New Foods as a Factor in Enhancing Energy Security
Abstract
:1. Introduction
2. AI-Aided Ways to Save Energy in Food Production
2.1. Artificial Intelligence and Machine Learning
2.2. Artificial Intelligence in Agriculture
2.3. Artificial Intelligence in Food Processing and Distribution
2.4. Artificial Intelligence in Preservation and Storage of Food
2.5. Artificial Intelligence and Energy Issues
3. Design of Novel Food
3.1. Development of New Food Products
- developing a list of the product’s current attributes and looking for possible improvements;
- analyzing relationships between attributes in similar products;
- identifying structural elements of the product (morphological method);
- brainstorming in combination with the Ishikawa method.
3.2. Artificial Intelligence in Development of Novel Food
4. Acceptance of Novel Food
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Rose Rosado, P. Energy. Published online in OurWorldInData.org. 2022. Available online: https://ourworldindata.org/energy (accessed on 8 October 2023).
- Electricity Market Report—Update 2023. Executive Summary. Available online: https://www.iea.org/reports/electricity-market-report-update-2023/executive-summary (accessed on 8 October 2023).
- Dong, L. Toward Resilient Agriculture Value Chains: Challenges and Opportunities. Prod. Oper. Manag. 2021, 30, 666–675. [Google Scholar] [CrossRef]
- FAO. “Energy-Smart” Food for People and Climate—Issue Paper. 2011. Available online: http://www.fao.org/docrep/014/i2454e/i2454e00.pdf (accessed on 28 October 2023).
- Chilling Prospects. Promoting Sustainable Agricultural Food Chain through the Energy Smart Food Programs. 2022. Available online: https://www.seforall.org/data-stories/promoting-sustainable-agricultural-food-chains (accessed on 8 October 2023).
- Liu, H.; Khan, I.; Zakari, A.; Alharthi, M. Roles of trilemma in the world energy sector and transition towards sustainable energy: A study of economic growth and the environment. Energy Policy 2022, 170, 113238. [Google Scholar] [CrossRef]
- Wiatros-Motyka, M. Global Electricity Review 2023. Ember. Available online: https://ember-climate.org/insights/research/global-electricity-review-2023/ (accessed on 8 October 2023).
- Söderholm, P. The green economy transition: The challenges of technological change for sustainability. Sustain. Earth 2020, 3, 6. [Google Scholar] [CrossRef]
- IEA. An Updated Roadmap to Net Zero Emissions by 2050. In World Energy Outlook 2022; International Energy Agency (IEA): Paris, France, 2022; Available online: https://www.iea.org/reports/world-energy-outlook-2022/an-updated-roadmap-to-net-zero-emissions-by-2050 (accessed on 10 October 2023).
- United Nations; Department of Economic and Social Affairs. Sustainable Development—17 Goals. Available online: https://sdgs.un.org/goals (accessed on 10 October 2023).
- European Commission. Food 2030—The EU’s Research and Innovation Policy to Support the Transition towards Sustainable, Healthy and Inclusive Food Systems. Available online: https://research-and-innovation.ec.europa.eu/research-area/environment/bioeconomy/food-systems/food-2030_en (accessed on 10 October 2023).
- Energy Statistics—An Overview. Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview (accessed on 10 October 2023).
- Hnin, K.K.; Zhang, M.; Mujumdar, A.S.; Zhu, Y. Emerging food drying technologies with energy-saving characteristics: A review. Dry. Technol. 2018, 37, 1465–1480. [Google Scholar] [CrossRef]
- Clairand, J.-M.; Briceno-Leon, M.; Escriva-Escriva, G.; Pantaleo, A.M. Review of Energy Efficiency Technologies in the Food Industry: Trends Barriers Oppor. IEEE 2020, 8, 48015–48029. [Google Scholar] [CrossRef]
- Hall, G.M.; Howe, J. Energy from waste and the food processing industry. Process Saf. Environ. Prot. 2012, 90, 203–212. [Google Scholar] [CrossRef]
- Marchi, B.; Zanoni, S. Energy efficiency in cold supply chains of the food and beverage sector. Transp. Res. Procedia 2022, 67, 56–62. [Google Scholar] [CrossRef]
- European Parliament, Press Release from 11.07.2023, Ref.: 20230707IPR02421 “Parliament Adopts New Rules to Boost Energy Savings”. Available online: https://www.europarl.europa.eu/news/en/press-room/20230707IPR02421/parliament-adopts-new-rules-to-boost-energy-savings (accessed on 10 October 2023).
- Skawińska, E.; Zalewski, R.I. Economic impact of temperature control during food transportation a Covid perspective. Foods 2022, 11, 467. [Google Scholar] [CrossRef]
- Hegnsholt, E.; Unnikrishnan, S.; Pollmann-Larsen, M.; Askelsdottir, B.; Gerard, M. Tackling the 1.6 Billion-Ton Food Loss and Waste Crisis. 2018. Available online: https://www.bcg.com/publications/2018/tackling-1.6-billion-ton-food-loss-and-waste-crisis.aspx (accessed on 11 October 2023).
- Corrado, S.; Caldeira, C.; Eriksson, M.; Hanssen, O.J.; Hauser, H.-E.; van Holsteijn, F.; Liu, G.; Östergren, K.; Parry, A.; Secondi, L.; et al. Food waste accounting methodologies: Challenges, opportunities, and further advancements. Glob. Food Secur. 2019, 20, 93–100. [Google Scholar] [CrossRef]
- Chaboud, G.; Daviron, B. Food losses and waste: Navigating the inconsistencies. Glob. Food Secur. 2017, 12, 1–7. [Google Scholar] [CrossRef]
- United Nations. Reducing Food Loss and Waste: Taking Action to Transform Food Systems. Available online: https://www.un.org/en/observances/end-food-waste-day (accessed on 11 October 2023).
- Evangelista, R.; Guerrieri, P.; Meliciani, V. The economic impact of digital technologies in Europe. Econ. Innov. New Technol. 2014, 23, 802–824. [Google Scholar] [CrossRef]
- Williams, L.D. Concepts of Digital Economy and Industry 4.0 in Intelligent and Information Systems. Int. J. Intell. Netw. 2021, 2, 122–129. [Google Scholar] [CrossRef]
- Anderton, R.; Jarvis, V.; Labhard, V.; Petroulakis, F.; Rubene, I.; Vivian, L. ECB Economic Bulletin, Issue 8/2020. Available online: https://www.ecb.europa.eu/pub/economic-bulletin/articles/2021/html/ecb.ebart202008_03~da0f5f792a.en.html (accessed on 11 October 2023).
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef]
- Kok, J.N.; Boers, E.J.W.; Kosters, W.A.; van der Putten, P. Artificial Intelligence: Definitions, Trends, Techniques and Cases. UNESCO Encyclopedia of Life Support Systems (EOLSS). Available online: https://www.eolss.net/Sample-Chapters/C15/E6-44.pdf (accessed on 11 October 2023).
- TechTarget Editorial. Available online: https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence (accessed on 12 October 2023).
- IBM. What Is Machine Learning. Available online: https://www.ibm.com/topics/machine-learning (accessed on 12 October 2023).
- Lang, H.; Poon, H. Self-Supervised Self-Supervision by Combining Deep Learning and Probabilistic Logic. Proc. AAAI Conf. Artif. Intell. 2021, 35, 4978–4986. [Google Scholar] [CrossRef]
- Kakani, V.; Nguyen, V.H.; Kumar, B.P.; Kim, H.; Pasupuleti, V.R. A critical review on computer vision and artificial intelligence in food industry. J. Agric. Food Res. 2020, 2, 100033. [Google Scholar] [CrossRef]
- Bryant, J. Infographic to Share: Ag-Tech on the Rise. Available online: https://myfarmlife.com/equipment/infographic-to-share-ag-tech-on-the-rise/ (accessed on 12 October 2023).
- Miyazawa, T.; Hiratsuka, Y.; Toda, M.; Hatakeyama, N.; Ozawa, H.; Abe, C.; Cheng, T.-Y.; Matsushima, Y.; Miyawaki, Y.; Ashida, K.; et al. Artificial intelligence in food science and nutrition: A narrative review. Nutr. Rev. 2022, 80, 2288–2300. [Google Scholar] [CrossRef]
- Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G. The expected contribution of Industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 2018, 204, 383–394. [Google Scholar] [CrossRef]
- Hassoun, A.; Abdullah, N.A.; Aït-Kaddour, A.; Ghellam, M.; Beşir, A.; Zannou, O.; Önal, B.; Aadil, R.M.; Lorenzo, J.M.; Khaneghah, A.M.; et al. Food traceability 4.0 as part of the fourth industrial revolution: Key enabling technologies. Crit. Rev. Food Sci. Nutr. 2022, 1–17. [Google Scholar] [CrossRef]
- Tzachor, A.; Devare, M.; King, B.; Avin, S.; Héigeartaigh, S. Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nat. Mach. Intell. 2022, 4, 104–109. [Google Scholar] [CrossRef]
- PE 734.711; European Parliamentary Research Service Scientific Foresight Unit (STOA). EPRS: Oklahoma City, OK, USA, 2023.
- Kumar, I.; Rawat, J.; Mohd, N.; Husain, S. Opportunities of Artificial Intelligence and Machine Learning in the Food Industry. J. Food Qual. 2021, 2021, 4535567. [Google Scholar] [CrossRef]
- Khan, I.H.; Sablani, S.S.; Nayak, R.; Gu, Y. Machine learning-based modeling in food processing applications: State of the art. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1409–1438. [Google Scholar] [CrossRef]
- Zalewski, R.I. Rola planowania eksperymentów w poprawie jakości i innowacyjności. In Nowe Metody Statystyczne Wspomagające Zarządzanie Jakością; Zalewski, R.I., Ed.; Commission of Commodity Science, Polish Academy of Science: Poznań, PL, USA, 2007; pp. 99–143. [Google Scholar]
- Mavani, N.R.; Ali, J.M.; Othman, S.; Hussain, M.A.; Hashim, H.; Rahman, N.A. Application of Artificial Intelligence in Food Industry—A Guideline. Food Eng. Rev. 2022, 14, 134–175. [Google Scholar] [CrossRef]
- Katiyar, S.; Khan, R.; Kumar, S. Artificial Bee Colony Algorithm for Fresh Food Distribution without Quality Loss by Delivery Route Optimization. Hindawi J. Food Qual. 2021, 2021, 4881289. [Google Scholar] [CrossRef]
- Karaboga, D.; Akay, D. A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 2009, 214, 108–132. [Google Scholar] [CrossRef]
- Sudeep Srivastava. Food Automation—How AI and Robotics Are Transforming the Future of Industry. Available online: https://appinventiv.com/blog/automation-in-food-industry/ (accessed on 12 October 2023).
- STATISTA. Food Robotics: Global Market Unit Volume 2020–2030. 2022. Available online: https://www.statista.com/statistics/1290022/food-robotics-global-market-unit-volume (accessed on 12 October 2023).
- Siegrist, M.; Hartmann, C. Consumer acceptance of novel food technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Chesbrough, H. Open Innovation. In The New Imperative for Creating and Profiting from Technology; Harvard Business School Press: Boston, MA, USA, 2003. [Google Scholar]
- Olsen, P.; Borit, M.; Sayd, S. Applications, Limitations, Costs, and Benefits Related to the Use of Blockchain Technology in the Food Industry, Report 4/2019, Nofima. Available online: https://nofima.brage.unit.no/nofima-xmlui/bitstream/handle/11250/2586121/Report+04-2019.pdf?sequence=1 (accessed on 14 October 2023).
- Birwal, P.; Goyal, M.R.; Sharma, M. Handbook of Research on Food Processing and Preservation Technologies: Volume 3: Computer-Aided Food Processing and Quality Evaluation Techniques; Apple Academic Press: Palm Bay, FL, USA, 2021. [Google Scholar] [CrossRef]
- Hassanien, A.E.; Soliman, M. (Eds.) Artificial Intelligence: A Real Opportunity in the Food Industry; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; ISBN 978-3-031-13701-3. [Google Scholar]
- Heft, D.; Oluwasenn, A.C. Sensing and Artificial Intelligence for Food Manufacturing; Taylor & Francis Ltd.: London, UK, 2023. [Google Scholar] [CrossRef]
- Khadir, M.T. Artificial Neural Networks in Food Processing: Modeling and Predictive Control; Walter de Gruyter GmbH: Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Lu, R.; Zhang, S.; Hai, A.M.; Tang, B. Form-stable cold storage phase change materials with durable cold insulation for cold chain logistics of food. Postharvest Biol. Technol. 2023, 203, 112409. [Google Scholar] [CrossRef]
- Ndraha, N.; Hsiao, H.-I.; Vlajic, J.; Yang, M.-F.; Lin, H.-T.V. Time-temperature abuse in the food cold chain: Review of issues, challenges and recommendation. Food Control 2018, 89, 12–21. [Google Scholar] [CrossRef]
- Chen, C.; Ding, R.; Yang, S.; Wang, J.; Chen, W.; Zong, L.; Xie, J. Development of thermal insulation packaging film based on poly (vinyl alcohol) incorporated with silica aerogel for food packaging application. LWT-Food Sci. Technol. 2020, 129, 109568. [Google Scholar] [CrossRef]
- Chen, C.; Chen, R.; Zhao, T.; Wang, L. A comparative study of linear polyurea and crosslinked polyurea as supports to stabilize polyethylene glycol for thermal energy storage. Renew. Energy 2022, 183, 535–547. [Google Scholar] [CrossRef]
- Liu, M.; Saman, W.; Bruno, F. Development of a novel refrigeration system for refrigerated trucks incorporating phase change material. Appl. Energy 2012, 92, 336–342. [Google Scholar] [CrossRef]
- Fioretti, R.; Principi, R.; Corpetaro, B. Refrigerated container envelope with a PCM (Phase Change Material) layer: Experimental and theoretical investigation in a representative town in Central Italy. Energy Convers. Manag. 2016, 122, 131–146. [Google Scholar] [CrossRef]
- Meneghetti, A.; Ceschia, S. Energy-efficient frozen food transports: The Refrigerated Routing Problem. Int. J. Prod. Res. 2020, 58, 4164–4181. [Google Scholar] [CrossRef]
- CARILEC. Green AI: The Role of Artificial Intelligence in Energy Conservation. Available online: https://www.carilec.org/green-ai-the-role-of-artificial-intelligence-in-energy-conservation/ (accessed on 14 October 2023).
- Donaldson, D.L.; Jayaweera, D. Applications and Issues of the Experimental Designs for Mixture in the Food Sector. Foods 2021, 10, 1128. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Zannou, O.; Karim, I.; Kasmiati; Awad, N.M.H.; Gołaszewski, J.; Heinz, V.; Smetana, S. Avoiding Food Neophobia and Increasing Consumer Acceptance of New Food Trends—A Decade of Research. Sustainability 2022, 14, 10391. [Google Scholar] [CrossRef]
- Kotler, P. Marketing Management; Prentice Hall: Upper Saddle River, NJ, USA, 1991; p. 342. [Google Scholar]
- Herman, R. The distribution of product innovation in food industry. Agribusiness 1997, 13, 319–334. [Google Scholar] [CrossRef]
- Azanedo, L.; Garcia-Garcia, G.; Stone, J.; Shahin Rahimifard, S. An Overview of Current Challenges in New Food Product Development. Sustainability 2020, 12, 3364. [Google Scholar] [CrossRef]
- European Commission. What Is Novel Food? Available online: https://ec.europa.eu/food/safety/novel-food_en (accessed on 14 October 2023).
- Ververis, E.; Ackerl, R.; Azzollini, D.; Colombo, P.A.; de Sesmaisons, A.; Dumas, C.; Fernandez-Dumont, A.; da Costa, L.F.; Germini, A.; Goumperis, T.; et al. Novel foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority. Food Res. Int. 2020, 137, 109515. [Google Scholar] [CrossRef]
- European Parliament, Novel Foods. Complementary Impact Assessment Reviewing and Updating the European Commission’s 2008 Impact Assessment for a Regulation on Novel Foods. European Parliamentary Research Service. Available online: https://ec.europa.eu/food/system/files/2018-07/novel-food_leg_impact-assessment-2013.pdf (accessed on 14 October 2023).
- Zarbà, C.; Chinnici, G.; Hamam, M.; Bracco, S.; Pecorino, B.; D’Amico, M. Driving Management of Novel Foods: A Network Analysis Approach. Front. Sustain. Food Syst. 2022, 5, 2021. [Google Scholar] [CrossRef]
- SavorEat Ltd. Product Development of Food: Strategy, Innovations, Trends, and Examples. 2022. Available online: https://savoreat.com/product-development-of-food-strategy-innovations-trends-and-examples (accessed on 15 October 2023).
- Newton, A. The Roadmap to New Product Development for the Food Industry Columbus Global Columbus Global UK Ltd. 2022. Available online: https://www.columbusglobal.com/en-gb/blog/the-roadmap-to-new-product-development-in-the-food-industry (accessed on 15 October 2023).
- Aramouni, F.; Deschenes, K. Methods for Developing New Food Products: An Instructional Guide; DEStech Publications, Inc.: Lancaster, PA, USA, 2015; ISBN 978-1-60595-432-5. Available online: https://www.destechpub.com/wp-content/uploads/2015/01/Methods-for-Developing-New-Food-Products-preview.pdf (accessed on 15 October 2023).
- Hittmar, Š.; Varmus, M.; Lendel, V. Proposal of model for effective implementation of innovation strategy to business. Procedia Soc. Behav. Sci. 2014, 109, 1194–1198. [Google Scholar] [CrossRef]
- Bigliardi, B.; Ferraro, G.; Filippelli, S.; Galati, F. Innovation models in food industry: A review of the literature. J. Technol. Manag. 2020, 15, 97–107. [Google Scholar] [CrossRef]
- Aiking, H.; de Boer, J. The next protein transition. Trends Food Sci. Technol. 2020, 105, 515–522. [Google Scholar] [CrossRef]
- Krishna, A. An integrative review of sensory marketing: Engaging the senses to affect perception, judgment and behavior. J. Consum. Psychol. 2012, 22, 332–351. [Google Scholar] [CrossRef]
- Zalewski, R.I. Zarządzanie Jakością w Produkcji, Żywności, 3rd ed.; Wydawnictwo Academy of Economics: Poznań, Poland, 2018. [Google Scholar]
- Stewart-Knox, B.; Mitchell, P. What separates the winners from the losers in new food product development? Trends Food Sci. Technol. 2003, 14, 58–64. [Google Scholar] [CrossRef]
- Costa, A.I.A.; Jongen, W.M.F. New insights into consumer-led food product development. Trends Food Sci. Technol. 2006, 17, 457–465. [Google Scholar] [CrossRef]
- Roman, S.; Sanchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Earle, M.D.; Earle, R.L. Food Industry Research and Development. In Government and the Food Industry: Economic and Political Effects of Conflict and Co-Operation; Wallace, L.T., Schroder, W.R., Eds.; Springer: Boston, MA, USA, 1997. [Google Scholar] [CrossRef]
- Mirtalaie, M.A.; Hussain, O.K.; Chang, E.; Hussain, F.K. A decision support framework for identifying novel ideas in new product development from cross-domain analysis. Inf. Syst. 2017, 69, 59–80. [Google Scholar] [CrossRef]
- Rudder, A.; Ainsworth, P.; Holgate, D. New food product development: Strategies for success? Br. Food J. 2001, 103, 657–671. [Google Scholar] [CrossRef]
- ISO and Food. International Organisation for Standardization (ISO). 2018. Available online: https://www.iso.org/files/live/sites/isoorg/files/store/en/PUB100297.pdf (accessed on 17 October 2023).
- Relich, M.; Pawlewski, M. A fuzzy weighted average approach for selecting portfolio of new product development projects. Neurocomputing 2017, 231, 19–27. [Google Scholar] [CrossRef]
- Lambin, J.-J.; Schuling, I. Marketing Driven Management. In Strategic and Operational Marketing, 3rd ed.; Palgrave Macmillan: New York, NY, USA, 2012. [Google Scholar]
- Moskowitz, H.R. On the intersection of products and Concepts: Opportunities for Sensory Analysis to Improve Commercial Development Process. Food Qual. Prefer. 1999, 10, 333–342. [Google Scholar] [CrossRef]
- Carmela Annosi, M.; Brunetta, F.; Capo, F.; Heideveld, L. Digitalization in the agri-food industry: The relationship between technology and sustainable development. Manag. Decis. 2020, 58, 1737–1757. [Google Scholar] [CrossRef]
- Ramirez-Asis, E.; Vilchez-Carcamo, J.; Thakar, C.M.; Phasinam, K.; Kassanuk, T.; Naved, M. A review on role of artificial intelligence in food processing and manufacturing industry. Mater. Today Proc. 2021, 51, 2462–2465. [Google Scholar] [CrossRef]
- European Parliament. Artificial Intelligence in the Agri-Food Sector. Applications, Risks and Impacts. Panel for the Future of Science and Technology. European Parliamentary Research Service. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2023/734711/EPRS_STU(2023)734711_EN.pdf (accessed on 15 October 2023).
- Adeogba, E.; Barty, P.; O’Dwyer, E.; Guo, M. Waste-to resource transformation: Gradient boosting modeling for organic fraction municipal solid waste projection. ACS Sustain. Chem. Eng. 2019, 7, 10460–10466. [Google Scholar] [CrossRef]
- Calp, M. Estimation of personnel food demand quantity for businesses by using artificial neural networks. J. Polytech. 2019, 22, 675–686. [Google Scholar] [CrossRef]
- Bronzwaer, S.; Kass, G.; Robinson, T.; Tarazona, J.; Verhagen, H.; Verloo, D.; Vrbos, D.; Hugas, M.; European Food Safety Authority (EFSA). Food Safety Regulatory Research Needs 2030; EFSA: Parma, Italy, 2019. [Google Scholar] [CrossRef]
- Mengucci, C.; Ferranti, P.; Romano, A.; Masi, P.; Picone, G.; Capozzi, F. Food structure, function and artificial intelligence. Trends Food Sci. Technol. 2022, 123, 251–263. [Google Scholar] [CrossRef]
- Tao, Q.; Ding, H.; Wang, H.; Cui, X. Application Research: Big Data in Food Industry. Foods 2021, 10, 2203. [Google Scholar] [CrossRef] [PubMed]
- Stanton, J. Food and Beverage Manufacturers Increasing Number of New Products Developed. Food Processing, Endeavor Business Media, LLC. 2013. Available online: https://www.foodprocessing.com/business-of-food-beverage/business-strategies/article/11331678/food-and-beverage-manufacturers-increasing-number-of-new-products-developed (accessed on 16 October 2023).
- Tuorila, H.; Hartmann, C. Consumer responses to novel and unfamiliar foods. Curr. Opin. Food Sci. 2020, 33, 1–8. [Google Scholar] [CrossRef]
- Matysiak-Pejas, R. Success factors in new product development in the food sector. In Consumer Trends and New Product Opportunities in the Food Sector; Grunert, K.G., Ed.; Wageningen Academic Publisher: Wageningen, The Netherlands, 2017; pp. 221–232. [Google Scholar]
- Costa, A.I.A.; Monteiro, M.J.P. Food Product Introduction Failure: Reasons and Remedies. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Ryynänen, T.; Olsen, A. We must have the wrong consumers—A case study on new food product development failure. Br. Food J. 2014, 116, 707–722. [Google Scholar] [CrossRef]
- Gunaratne, N.M.; Fuentes, S.; Gunaratne, T.M.; Torrico, D.D.; Francis, C.; Ashman, H.; Viejo, C.G.; Dunshea, F.R. Effects of packaging design on sensory liking and willingness to purchase: A study using novel chocolate packaging. Heliyon 2019, 5, e01696. [Google Scholar] [CrossRef]
- Forde, C.G.; de Graaf, K. Influence of Sensory Properties in Moderating Eating Behaviors and Food Intake. Front Nutr. 2022, 9, 841444. [Google Scholar] [CrossRef]
- Hoek, A.C.; Luning, P.A.; Weijzen, P.; Engels, W.; Kok, F.J.; de Graaf, C. Replacement of meat by meat substitutes. A survey on person and product-related factors in consumer acceptance. Appetite 2011, 56, 662–673. [Google Scholar] [CrossRef]
- Weinrich, R. Opportunities for the adoption of health-based sustainable dietary patterns: A review on consumer research of meat substitutes. Sustainability 2019, 11, 4028. [Google Scholar] [CrossRef]
- Innogusto. Available online: www.innogusto.com (accessed on 17 October 2023).
- Valoppi, F.; Agustin, M.; Abik, F.; de Carvalho, D.M.; Sithole, J.; Bhattarai, M.; Varis, J.J.; Arzami, A.N.A.B.; Pulkkinen, E.; Mikkonen, K.S. Insight on Current Advances in Food Science and Technology for Feeding the World Population. Front. Sustain. Food Syst. 2021, 5, 626227. [Google Scholar] [CrossRef]
- Kano, W. The Management and Control of Quality; Ewans, J.K., Lindsay, W.M., Eds.; West Publishing Co. Minneapolis: St. Paul, MN, USA, 1989; p. 149. [Google Scholar]
- Deming, W.E. Quality, Productivity and Competitive Position; Cambridge Mass. MIT Center for Advanced Engineering Study: Cambridge, MA, USA, 1982. [Google Scholar]
- Van Trijp, H.C.M.; Schiferstein, H.N.J. Sensory analysis in marketing practice; Comparison and Integration. J. Sens. Stud. 1995, 10, 127–148. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero-Herranz, A. Sensory Analysis and Consumer Research in New Product Development; MDPI: Basel, Switzerland, 2021. [Google Scholar] [CrossRef]
- Schifferstein, H.N.J. From salad to bowl: The role of sensory analysis in product experience research. Food Qual. Prefer. 2010, 21, 1059–1067. [Google Scholar] [CrossRef]
- Van Herpen, E.; Koen, J. Less waste versus higher quality; how to stimulate consumer demand for frozen food. Br. Food J. 2021, 13, 340–358. [Google Scholar]
Action | Scope of Activity |
---|---|
Concept | Exploring market needs and technological opportunities. |
Analysis | Literature studies. Consultation and observation of similar activities in the past. Pilot, quarter, or semi-technical studies. Analyzing environmental impact (water, energy consumption). Experiencing how to use, describe, and characterize it. |
Preliminary tests | Assessing costs, opportunities for innovation and optimization under conditions of incomplete information and uncertainty. |
Economic analysis | Analysis and decision to continue or abandon the project. |
Implementation | Two-thirds of products reach the industrial production phase. |
Perspective of Consumers | Perspective of Industry | |
---|---|---|
Organic | Personalized nutrition | New resources |
Sensory properties | Food variety | Extension of shelf-life |
Well-being | Ethical concerns | Business profit |
Allergies intolerances | Animal welfare | Technological advances |
Energy consumption |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skawińska, E.; Zalewski, R.I. New Foods as a Factor in Enhancing Energy Security. Energies 2024, 17, 192. https://doi.org/10.3390/en17010192
Skawińska E, Zalewski RI. New Foods as a Factor in Enhancing Energy Security. Energies. 2024; 17(1):192. https://doi.org/10.3390/en17010192
Chicago/Turabian StyleSkawińska, Eulalia, and Romuald I. Zalewski. 2024. "New Foods as a Factor in Enhancing Energy Security" Energies 17, no. 1: 192. https://doi.org/10.3390/en17010192
APA StyleSkawińska, E., & Zalewski, R. I. (2024). New Foods as a Factor in Enhancing Energy Security. Energies, 17(1), 192. https://doi.org/10.3390/en17010192