), which is
simpler (compared to traditional methods), robust, and quicker to converge. The method
can be applied to radial or weakly meshed circuits, which are most suitable for this case
study. The method defines two matrices based on the circuit topology: BIBC matrix (Bus
Injection—Branch Current) and BCBV matrix (Branch Current—Bus Voltage) [18].

An advantage of the method is that both matrices remain constant during the iterative
calculation. Figure 6 shows a simplified diagram of a 6-bus circuit that will be used to
demonstrate how this method works.
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.

Ui is the voltage phasor at bus i;
.
Ii is the

current phasor at bus i; Zi, j is the branch impedance between bus i and bus j;
.
Bi,j is the branch

current phasor between bus i and bus j; DGi is the PV-DG, if any, at bus i; Si is the complex power at
bus i.

Bus 0 is the reference bus that represents the substation which provides the voltage
and the angle reference (Vθ bus). As distributed generators are usually smaller in capacity
compared to conventional generators, DG is modeled as a negative load [19]. Thus, any
bus with PV-DG can be modeled as a PQ bus [20] in which the values of active and reactive
power are known. Therefore, positive values of current indicate that the bus absorbs power
and negative values indicate that current is injected into the bus by the corresponding DGi.

Si = (PL i − PGD i) + j(QL i − QGD i), (1)

where:

PGD i is the active power generated by PV-DG at bus i;
PL i is the power consumed by the load at bus i;
QGD i is the reactive power generated by PV-DG at bus i;
QL i is the reactive power consumed by the load at bus i;
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Thus,
.
Ii =

(
Si
.

Ui

)∗

=
(PL i − PGD i)− j(QL i − QGD i)

.
Ui

∗
, (2)

.
Ui

∗ is the voltage complex conjugate at bus i.
Applying Kirchhoff’s current law, the branch currents are:

.
B01 =

.
I1 +

.
I2 +

.
I3 +

.
I4 +

.
I5.

B12 =
.
I2 +

.
I3 +

.
I4 +

.
I5.

B23 =
.
I3.

B24 =
.
I4 +

.
I5.

B45 =
.
I5

(3)

The set of equations of the linear system above can be represented in the equation
matrix form: 

.
B01.
B12.
B23.
B24.
B45

 =


1
0
0
0
0

1
1
0
0
0

1
1
1
0
0

1
1
0
1
0

1
1
0
1
1

·


.
I1.
I2.
I3.
I4.
I5

 (4)

The linear system Equation (4) can be summarized as follows:[ .
B
]
= [BIBC]·

[ .
I
]

(5)

By Ohm’s law:
.

U5 =
.

U4 − Z45·
.
B45.

U4 =
.

U2 − Z24·
.
B24.

U3 =
.

U2 − Z23·
.
B23.

U2 =
.

U1 − Z12·
.
B12.

U1 =
.

U0 − Z01·
.
B01

(6)

∴ 

.
U0.
U0.
U0.
U0.
U0

−



.
U1.
U2.
U3.
U4.
U5

 =


Z01 0 0 0 0
Z01 Z12 0 0 0
Z01 Z12 Z23 0 0
Z01 Z12 0 Z24 0
Z01 Z12 0 Z24 Z45

·


.
B01.
B12.
B23.
B24.
B45

 (7)

So, Equation (7) can be summarized as follows:[
∆

.
U
]
= [BCBV]·

[ .
B
]

(8)

Replacing Equation (5) in Equation (8):[
∆

.
U
]
= [BCBV]·[BIBC]·

[ .
I
]

(9)

The multiplication of the BCBV and BIBC matrices results in the DLF (Distribution
Load Flow) matrix of the same dimension that also remains constant throughout the
iterative process. DLF matrix relates the voltage delta from bus i to bus 0 and the current
injection at bus i. In this example:
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DLF =


Z01 Z01 Z01 Z01 Z01
Z01 Z01 + Z12 Z01 + Z12 Z01 + Z12 Z01 + Z12
Z01 Z01 + Z12 Z01 + Z12 + Z23 Z01 + Z12 Z01 + Z12
Z01 Z01 + Z12 Z01 + Z12 Z01 + Z12 + Z24 Z01 + Z12 + Z24
Z01 Z01 + Z12 Z01 + Z12 Z01 + Z12 + Z24 Z01 + Z12 + Z24 + Z45

 (10)

Then Equation (11) shows how the voltage delta at each bus is related to its current injection.[
∆

.
U
]
= [DLF]·

[ .
I
]

(11)

All DLF elements are complex numbers. The main diagonal elements are the simple
sum of the impedances of the branches from bus 0 to any bus i considering that there is
only one path connecting the reference bus to any other selected bus. Finally, the voltage at
each bus can be determined with Equation (12).[ .

U
]
=
[ .
U0

]
−
[
∆

.
U
]

(12)

The implemented algorithm calculates iteratively the current injection matrix
[ .

I
]

by

Equation (2), the voltage delta matrix
[
∆

.
U
]

by Equation (11), and bus voltage matrix
[ .
U
]

by Equation (12). The branch current matrix
[ .

B
]

is calculated by Equation (5) after the
iterative process has ended. Figure 7 shows a diagram of the algorithm implemented for
iterative power flow calculation.
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The algorithm was coded in VBA within an Excel macro. The DLF matrix was cal-
culated in a spreadsheet with the manual entry of the BIBC and BCBV matrices. At the
beginning of the macro execution, the iteration counter was reset (k = 0), and the voltage

on all buses was equaled to the voltage of the reference bus:
.

U
0
i = 1+ j 0 p.u. As long as the
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voltage deviation at the same bus in subsequent iterations was greater than the allowable
deviation ε, the counter was incremented (k = k + 1).

3.2. Approach Used to Estimate USP-105 Hosting Capacity

Although the match of maximum PV power with minimum load is unlikely, a static
and worst-case-based scenario approach was considered using all data presented in the
previous sections. However, in this case study, it was not convenient to use the minimum
load, which was observed at 3 a.m. (when there is no PV generation), with the maximum
PV power possible. Instead, two specific moments were considered: (i) the lowest load
at noon (1963.4 kVA) which occurred at hour 3108 of the year and the corresponding PV
power in the same hour and day, and similarly, (ii) the highest load value observed at
noon (4715.1 kVA) which occurred at hour 1788 and its corresponding PV power. Both
moments will be hereinafter referred to as lowest load at noon (LLN) and highest load at
noon (HLN), respectively.

The code in VBA automatically increments PV capacity in proportion to the annual
active peak power plus the existing PV-DG capacity, if any, at the corresponding bus. The
reason for this is to increase the coincidence between the bus load and the PV generation,
that is, to maximize the power consumed instantaneously by the bus load which was
provided by the PV system interconnected close to it, and consequently minimize power
loss and voltage rise. Table 2 shows the active peak power at each bus load read from
load data.

Table 2. Annual active peak power at each bus load and existing PV-DG.

Location Bus No. Active Peak Power (kW) Existing PV-DG Power (kW)

IEE 2 42.4 234.0 1

PUSP-C 4 175.5
NUCEL 6 144.0

HU 8 842.7 84.0
ICB III 11 224.8

FOFITO 12 54.8
FO 14 511.0

ICB IV 16 466.9
FMVZ 17 518.8
ICB II 19 412.2
ICB I 20 401.8

IB 22 593.9
1 (156 + 78). See Section 2.2.

The voltage rise limit established for the HC assessment in any bus is 1.0 p.u., although
this is not a technically unacceptable limit according to Brazilian standards. The voltage
supplied becomes critical if it is less than 90% of the voltage reference (in this case 13.8 kV)
or greater than 105%.

The Figure 8 describes the procedure to estimate the HC:
The ε used to converge the power flow solution was 0.00001.
It is important to point out that the selected ampacity limit is the actual derated

current-carrying capacity according to the Brazilian Association of Technical Standards NBR
14039:2005 (IEC based) [21] and the derated current-carrying capacities of each conductor
can be seen in the Figure 1.

If any violation is detected, the algorithm is able to read the last PV-DG capacity at
each bus before the WHILE loop stops. The sum of all twelve PV capacities is the amount
of PV-DG that the USP-105 can accommodate.
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4. Results

Three simulations were performed. In these simulations, the power flow solution
converged in two or three iterations and the simulation runs took from some seconds to a
few minutes depending on the initial multiplier chosen.

4.1. HC Estimate for Dispersed PV-DG

The first simulation returned the HC estimate for LLN and HLN. Both moments were
considered in a particular scenario in which the PV-DG at USP-105 was deployed with
twelve PV systems installed, at once, and as close as possible to the load centers, at buses 2,
4, 6, 8, 11, 12, 14, 16, 17, 19, 20, and 22 (see Figure 1). Table 3 shows solutions for dispersed
PV-DG for LLN and HLN.

Table 3. PV-DG capacity at each bus for LLN and HLN.

Location Bus No. PV-DG (kW) for LLN PV-DG (kW) for HLN

IEE 2 278.9 323.8
PUSP-C 4 186.1 372.1
NUCEL 6 152.7 305.3

HU 8 977.8 187.0
ICB III 11 238.2 476.5

FOFITO 12 58.1 116.2
FO 14 541.6 1083.3

ICB IV 16 494.9 989.7
FMVZ 17 550.0 1100.0
ICB II 19 436.9 873.8
ICB I 20 425.9 851.8

IB 22 629.5 1259.0

4970.6 9622.6

The first HC estimate (4970.6 kW) resulted when the voltage limit was at one increment
step to be reached at bus 2 (IEE) and at bus 17 (FMVZ). The second HC estimate (9622.6 kW)
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resulted when the voltage limit was at one increment step to be reached at the same buses
(2 and 17).

Based on the previous results, two situations were tested with the objective of moni-
toring voltage and current limits. The first situation considers the deployment of dispersed
PV-DG up to the previously determined lower HC estimate (4970.6 kW) for HLN, and
the second situation considers the deployment of dispersed PV-DG up to the higher HC
estimate (9622.6 kW) for LLN. Both situations were tested with a simple power flow run; in
the first test no violation was triggered, and the second test resulted in overvoltage in all
buses. Table 4 summarizes both situations tested.

Table 4. Tested situations with HC values for dispersed PV-DG.

Tested Situation PV-DG (kW) 1 When Violation

Lower HC with HLN 4970.6 HLN (4715.1 kVA) No violation
Higher HC with LLN 9622.6 LLN (1963.4 kVA) Voltage > 1.0 p.u. at all buses

1 Dispersed PV-DG according to Table 3.

Therefore, the result that should be taken as a USP-105 circuit HC estimate is 4970.6 kW,
as shown in Table 3. This value of HC assures that no limit is exceeded for any load varying
from the LLN to the HLN. Figures 9 and 10 show the voltage profile throughout the length
of the main feeder with and without the deployment of dispersed 4970.6 kW for LLN and
HLN, respectively.
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4.2. HC Estimate for Concentrated PV-DG

The second simulation returned the HC estimate for concentrated PV-DG in two
situations: (i) when PV-DG is installed as close as possible to the substation (ETD-USP) at
IEE (bus 2) only, and (ii) when PV-DG is installed at IB (bus 22) only. Tables 5 and 6 show
the PV capacity that can be accommodated by the circuit for LLN and HLN, respectively.

Table 5. HC estimates for concentrated PV-DG for LLN.

Scenario Installed at PV-DG (kW) Limiting Performance Index

Closest to ETD-USP IEE (bus 2) 4166.5 Voltage
Furthest to ETD-USP IB (bus 22) 3230.7 Voltage

Table 6. HC estimates for concentrated PV-DG for HLN.

Scenario Installed at PV-DG (kW) Limiting Performance Index

Closest to ETD-USP IEE (bus 2) 3620.9 Current
Furthest to ETD-USP IB (bus 22) 4326.3 Current

The results for concentrated PV-DG reveal that the HC estimates depend directly on
the bus load where the PV system is interconnected. Other HC estimates would provide
different results if simulations were run independently at any other buses, if the USP-105
is at its lowest or highest load. For the sake of this case study, one should simulate the
concentrated PV capacity in each of the 12 units in every hour of the year to compare
the results.

4.3. Concentrated versus Dispersed PV-DG Deployment

The third and last simulation was a simple power flow run that returned all buses’
voltages for LLN and HLN in four different cases while considering the previously de-
termined HC estimate: (i) no PV-DG deployment (base case), (ii) PV-DG is concentrated
closest to ETD-USP at IEE (bus 2), (iii) PV-DG is dispersed as shown in Table 3, and (iv) PV-
DG is concentrated furthest to ETD-USP at IB (bus 22). This simulation considered the
following capacities: (a) 4970.6 kW for dispersed PV-DG, (b) 3620.9 kW for the PV-DG
deployed closest to the substation, and (c) 3230.7 kW for the PV-DG deployed furthest to
the substation. Figures 11 and 12 show the voltage profile along the main feeder of the
USP-105 for LLN and HLN, respectively.
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5. Discussion

This paper shows that it is possible to assess HC value considering performance
indices and their limits as well as a deterministic approach. The first simulation shows,
as expected, that HC is directly proportional to load, since the higher the load to which
the PV-DG is interconnected, the higher the PV power that is instantly consumed. The
second simulation shows that HC is higher when PV-DG is concentrated closest to the
substation compared to PV-DG concentrated furthest to the substation, as observed by
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Horowitz et al. (2018) and McAllister et al. (2019). Nonetheless, dispersed PV-DG not only
increased the HC estimate to 4970.6 kW but also improved the voltage profile along the
USP-105 main feeder. This HC value corresponds to 103% of the circuit’s peak load (see
Table 3), which is substantially more significant than the 15% rule of thumb mentioned
before that. In this case, the study would return a mere 721 kW as the maximum PV-
DG capacity that USP-105 could host. Although this rule of thumb is conservative, it is
ambiguous since it does not specify whether the maximum capacity should be concentrated
or dispersed. As shown in Table 3 for LLN, none except for HU (bus 8) would admit this
721 kW at once.

The deployment of dispersed 4970.6 kW reduced the peak load by 9% to 4363.5 kVA;
it could not be less because of two main reasons: (i) the USP-105 load has a low power factor
of around 0.8 most of the year, and PV-DG is providing active power only, and (ii) load
daily high and PV peak generation are usually from 2 to 5 h apart.

Nevertheless, the USP-105 circuit HC estimate is not the ultimate result. A different
dispersion of the same PV-DG capacity would result in a different estimate; the same would
happen if a stochastic method were used. The HC estimate would differ significantly if
more performance indices, such as protection issues, were selected and uncertainties were
considered. On the other hand, the HC estimate is likely to be underestimated because a
static and worst-case-based scenario approach was chosen. The advantage of using a static
and worst-case-based scenario approach is that it is easier to implement. Furthermore,
PV-DG deployment would help to reduce the circuit’s loading, increasing the conductor’s
life span and reducing the power losses.

It is important to point out that PV-DG improves the voltage profile throughout the
main feeder compared to when no PV-DG is deployed, especially when the PV-DG is
dispersed (Figures 9 and 10), keeping the voltage along the main feeder slightly below
1.0 p.u. When the PV-DG is concentrated, the voltage tends to rise more rapidly; another
issue for the concentrated PV-DG is that the current limit will be reached earlier due to
the laterals’ ampacity. Finally, Figures 11 and 12 show that the voltage profile is better
improved when PV-DG is dispersed rather than concentrated closest or furthest to the
substation. In any situation, the voltage profile was improved compared to no PV-DG
deployment at all. However, as discussed before, the capacity of concentrated PV-DG is
significantly lower than when the PV-DG deployment is dispersed (see Tables 5 and 6).

Figures 11 and 12 also indicate that the PV-DG closest to the substation did not alter the
voltage curve but shifted it up, providing complementary power to the substation’s supply.

6. Conclusions

Estimating HC using deterministic methods is subject to considerable uncertainty, as
unlikely scenarios may not reflect a particular reality accurately. However, such methods
provide an overview of a circuit or feeder’s ability to accommodate PV power, including
how it behaves based on the location and capacity of the PV-DG deployed.

The HC assessment helps utilities to screen interconnection requests and to set limits
for PV capacity on specific feeders so that PV-DG capacity will not grow unrestrictedly, nor
will it be lower than it could if any rule of thumb were applied instead.

In this case study of the underground feeder, USP-105, the HC assessment was per-
formed based on a steady-state and worst-case-based scenario used to run deterministic
power flow simulations. The results revealed that PV-DG is better dispersed rather than
concentrated. When concentrated, the HC is proportional to load and to ensure that the
PV capacity will always fit, USP-105 can accommodate 103% of its peak load or 4970.6 kW,
which reduced by 9% the circuit’s annual peak load. This value is far beyond the 15% limit
(or 721 kW) imposed by rules of thumb.

The PV-DG deployed closest to the substation can be seen as a substation-like source
providing complementary power and energy to all loads downstream. The final voltage
profile resembles the voltage profile with no PV-DG. The PV-DG deployed furthest to the
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substation has lower HC, while the dispersed PV-DG shows a better voltage profile and a
higher HC value.

The results demonstrate that installing PV systems closer to the loads is better than
interconnecting a single system of greater capacity. Besides, the direct and simplified ap-
proach selected to estimate HC values may help utilities to benefit from estimating specific
circuits’ HC quickly in an effortless manner and substituting generalist and conservative
rules of thumb with a more accurate method. Finally, utilities can actively indicate the opti-
mum location for PV deployment and benefit from it if a circuit is congested or reporting
voltage sags at specific locations.
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Nomenclature

BCBV “Branch Current—Bus Voltage” matrix
BIBC “Bus Injection—Branch Current” matrix
CUASO Cidade Universitária “Armando de Salles Oliveira” (campus of the University of

São Paulo)
DG distributed generation
DLF “Distribution Load Flow” matrix
ETD-USP campus substation
HC hosting capacity
HLN highest load at noon
IB Institute of Biosciences
IEE Institute of Energy and Environment
LLN lowest load at noon
PV photovoltaic
PV-DG photovoltaic distributed generation
USP-105 circuit “105” of the campus
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