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Abstract: The transport sector is tackling the challenge of reducing vehicle pollutant emissions and
carbon footprints by means of a shift to electrified powertrains, i.e., battery electric vehicles (BEVs)
and plug-in hybrid electric vehicles (PHEVs). However, electrified vehicles pose new issues associated
with the design and energy management for the efficient use of onboard energy storage systems (ESSs).
Thus, strong attention should be devoted to ensuring the safety and efficient operation of the ESSs. In
this framework, a dedicated battery management system (BMS) is required to contemporaneously
optimize the battery’s state of charge (SoC) and to increase the battery’s lifespan through tight control
of its state of health (SoH). Despite the advancements in the modern onboard BMS, more detailed
data-driven algorithms for SoC, SoH, and fault diagnosis cannot be implemented due to limited
computing capabilities. To overcome such limitations, the conceptualization and/or implementation
of BMS in-cloud applications are under investigation. The present study hence aims to produce a
new and comprehensive review of the advancements in battery management solutions in terms of
functionality, usability, and drawbacks, with specific attention to cloud-based BMS solutions as well
as SoC and SoH prediction and estimation. Current gaps and challenges are addressed considering
V2X connectivity to fully exploit the latest cloud-based solutions.

Keywords: battery management system; energy storage system; connected vehicles; in-cloud BMS;
state of charge; state of health

1. Introduction

In 2021, according to the International Energy Agency (IEA), global carbon dioxide
(CO2) emissions from the transport sector had rebounded, growing by 8% to nearly 7.7 Gt
CO2 because of the pandemic restrictions lifting [1]. Furthermore, the worldwide carbon
neutrality goals dictated by national and international regulations have been leading the
transport sector to face new challenges because of carbon footprint reduction [2]. Within
this framework, the European Commission (EC) proposed the “Fit for 55”, a series of
regulatory proposals intended to achieve climate neutrality in the European Union by 2050,
including the intermediate target of at least 55% net reduction in greenhouse gas emissions
by 2030 [3]. In particular, the EC proposal strengthens the 2030 CO2 targets, from −37.5%
to −55% for new passenger cars and from −31% to −50% for new vans, both relative
to a 2021 baseline. In addition, the proposal introduces the target to meet zero tailpipe
CO2 emissions from 2035 onwards [4]. Thereby, the incoming stricter regulations and the
mid-term European Commission policies have compelled academia, research institutions,
and OEMs to study and extensively invest in advanced technologies and solutions toward
the full electrification of the light-duty road transport sector. BEVs and PHEVs retain a
high potential for penetrating the market and contributing to reducing pollutants and
greenhouse gas emissions in the following years. To sustain a wide diffusion of electrified
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vehicles (EVs), battery performance and durability are key factors. For this purpose, an
optimized battery management system (BMS) can prevent degradation phenomena and
extend the battery lifetime [5], avoiding battery replacement which can negatively affect the
EVs’ life cycle analysis. A proper BMS ensures the monitoring and control of the batteries.
It is comprised of different types of sensors, actuators, and controllers managed with logic
or algorithms [6], aimed at making the batteries operate within the proper voltage and
temperature interval, guaranteeing the safety requirements and prolonging their service
life. In particular, the BMS includes functions such as cell balancing, thermal management
and state management [7]. A key role of the BMS is to provide an accurate battery state
estimation. Commonly, the battery state mainly includes the state of charge (SoC), state of
health (SoH), and state of power (SoP) [8,9]. In the case of electrochemical energy storage
systems, internal battery states cannot be directly measured [10]. They can be estimated and
predicted indirectly through voltage, current and temperature measurements [11]. Owing
to the intricate electrochemical processes within the battery, the internal states display a
markedly nonlinear correlation with measurable parameters. This concern increases in
severe working conditions [10]. In addition, the rate of aging and wear phenomena increase
according to the severity of the battery operating conditions, and in terms of discharge
depth, number of charges and discharge cycles and temperature [12,13]. Moreover, battery
degradation during the cycle affects the state estimation reliability [14]. Hence, precise
estimation of the battery state remains a technical challenge, particularly given the potential
variations in battery performance over time due to aging. Achieving a stable and accurate
estimation is crucial for the entire lifespan of the battery.

SoC represents a main concern related to BMS design in EVs due to its importance in
providing some important information, such as the remaining energy and/or remaining
useable time [15] to prevent the battery from over-charging/ discharging [16]. As a result,
the estimation of battery SoC has been extensively studied. Many techniques have been
developed and can be grouped into direct, model-based, and data-based methods. Direct
methods are only suitable for laboratory purposes, whereas model- and data-based meth-
ods have gained interest for online implementation. Model-based estimation methods have
more potential to be employed in real applications due to their rational tradeoff between
complexity and prediction accuracy [17]; nevertheless, a battery model definition is neces-
sary introducing potential errors. On the contrary, the data-based approach does not need
a sophisticated battery model, but a huge amount of data is necessary to train the model
becoming challenging for online applications [18]. Similarly, the SoH-estimation method
includes direct, model-based, and data-driven methods, the strengths and shortcomings of
which are like the SoC-estimation methods [19]. It is worth dwelling on the fact that in the
SoH model-based approach, the functional relationship between battery parameters and
battery aging state is usually established under certain battery-operating conditions; thus,
its feasibility and estimation accuracy still need to be further verified with various current
rates, ambient temperatures and even types of lithium-ion batteries [11]. SoH data-driven
methods have the potential to overcome these limitations at the cost of expensive training
datasets [18]. Therefore, with the increasingly functional demand for BMS [20], despite
the advancements in the modern onboard BMS, more detailed data-driven algorithms
for SoC, SoH and fault diagnosis cannot be implemented due to limited computing ca-
pabilities. To overcome these limitations, the conceptualization and/or implementation
of BMS in-cloud applications are under investigation [21,22]. The development is in an
early stage of progress. The advantages expected by adopting cloud-based solutions are
related to a simplification of local computing and more accurate and reliable prognostics
and diagnostics of the battery system [23].

Presently, researchers are actively engaged in exploring SoC and SoH estimation,
as well as advancements in BMS. Over the past decade, a diverse range of estimation
techniques and developments in BMS has been documented. Figure 1 illustrates the
evolving trend of research articles dedicated to the subjects of SoC and SoH estimations, as
well as BMS.
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Figure 1. SoC and SoH estimation and BMS published articles per year over the last decade.

These published research articles were identified using the Web of Science database.
The search criteria were based on the combination of logic operators (AND, OR) and some
keywords inside titles and abstracts. In particular, the following key words were used:
“state of charge” OR “state of health” AND “battery management system”. Figure 1 shows
the increasing interest in these matters within the last decade. For a fair comparison, 2023
is not considered as being ongoing.

Since the list of existing methods in terms of SoC and SoH estimation provided in the
technical literature is extensive, several review papers have been proposed pointing out
their advantages and their weaknesses. Compared with the other literature reviews, this
article summarizes comprehensively and exhaustively the main SoC and SoH estimation
approaches. A further step is to address the current gaps and challenges to drive the readers
toward the potential use of cloud-based BMS solutions for future connected vehicles.

The remainder of this paper is organized as follows. Section 2 provides a brief overview
of the main ESSs used in battery-powered vehicles. Section 3 describes the battery param-
eter estimation approaches mainly referring to SoC and SoH estimation methodologies.
An overview of battery management systems is reported in Section 4, with a particular
focus on BMS key features. Details on innovative BMS in-cloud applications are provided
in Section 5. Finally, Section 6 reports a summary and a discussion on future development.
Figure 2 shows an illustration of the present review paper structure.
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2. Energy Storage Systems for Electrified Vehicles

The ESSs, commonly referred to as batteries, serve as the predominant means for
storing electrical energy. Typically, a battery comprises two electrodes, namely the anode
(negative electrode) and cathode (positive electrode), along with an electrolyte. Electrical
energy is stored as electrochemical energy through redox reactions between the two elec-
trodes, facilitated by charges of opposite signs moving within the electrolyte toward the
opposing electrode. The specific battery technologies are differentiated via the materials
used for the electrodes and the type of electrolyte. A brief overview is proposed as follows.

Lead acid battery uses lead oxide (PbO2) as the positive electrode, lead (Pb) as the
negative electrode and about 37% sulfuric acid (H2SO4) as electrolyte. The electrolyte can
be liquid, or it can be absorbed in a glass-fiber mat. The overall chemical reaction for the
lead acid battery is [24]:

Pb + PbO2 + 2H2SO4 ⇌ 2PbSO4 + 2H2O

Lead acid batteries stand out as the most economical energy storage technology owing
to the utilization of low-cost materials. Because of their lower energy density, lead acid
batteries become the preferred choice in scenarios where the stored energy is less critical,
and cost-effectiveness is crucial. This is particularly evident for auxiliary vehicle systems
(starters, pumps, etc.), micro-hybrid vehicles or electric scooters. The success of lead acid
batteries in these contexts is attributed to their inherent safety features and notable recycling
rates (up to 95%) [25].

Nickel-based batteries employ nickel hydroxide as the positive electrode alongside
various negative electrode materials. The categorization of nickel-based batteries depends
on the negative materials, leading to distinctions such as Ni-Fe, Ni-Cd, Ni-Zn, Ni-MH, and
Ni-H2. Typically, the electrolyte utilized is a potassium hydroxide solution. Nickel-iron and
zinc are less attractive in electric hybrid and electric vehicles due to their low specific energy,
high cost, reduced life cycle and heightened maintenance requirements. Conversely, Ni-Cd
and Ni-MH have been widely used in battery-powered vehicles due to their extended
life cycles (2000 cycles or more) and higher energy density. The overall electrochemical
reactions are shown as follows [24]:

Cd + 2NiO(OH) + 2H2O ⇌ 2Ni(OH)2 + Cd(OH)2

NiO(OH) + MH ⇌ M + Ni(OH)2

Nevertheless, Ni-Cd suffers a high memory effect, and the use of cadmium poses
critical concerns regarding its environmental compatibility. On the other hand, Ni-MH
batteries exhibit a low memory effect, negligible environmental effect, and a wide operating
temperature range [26]. In addition, their high power density and adequate lifetime
have qualified them as the world market leader for use in hybrid electric vehicles [25].
Nonetheless, Ni-MH battery technology can be considered a mature technology that has
reached its best potential in terms of cost reduction and characteristics. Therefore, this type
of battery does not seem to be competitive with lithium technology batteries [27].

Nowadays, Li-ion-based batteries are most suitable and applicable in powered-battery
vehicles due to their characteristics and performance compared with other cell chemistry
technologies [28]. Lithium batteries exhibit high specific energy and power values, are
lightweight, boast extended lifespans and do not suffer from memory effects or the harmful
impacts seen in lead or cadmium batteries. Nevertheless, lithium batteries are compar-
atively more expensive than other battery technologies, requiring protective measures
for safe operation and a cell balancing system to ensure uniform battery performance at
consistent voltage and charge levels [27]. However, notwithstanding the price reduction
in the Li-ion-based batteries, the increasing demand for raw materials poses significant
environmental and health concerns [29]. Depending on the positive cathode materials,
lithium batteries can be classified into lithium cobalt oxide (LiCoO2), lithium manganese
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oxide (LiMn2O4), lithium iron phosphate (LiFePO4), lithium nickel–manganese–cobalt
oxide (LiNiMnCoO2), lithium nickel cobalt aluminum oxide (LiNiCoAlO2), and lithium
titanate (Li4Ti5O12) batteries. The overall electrochemical reaction in a Li-ion-based battery
is described as follows [24]:

LiMeO2 + C ⇌ Li1−xMeO2 + LixC

The LiCoO2 lithium-ion batteries were the first to be developed. Due to the higher
costs associated with cobalt oxide, subsequent advances introduced nickel and manganese
oxide batteries, with the latter proving to be more economical and cost-effective [26].
Among lithium-ion batteries, the LiFePO4 battery is recognized for its superior power
density, substantial discharge current, and comparatively lower cost. Furthermore, the
LiFePO4 battery exhibits stability in both thermal and chemical operations and has 30%
more lifecycles than the lithium manganese oxide battery [30]. The LiNiMnCoO2 chemistry
retains a small amount of the world market-share despite its energy and power densities,
safety and cost [31]. Li4Ti5O12 batteries are presently used in battery-powered applications
because of their faster charging behavior compared with other lithium batteries due to
elevated stability in charging/discharging operations. Despite these batteries being able
to be operated safely at cold temperatures, a proper thermal management strategy is
mandatory [29]. The main characteristics of the batteries mentioned are outlined in Table 1.
However, this list is far from being exhaustive, and other batteries with different cell
chemistries can be evaluated.

Table 1. Characteristics of different batteries [26,30,31].

Battery
Type

Specific Energy
(Wh/kg)

Specific Power
(W/kg)

Nominal Voltage
(V)

Cycle Life
(# of Cycles)

Cost
(USD/kWh) Application

Lead-acid 180 35–40 2 1500–5000 120–200 Automotive ignition, starting
Ni-Cd 40–60 150 1.25 2000–3000 250–350 Portable devices
Ni-MH 60–120 250–1000 1.25 500–3000 150–250 Electronic Equipment, xEV
Li-ion 120–140 200–2000 3.6 1500–4500 150–1300 Electronic Equipment, xEV

The continuous growth in energy required by different applications, such as electric
hybrid vehicles and electric vehicles, pushes researchers to find new materials or new
solutions for cell chemistry. The use of lithium–sulfur (Li-S) can be considered a promising
candidate for next generation power supplies due to its potentially high specific energy
value (about 500 Wh/kg), which is two to three times higher than that of current commercial
lithium batteries [32].

With the rise in use of lithium batteries, a BMS is essential to ensure safe and optimized
operations of the ESSs. To achieve this goal, correct battery state estimation is mandatory.

3. Key Battery Parameters Estimation

Fundamentals for the BMS and supervisory control of battery-powered vehicles are
the accurate estimation of SoC and SoH. Knowledge of these is a prerequisite for effective
charging and the thermal and health management of the battery. In the following sections,
the main SoC and SoH estimation techniques are reported and discussed. For each category
listed, when available, the estimation errors are also reported.

3.1. State of Charge Estimation Methodologies

Commonly, the battery cell SoC can be defined as the ratio between the current cell
capacity, QC, and its nominal one, QN, provided by the manufacturer. The equation to
calculate SoC is provided as follows:

SoC =
Qc
QN

(1)
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SoC is usually expressed in percentage value, where 100% represents a fully charged
cell whereas 0% means a fully discharged condition. In the technical literature, several
techniques are suitable for SoC estimation. Figure 3 summarizes the estimation approaches
grouping them into three main categories: direct, model-based, and data-driven methods.
As can be seen in Figure 3, in this work, the Coulomb– counting (CC) method is listed in the
direct methods category, because it is related to the direct current measurements. It is worth
highlighting that several authors in the technical literature refer to CC and modified CC as
book-keeping methods [33,34], because in this method, the SoC estimation is established
by keeping track of the charging or discharging current.
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Figure 3. SoC estimation methods.

3.1.1. Direct Estimation Methods

The direct SoC estimation approaches can be classified into the following five cate-
gories: open-circuit voltage (OCV), internal resistance (IR), impedance spectroscopy (IS),
electromotive force (EMF) and CC. In the following sub-sections, a brief explanation of
each method is given.

(1) Open Circuit Voltage

OCV is a conventional approach to evaluate the SoC by measuring the circuit voltage
in an open circuit state and using SoC–OCV relationships. The SoC–OCV relationships are
not the same for different batteries, they are influenced by battery capacity and electrode
materials. For example, a lead-acid battery has a linear SoC and OCV relationship [35].
Conversely, the LFP battery shows a quasi-flat SoC–OCV relationship region. Within this
region, OCV variation is very small compared to SoC variation. Thus, misleading estimation
of SoC might occur [36] Although the SoC–OCV curve of lithium–ion batteries is relatively
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stable, it will change according to the charging/discharging rate, battery temperature,
cell variation, and cycle life of the battery [37]. To consider the aging mechanism, several
adjustments to the OCV modeling curve are necessary, such as incremental capacity or
differential voltage analysis [38]. While this method demonstrates simplicity and high
accuracy, it necessitates an extended resting period to attain the battery’s equilibrium
state, a duration influenced by environmental conditions. Additionally, precise voltage
measurements are essential due to the battery’s hysteresis characteristics.

(2) Internal Resistance

The IR method is based on the relationship between the internal resistance of the
battery and SoC. This estimation approach evaluates the internal resistance measuring the
charging/discharging current and the terminal voltage in the same short period [39]. IR is
computed as the ratio of the battery voltage and charging/discharging current following
Ohm’s Law:

R =
∆V
∆I

(2)

It is named Direct Current (DC) internal resistance [40]. It is worth emphasizing that if
the sampling period is shorter than 10 ms, only the ohmic internal resistance can be detected;
for a longer time, the internal resistance assessment becomes more complicated [41]. In
general, the IR value is in the order of milliohms and its measure is also challenging due to
the temperature and number of cycles’ influence. Furthermore, internal resistance changes
slowly and is hard to observe for SoC estimation; thus, this approach is not suitable for
online SoC estimation [42].

(3) Impedance spectroscopy

IS is an experimental method to characterize electrochemical systems, such as batteries,
and supercapacitors. During the measurement of an IS, a small alternate current (AC) flows
through the battery, and the voltage, the response concerning amplitude and phase, is
measured. The impedance of the system is determined by the complex division of AC
voltage by AC. This sequence is repeated for a certain range of different frequencies, and
the full range of frequency properties of the battery can be obtained. IS gives a precise
impedance measurement in a wide band of frequencies, thus providing a unique tool for
analysis of the dynamical behavior of batteries, which directly measures the nonlinearities
as well as very slow dynamics [20]. The IS method exhibits exceptional accuracy, quickly
and non-destructively capturing the dynamic characteristics of batteries. Nonetheless, this
method comes with a high cost, significant susceptibility to battery life and temperature
sensitivity. Furthermore, an accuracy loss in SoC estimation is observed if the battery
temperature changes greatly [41]. Therefore, the impedance-based method is not sufficiently
accurate to be implemented for vehicle applications [42].

(4) Electromotive force

The electromotive force (EMF) voltage of a battery is the OCV or equilibrium voltage
when a battery is in equilibrium or in an open circuit state for a long period [43]. Therefore,
EMF is useful to describe the relationship between the battery terminal voltage under
equilibrium conditions and several parameters such as temperature and SoC [44]. Through
the OCV relaxation technique, the EMF can be calculated when the battery is charged
or discharged and the current is subsequently interrupted. After a significant time has
elapsed since the current interruption, the change in OCV is negligible and the EMF can
be assessed as the OCV of the battery in its equilibrium condition (OCV = EMF) [45]. The
OCV relaxation process may take a lengthy time, especially if the battery is completely
depleted in cold conditions or with an excessive charge/discharge current rate [46]. Thus,
this method is not suitable for online applications.

(5) Coulomb Counting

In the CC method, the charging or discharging current of the battery is considered by
integrating the time to find the SoC. This method permits the inclusion of some internal
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battery effects such as self-discharge, capacity-loss, and discharging efficiency [47]. The
mathematical formulation [48] of this approach is as follows:

SoC(t) = SoC(t0)−
T

CN

∫ t

0
(η·i(t)− Sd)dt (3)

where SoC(t0) is the initial SoC value; T is the sampling period; CN is the nominal battery
capacity; η is the Coulomb efficiency; i(t) is the charging/discharging current; Sd is the
self-discharge rate. The initial SoC value is the main concern because it will cause errors in
the accuracy of the SoC estimation. When the initial SoC value is known, this method works
more efficiently considering a short time-period. Although this method has been widely
used in recent years, CC is not actually used as a sole tool for estimating SoC but rather is
used in combination with other techniques, e.g., in [49], the CC method is coupled with
OCV to enhance the initial SoC estimation considering the effect of the internal resistance
of the battery. Nonetheless, the easy implementation of the CC approach is not suitable for
online SoC estimation [50]. Table 2 summarizes the estimation errors via direct methods
for further comparison.

Table 2. SoC estimation errors via direct methods.

SoC Estimation Approach SoC Estimation Error Reference

OCV ≤±1.2% [51]
IR ≤±1.4% [39]

EMF ≤±2% [45]
IS ≤±1%; ≤±1.6% [20,52]

CC ≤±1.9%; ≤±4% [53,54]
Modified CC ±0.019%; ±0.039% 1 [49]

1 In charging and discharging.

3.1.2. Model-Based Estimation Methods

To address the direct methods’ limitations, in view of online battery parameter estima-
tions, model-based techniques have been introduced. These methods connect through a
battery model the measured battery signals (voltage, current and temperature) with the
battery SoC. A high-fidelity battery model is required to capture the characteristics of the
real-life battery and predict its dynamic behavior under varying operating conditions. In
a BMS algorithm, the model uses signals as inputs to calculate the SoC and other battery
states. The schematic battery state estimation diagram process is depicted in Figure 4.
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The most common battery models proposed are the electrochemical (EChM) and the
equivalent circuit (ECM).

The ECM model is composed of an open-circuit voltage source connected with a
combination of electric elements such as resistors, and capacitors to describe the battery
behavior under a certain load [55]. The simplest ECM, also known as the Rint model, is
an ideal OCV voltage source connected in series with an internal ohmic resistance, both
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functions of SoC, SoH, and temperature [56]. The internal resistance Rint value represents
the voltage drop in the cell when it supplies/absorbs current under a certain load. This
parameter defines battery performance and its SoH [57]. Improved versions of this basic
model are obtained by adding different resistor–capacitor (RC) branches to capture different
time constants inherent in the battery system. In the Thevenin ECM or first-order ECM, a
RC group is added to represent the voltage relaxation dynamics and describe the transient
response during charging/discharging phases [58]. A further improvement in the first-
order ECM consists of adding a capacitor in series to the internal ohmic resistance to
describe the OCV changing with the SoC value. This battery model is called Partnership
for a New Generation of Vehicles (PNGV) [59]. The PNGV model is an accurate nonlinear
equivalent circuit model for transient response process simulation. It can be used with high
currents and in charging/discharging severe conditions [41]. Nevertheless, the relatively
high complexity leads to an increase in computational effort and consequently lower real-
time performance. The so-called second-order ECM is composed of two RC branches to
take into account the slow and fast transient response caused by charge transfer and ion
diffusion phenomena [60]. The second-order ECM is widely used for online battery SoC
estimation since it is computationally efficient and accurate. The increase in RC branches
improves the model accuracy, however the computational effort increases as well [61].
Figure 5 illustrates the typical representations of the aforementioned models.
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The EChM models adopt differential equations to model battery physicochemical
phenomena such as diffusion and electrochemical kinetics. Hence, the definition of the
equations involves a specialized knowledge of electrochemistry [62]. The most accurate
EChM model is the pseudo two dimension (P2D). The key assumption for the P2D model is
the one-dimensional dynamics of chemical reaction, neglecting the variations over the other
two directions. Furthermore, to consider the intercalation/deintercalation of lithium on the
solid matrix and the ion diffusion over a single direction the existence of small particles
inside the electrolyte is assumed. As the main direction, the pseudo-radius of such particles
is superimposed [63]. The overall complexity of the model due to the high numbers of
partial differential equations and the computational time-consuming process to solve them
make the P2D not suitable for SoC online estimation [60]. Several simplifications have
been proposed for the P2D model for real-time application [64,65] at the cost of penalties
in SoC estimation accuracy. In comparison, EChMs offer a key advantage by inherently
incorporating the dependency of battery behavior on SoC and temperature. In contrast,
electrical models necessitate the storage of their parameters as look-up tables across diverse
SoC and temperature combinations to derive reliable SoC-OCV curves [42]. Nevertheless,
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the merits of the ECM-based approach, such as low complexity and high accuracy, make it
favorable for online SoC estimation.

Even though several approaches have been proposed to estimate directly SoC using a
battery model [9,66], this section just reviews electrical and electrochemical models because
they represent a prerequisite for battery state estimation approaches. Further advancements
in SoC estimation via model-based approaches are obtained by coupling a battery model,
generally first or second-order ECM, with an adaptive filter algorithm. Reducing the noise
influence on the battery model by the filter can improve the accuracy and robustness of the
battery SoC estimation [40].

(1) Kalman Filter-based algorithms

The essence of the Kalman filter (KF) algorithm is to use a recursive formula to calculate
the current state starting from a prior estimated state and current measurement signals to
minimize the mean of the squared error [60]. The filter then feeds back and recursively uses
prior prediction to determine the new best guess at each time step [67]. The self-correcting
nature of the KF algorithm makes it suitable for SoC online estimation. A Kalman filter
computes the states of the system by utilizing a process model, a measurement model, and
a set of noisy measurements of the inputs and outputs of the system. While the process
model contains all the information about the system dynamics, the measurement model
relates the outputs of the system to its inputs and states. The process and measurement
models predict the present state and correct the raw state estimation obtained from the
process model [68].

Depending on the equations’ linearization process, the KF algorithms can be grouped
into two main categories: linear KF (LKF) and non-linear KF. Among the nonlinear KF
algorithms, extended KF (EKF), sigma-point KF (SPKF) and cubature KF (CKF) can be
mentioned. SPKF is further divided into central difference KF (CDKF) and unscented KF
(UKF) [60].

LKF is commonly used as a data fusion algorithm in several technical applications due
to its robustness and acceptable computational cost to filter parameters from inaccurate
observation [69]. The basic idea of KF is to compare the measured terminal voltage with
the modeling one, and the difference is fed back to update the predicted SoC through a
gain matrix, as schematically depicted in Figure 6. The algorithm works as an optimal state
estimator with a self-correcting nature for real-time SoC estimation of the battery. It employs
a recursive process estimating the unknown SoC by exploiting previous knowledge, system
predictions and noisy measurement [70]. LKF is composed of two equations: a process
Equation (4), which is used to predict the current state xk from the prior state xk−1; a
measurement Equation (5) useful for updating the current state to converge to the real
value [70]:

xk−1 = Akxk+Bkuk + wk (4)

yk = Ckxk+Dkuk + vk (5)

where x represents the system state; u is the control input; w is process noise to capture the
uncertainties in the model; y is measurement input; v is measurement noise to capture the
measurement error; meanwhile, A, B, C and D are the time-varying covariance matrixes that
describe the dynamics of the system. Both measurement noise and process noise are defined
as Gaussian errors. Yatsui and Bai [67] presented a LKF-based SoC estimation method
for lithium-ion batteries. Experimental results validate the effectiveness of KF during the
online application reporting and also a low estimation of SoC errors. Dong et al. [71]
have developed a simplified linearized ECM to simulate the dynamic characteristics of a
battery when the OCV is not linear to apply LKF for SoC estimation. Despite LKF being an
efficient filtering algorithm proposed for tracking the state of linear systems in Gaussian
noise environments, its performance is limited when it is applied to systems which exhibit
hysteresis effects and strong nonlinearities during charging/discharging events [72]. Thus,
improved methods have been put forward to tackle this issue.
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A widely used method for battery parameter/state estimation for non-linear systems is
the extended Kalman filter (EKF) [73]. To deal with the non-linear characteristics of battery
models, EKF employs partial derivates and a first-order Taylor series to linearize the battery
model. The linearization process occurs at each step. In particular, Equations (4) and (5)
are modified as follows [74]:

xk+1 = f(xk, uk) + wk (6)

yk+1 = f(xk, uk) + vk (7)

At each time step, matrices of f(xk,uk) and g(xk,uk) are linearized close to the operation
point by the first order in the Taylor series and the remainder of the series are truncated. In
the technical literature, several applications of EKF or an improved version of it have been
proposed for SoC estimation. Jiang et al. [75] proposed a battery SoC estimation approach
via EKF. The experimental results reported showed an average SoC estimation error of
1% [75]. In [76], a comparison between a standard EKF and an improved EKF algorithm
was proposed. Although the experimental findings demonstrated that both filters have
good performance, the improved EKF showed a slightly better SoC estimation accuracy.
Similarly, Sepasi et al. [74] proposed an improved EKF variant including aging effects in
the battery electrical model. The novel approach reported has shown a low computational
burden with a good SoC estimation accuracy making it suitable for online implementation.
In several works, EKF has also been used with DD algorithms to enhance the SoC estimation
accuracy. For example, in [77] EKF has been adopted with a neural network. In particular,
NNs have been used to model the non-linear battery behavior, whereas the EKF has been
adopted for SoC estimation. Similarly, an EKF data-driven approach was proposed in [78].
The novel approach has produced an accurate SoC estimation within the 2% error.

Since the linearization process in EKF uses the first-order Taylor series, a linearization
error may occur under highly non-linear conditions due to a lower accuracy of the first-
order Taylor series. Furthermore, the accuracy of the EKF algorithm depends on battery
model parameters and the prior knowledge of the system noise signals. The assumption of
fixed measurement and process noise covariance matrices in EKF reduces the overall perfor-
mance of SoC estimation [79]. Thus, in practice, inappropriate initial noise information will
make the approach fail in ensuring its performance. To overcome this issue, the adaptive
updating of these matrices has been introduced through the adaptive EKF (AEKF) [80].
As stated previously, misleading SoC estimation may occur for highly nonlinear models
adopting EKF. To mitigate this problem, an improved version of KF has been proposed
named SPKF. This algorithm is capable of linearizing the process up to the third order of a
Taylor series expansion [81]. Rather than using Taylor-series expansions to approximate
the required covariance matrices, SPKF performs several functional evaluations whose
results are used to compute an estimated covariance matrix [82]. The algorithm selects
a set of sigma points with weighted mean and covariance values exactly like the values
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of the mean and covariance of the model being developed [35]. This approach presents
comparable computer complexity compared with EKF. In addition, the original functions
do not need to be differentiable and no derivate calculation is needed [82]. Based on the
weighing factor, the SPKF algorithm is classified into two categories: unscented Kalman
filter (UKF) and central difference Kalman filter (CDFK) [83]. The UKF estimates covariance
with statistical methods rather than with a Taylor series. In particular, UKF applies an un-
scented transformation, which is a method for calculating the statistics of a random variable
propagating through a nonlinear system [81]. In CDKF, a Sterling interpolation formula is
used to avoid derivative computing through polynomial approximation. This approach
uses central difference instead of a first or second-order Taylor series expansion [83].

(2) H∞ Filter

The H∞ filter (HIF) represents another viable solution to overcome the noise influence
on the accuracy of the traditional EKF algorithm. This algorithm considers the time-
varying element of battery parameters and does not require the details of process noise and
measurement noise [84]. HIF can restrict the effects of the uncertainty and perturbation
of the system model and no specifications of the disturbances and model uncertainties
are necessary. Accordingly, the battery SoC may be determined without needing the
exact statistical features of the system and measurement errors. Despite its robustness
and easy implementation, ageing, hysteresis and temperature effects could influence the
accuracy of the model [70]. In [85], the HIF algorithm was used to estimate the SoC of
lithium-ion batteries. The method was validated through real-time experimental battery
data. Zhang et al. [86] proposed a robust HIF to estimate the SoC of a lithium battery pack.
The proposed method takes into account battery time-varying parameters with no prior
knowledge of the process and measurement noise, respectively. Several UDD cycles have
been performed to test the algorithm’s performance. In order to enhance the SoC estimation
accuracy, HIF has been combined with DD techniques [87,88] and filter-based methods [89].

(3) Particle Filter

A particle filter (PF) is a probability-based estimator that uses the Monte Carlo simula-
tion technique to approximate the probability density function of a non-linear system with
a set of random weighted particles without any explicit assumption about the form of the
distribution [90]. The weight represents the chance of the particles to be selected in the prob-
ability density function [91]. When designing a particle filter, the main difficulty is to select
the proper proposal distributions that can approximate the posterior distributions [50].
Because PF is suitable for estimation for non-linear systems, such as battery models, it can
be adopted as a SoC estimator algorithm. In [91], a PF-based approach is proposed for
estimating simultaneously in real-time the state of charge and internal temperature of a
prismatic lithium-ion battery using a first-order ECM model. The PF-based solution was
compared with the traditional EKF algorithm in terms of SoC and temperature estimation
showing a faster convergence to the real values of SoC and internal temperature when com-
pared to the EKF solution. A similar result is reported by Gao et al. [92]. To deal with the
computational cost limitations of the PF, it is necessary to select a number of particles that
provide a good trade-off between the accuracy and reliability of the results [91]. In several
works [93,94], PF was implemented with other techniques to improve its efficiency at a cost
of more complexity. Table 3 summarizes the estimation errors for further comparison.

(4) Observer-based methods

An observer-based method is realized to provide state feedback on the estimated
values of the state variables of a system based on external measurements [95]. Several
observer-based methods have been proposed for battery state estimation.

Sliding-mode observer (SMO) is an observer algorithm with the advantage of compen-
sating the modelling errors caused by variation in the parameters of the circuit model and
can help overcome some of the drawbacks that other model-based methods present [55].
With respect of SoC estimation, Ning et al. [96] used SMO to estimate the battery SoC based
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on a parameter adaptive battery model to reduce systematic errors. The proposed approach
shows good estimation accuracy. In [97], based on a second-order ECM, a novel SMO was
proposed for SoC estimation. Different test cycles were performed to assess the robustness
and estimation accuracy of the proposed algorithm.

Table 3. Filter-based SoC estimation errors.

SoC Estimation Approach Soc Estimation Error (%) Reference

LKF ≤±1.76; ±2 [67,71]

EKF
≤±1.5; ≤±1; ≤±1; [74–76]

±0.86; ≤±1.5 [77,78]
AEKF ≤±2 [80]
UKF ±0.80; [73]

HIF
≤±2.49; ≤±1.1; ≤±0.95; [86–88]

≤±0.5 [89]
PF ≤±3.0; ≤±0.5; ≤±1.0 [90,93,94]

The proportional integral observer (PIO) is an efficient algorithm to estimate the state
of a system with unknown input disturbance [95]. It has been observed that this approach
has lower computational complexity but high precision without matrix operation, even
though the original SoC is uncertain [50]. Xu et al. proposed a PIO approach for SoC
estimation based on a first-order ECM. To validate the proposed algorithm, a UDDS cycle
is performed experimentally [98]. In [36], a dual-circuit observer based was proposed to
estimate SoC. A PIO circuit path was used to deal with capacity error and initial error.
Even though the initial SoC was unknown, the proposed approach yielded reasonable
SoC accuracy.

Another observer approach is that of the non-linear observer (NLO). This approach is
used to deal with linear systems and non-linear observation equations. An advantage of
this method is that it does not need complicated matrix operations, thus the computation
cost can be reduced [99]. In [100], an NLO is tuned through an optimization algorithm to
enhance the observer robustness and SoC estimation accuracy. In [99], a novel method for
SoC estimation using a NLO is presented. The proposed approach is then compared with
EKF and SMO showing a faster convergence and an improved SoC accuracy, respectively.
Table 4 summarizes observer-based SoC estimation errors.

Table 4. Observer-based SoC estimation errors.

SoC Estimation Approach SoC Estimation Error (%) Reference

SMO ≤±2; ±0.86 [96,97]
PIO ±2; ≤±2.5 [36,98]

NLO ≤±2.89; ≤±2 [99,100]

3.1.3. Data-Driven

Data-driven (DD) approaches consider the battery as a black-box model. In this case,
the battery is presumed to be an unknown system and the internal dynamics have been
learned through a vast quantity of data [50]. Specifically, the model considers online
measurable parameters such as battery current, voltage and temperature as inputs and
battery state of charge (SoC) as the output. The model utilizes intelligent algorithms to
train on input and output data, establishing the relationship between them [41]. Figure 7
schematically depicts the process. The main DD approaches exploited for SoC estimation,
as shown in Figure 3, include fuzzy logic (FL), neural network (NN), genetic algorithm
(GA), and particle swarm optimization (PSO). These approaches, being free of capturing
any physico-chemical mechanisms, have potential advantages such as flexibility and strong
adaptability and being highly nonlinearly matching [101]. However, the main disadvantage
of these algorithms is their sensitivity to the quality of the training dataset and that they
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may easily encounter overfitting or underfitting problems. In addition, the on-board
implementation of DD methods for online SoC estimation is currently challenging.
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In the following sub-sections, the DD approaches previously listed are presented
and discussed.

(1) Fuzzy logic

The FL method provides a powerful means of modeling nonlinear and complex
systems [47]. This methodology is regarded as a problem-solving approach that simplifies
all input data, characterized by noise, vagueness, ambiguity and imprecision, through the
application of objective rules to determine the real value of the input [102]. In addition,
FL does not require a precise mathematical model of the system, as it only uses the input
data and identifies the parameters using the fuzzy rule base. Fuzzy methods are robust
and tolerant to imprecise measurements and component variations with rules that are
easily tunable. The basic idea of a fuzzy algorithm is to formulate human knowledge
and reasoning as a collection of “If–Then–Else” rules tractable by a computer [103]. The
FL process can be divided into the following steps [104]: First, the inputs are fuzzified,
or otherwise are converted into fuzzy language and grouped into membership functions.
In the rule step, the relationship between input and output variables is described and a
database defines the membership functions for the input and output variables. Finally, the
fuzzy output value is defuzzied and translated into a real analogue value output. Figure 8
shows the basic steps of the FL approach.
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At present, few studies use only FL to assess battery SoC [105,106]. Commonly, fuzzy
algorithms are combined with other intelligent algorithms to enhance SoC estimation
accuracy. For example, Burgos et al. [107] proposed a novel fuzzy logic algorithm to predict
the battery SoC. In particular, the fuzzy model characterized the relationship between the
battery OCV, SoC and the discharge current. It was used in combination with an EKF
to predict the battery ScC. In [108], the authors proposed a method to estimate battery
SoC involving fuzzy algorithms to process data obtained by IS and CC with an estimation
error of about 5%. Similarly, Malkhandi et al. [109] proposed a model for SoC estimation
adopting CC and a learning system based on FL. Despite a reasonable accuracy in SoC
estimation, the FL approach is expensive in terms of storage and computational effort
requirements to determine the parameters of a complex and nonlinear system. Thus, this
approach is not suitable for online SoC estimation.
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(2) Neural network

NN is a mathematical tool with adaptability and self-learning skills able to form a
complex nonlinear system. Commonly, a NN is formed from three layers [102]: the input
layer, the hidden layer and the output layer. The input layer transfers the data to the hidden
layer. Generally, as input data discharge current, the terminal voltage and temperature are
considered [35]. The hidden layer provides the mathematical junction between input and
output through its neurons [62]. In the third layer, SoC is addressed as output. The NN
main advantage is that it can be utilized without knowledge of the cell’s internal structure.
Thus, NN is suitable for the SoC estimation of all kinds of batteries. Nevertheless, to ensure
a reliable SoC estimation, a large quantity of training data and storage are required. In
addition, non-negligible computational effort is necessary to manage the whole training
process [33]. Therefore, the NN estimation approach is challenging to implement on board.
Chen et al. [110] combined a NN with an EKF-based algorithm for the estimation of SoC.
This hybrid approach provides an estimation of SoC accuracy within 1%. In [111], an
OCV-based method for SoC estimation using the dual neural network fusion battery model
was proposed. A first NN is used to estimate battery parameters of first- and second-order
models. A second NN is employed to assess SoC via OCV-based methods for both ECMs.

(3) Genetic algorithm

A genetic algorithm (GA) is an optimization technique where the variables of interest
of the system to be optimized are characterized in the form of strings called chromosomes.
GA simulates natural biological evolution according to the “fitness level” of the individuals
which provides a large set of possible solutions to a given problem. Through the genetic
operators (selection, crossover and mutation) and natural selection, improved generations
are bred. By selection operator, parent solutions that have better fitness levels are more likely
to reproduce which means better genes are more likely to dominate the next generation.
Crossover combines the features of two parents at a certain crossover fraction to form new
solutions by swapping corresponding segments of parent chromosomes. By randomly
changing one or more genes at a low mutation rate, mutation introduces variability into
the next generation that will stop GA converging at a local minimum [112]. A GA can
be used both for single and multi-objective optimization, with the search strategy that,
through iterations, maximizes or minimizes a given function of a properly formulated
problem [113]. The idea of coupling a numerical model of a given engineering unit with an
algorithm for decision-making has been proven to be an effective and cost-saving option
to achieve the desired results, even without resorting to real counterparts and spending
time in heavy experimental tests [114]. Practically, in SoC estimation applications, the
chromosome is a string containing battery parameters such as SoC. The algorithm after
the creation of a random set of chromosomes, via an iterative process, finds the optimal
solution. It is necessary to obtain the definition of a stop criterion via an objective function
in order to select the best population in each iteration [62]. Xu et al. [115] combined CC
and a first-order ECM to estimate the battery SoC. Their proposed approach used GA to
optimize battery parameters. Similarly, in [112], the GA was used to find the optimum
parameters of an equivalent model of a LiFePO4 battery pack to estimate battery SoC
via UKF.

(4) Particle swarm optimization

PSO is a nature-inspired optimization technique. The inspiration came from the social
behavior of groups of animals, such as schools of fish or flocks of birds. It was first presented
by Kennedy and Eberhart [116]. The algorithm first generates a random population, then
the next population is generated based on an objective function to be optimized [62]. PSO
is simpler than the GA approach and has several advantages such as fewer parameters
to be tuned, lower computational effort and higher degree of convergence. Nevertheless,
it is time-consuming to properly tune the parameters [117]. PSO is used in a wide range
of industry applications [118–120], and has been extensively used in battery parameter
estimations [121,122]. Sun et al. [123] adopted PSO to tune up a Thevenin ECM to identify
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the critical parameters useful to SoC estimation. The proposed algorithm can estimate
battery SoC with negligible errors. Similarly, Ye et al. [124] combined PSO and an adaptive
algorithm to estimate battery parameters and SoC. DD-based algorithms’ SoC estimation
errors are summarized in Table 5 for further comparison.

Table 5. SoC estimation errors via DD approaches.

SoC Estimation Approach SoC Estimation Error (%) Reference

FL ±5; ±5 [108,109]

NN
≤±1; ≤±1.03; [110,111]

≤±0.75 [111]
GA ≤±1; ≤±1 [112,115]
PSO ≤±1.5; ≤±1; ≤±1 [121,123,124]

3.2. State of Health Estimation Methodologies

Battery aging is a long-term gradual process which influences the battery health status.
The increasing internal battery resistance with battery aging is one of the critical aspects
limiting the lifetime of batteries. It is well-known that battery internal resistance changes
with temperature and SoC [125]. In particular, high temperatures will also accelerate
some irreversible chemical reactions. As a result, the reduction in the active material of
the battery causes the aging and fade in capacity [5]. Increasing the number of battery
charging/discharging cycles leads to a battery health status degradation and consequently
an attenuation of its power and capacity. Furthermore, while the capacity decreases, the
internal resistance increases [19]. In general, as the battery ages and its chemical reactions
such as the growth of the solid electrolyte interface disrupt the migration of ions, the
internal resistance or capacitance irreversibly changes [126]. Because a battery can be
represented as an ECM, both capacity and internal resistance are commonly adopted for
the SoH definition. Concerning the internal resistance [127], SoH is defined as follows:

SOH =
REND − R
REND − Ri

× 100% (8)

where REND is internal resistance at the end of battery life; R is the resistance at the current
state; and Ri is the initial resistance when the battery is new.

As mentioned, capacity loss is another phenomenon occurring with battery aging.
Thus, concerning the capacity [126], SoH is defined as follows:

SOH =
Ci

Co
× 100% (9)

where C0 is the rated capacity whereas Ci is the current available capacity of the battery.
Several methods have been developed over the years for estimating battery SoH. In general,
the estimation methodologies can be divided into direct, filter-based and data-driven.
Figure 9 summarizes the different approaches for SoH estimation.

Since SoC and SoH are closely related, the estimation methods are also quite similar,
thus, in the following sub-sections, a brief description and the most relevant findings
regarding the SoH estimation are reported.

3.2.1. Direct Estimation Methods

In this section, the most important common direct methods are reported and briefly
disseminated. These methods are carried out in laboratories to collect data and measure-
ments that may be utilized over time to better understand and analyze the aging behavior
of the battery.

Internal battery resistance is considered a health status indicator which defines the
voltage drop when a current is applied to the battery. This parameter is influenced by
battery aging and degradation and its value increases as SoH decreases. Thus, internal
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resistance is considered a SoH indicator [8]. To ascertain IR, pulse discharge and IS are the
most common methods [128]. In the pulse discharge method, a high-rate pulse current
is applied to the test battery, and the internal resistance is calculated using Ohm’s law
following Equation (1). It is worth highlighting that in this case, the pulse voltage change
and pulse current variation are utilized to assess the resistance. Chen et al. [129] proposed a
method to estimate SoH through the established linear relationship between ohmic internal
resistance and capacity fade. An online estimator is also proposed for SoH evaluation.
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Electrochemical impedance spectroscopy (EIS) provides a non-destructive measure-
ment of battery internal resistance over a wide range of frequencies under low current
loads [130]. Since battery impedance increases with aging and different battery dynamics
tend to affect different frequency ranges on the EIS measurement, IS can be used as a
diagnostic tool to monitor battery SoH [131]. Nonetheless, the definition of an EChM,
unique for each battery, and the expensive instruments required ensure that EIS methods
are only for lab purposes [33]. Eddahech et al. have proposed an EChM model for data and
SoH estimation through EIS. In the same work, adopting a NN, the authors extended the
SoH monitoring to different battery types [132]. Similarly, in [133], a novel approach based
on EIS for SoH assessment was proposed with a good estimation accuracy.

The CC method is also used to estimate SoH [134]. The transferred amount of ampere-
hours is continuously tracked during a full charge–discharge cycle to assess the remaining
capacity [135]. SoH is computed through relation (7) as the ratio of the computed capacity
and the rated one. This method is time-consuming due to the continuous tracking of
ampere-hours. Furthermore, a high storage capacity is required. Despite its simple im-
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plementation, frequent recalibration is needed to avoid errors in charge integrations [131].
In [135], an enhanced CC method was proposed to estimate SoH. The evaluation was
performed via adoption of the maximum releasable capacity.

The OCV-based SoH estimation method can be performed in both online and offline
states. However, establishing a correlation between SoH and OCV requires thorough and
time-consuming laboratory testing [134]. In [136], the charging curves were monitored at
different lifespans of the battery to assess the capacity fade and model parameters based on
an EChM to estimate SoH. It is reported that a SoH estimation error is under 3% in all aging
conditions of the battery. Weng et al. [137] used the OCV model and incremental capacity
analysis to evaluate battery aging characteristics at different operating temperatures for
predicting SoH.

Direct methods are simple and easy to implement, with a low computational burden.
Nevertheless, these methods are constrained by test conditions and are not suitable for
real-time applications. The estimation errors of the listed approaches are provided in
Table 6.

Table 6. SoH direct estimation errors.

SoH Estimation Approach SoH Estimation Error (%) Reference

IR ≤±4 [129]
EIS ≤±2; ≤±2 [132,133]
CC ≤±1 1 [135]

OCV ≤±3; ≤±1 [136,137]
1 after eighth cycles.

3.2.2. Filter-Based Method

As introduced in Section 3.1.2, KF algorithms use a series of measurements taken over
time (i.e., voltage, current and temperature), to estimate the output variable that tends to
be more precise through a recursive update of the estimated variable. As a result, KF and
its extensions can be adopted as the SoH estimator [131]. In contrast, batteries degrade
in a nonlinear manner, consequently, the overall noise does not always exhibit Gaussian
behavior. Thus, instead of using LKF which could not converge, its extensions can address
this problem [8]. Kim et al. [138] applied a dual-extended Kalman filter (DEKF) for SoH
prediction. Furthermore, NN is used to identify typical battery patterns to enhance SoH
estimation. The proposed method addresses good estimation accuracy, mitigating the issue
of high complexity and computational requirements. Similarly, Azis et al. [139] proposed a
DEKF approach to simultaneously estimate SoC and SoH. The first EKF is used to predict
SoC, whereas the second is used to estimate Rint and actual capacity to determine SoH.

As mentioned in Section 3.1.3, PF is suitable for nonlinear systems with non-Gaussian
noise. Beyond SoC estimation, PF can also be utilized for predicting battery lifespan and
health prognosis. Zhu et al. [140] proposed a novel combination of PF and UKF to predict
battery SoH based on a second-order ECM of a commercial cell. During the charging and
discharging phases, the proposed algorithm showed a maximum estimation error of up
to 0.38% and 0.62%, respectively. An improved PF algorithm is presented in [141]. The
proposed algorithm achieves a high accuracy by settling the SoH estimation error at a very
low level.

Another widely used algorithm is the least square (LS)-based algorithm. This algo-
rithm identifies the best-fit function that minimizes the sum of the quadratic errors between
the measured output and system response [55]. It provides an accurate estimation of battery
parameters that are directly related to battery states such as internal resistance for battery
SoH [8]. For instance, in [142], a LS-based algorithm was proposed to estimate SoH. The
proposed method can estimate battery SoC and SoH based on terminal voltage and current,
without a priori knowledge of battery parameters. The effectiveness and accuracy of the
proposed method are confirmed via simulation. Wu et al. [143] proposed a novel LS-based
algorithm to estimate SoH for LiFePO4 batteries. A temperature correction method was



Energies 2024, 17, 202 19 of 32

also proposed to avoid ambient temperature influence on SoH accuracy. Experimental tests
have demonstrated the accuracy of the proposed method.

In Table 7, filter-based SoH estimation errors are listed. Although these methods
are characterized by a high degree of accuracy, they are burdened by the definition of a
degradation model of the system to properly consider battery aging [130].

Table 7. Filter-based SoH estimation errors.

SoH Estimation Approach SoH Estimation Error (%) Reference

DEKF ±5 [138]
PF + UKF <±0.38; <±0.62 * [140]

PF <±2 [141]
LS <±0.35 [143]

* in charge and discharge phase, respectively.

3.2.3. Data-Driven Methods

The growing interest in DD methods for estimating battery SoH, as an alternative to
traditional SoH estimation methods, is related to their ability to operate without a com-
prehensive understanding of implicit changes in battery chemical parameters or working
principles. Nonetheless, to achieve a high SoH estimation accuracy through DD methods,
a large quantity of battery data and considerable computational effort are required [144].
These methods can be grouped into FL, GA and ML methods.

The FL method is a powerful method, but it requires a large quantity of testing data,
relatively large computations, and a good understanding of the batteries themselves to be
proven accurate for SoH prediction [131]. Kim et al. [145] used a fuzzy logic-controlled
methodology to predict the battery SoH. First, the cell resistance and maximum capacity
were determined based on voltage, current, temperature, and time, and then a fuzzy logic
approach was applied to estimate the battery SoH using the resistance and the maximum
capacity values. In ref. [146], a FL was proposed for SoH prediction to avoid battery failure.

The GA technique is also suitable to estimate SoH. Several works are proposed in the
technical literature employing a GA algorithm coupled with a battery model to estimate
battery parameters. For instance, in ref. [147], SoH is estimated online by using a second-
order ECM coupled with a GA.

With the rapid development of processing capability, data storage and communi-
cation technologies, SoH prediction based on ML algorithms has received widespread
attention [128]. Traditional ML algorithms treat raw data, including voltage, current and
temperature, as direct inputs. Nevertheless, the nonlinear matching capability is heavily
contingent on aging data, due to the significant influence of health indicators on the SoH
estimation performance [148]. Therefore, extracting effective features correlated to health
mechanisms is a crucial step for effective and reliable SoH estimation. Currently, various
advanced methods combined with life-related feature extraction have been proposed and
widely used for SoH monitoring [149]. Neural networks are one of the most popular algo-
rithms used to process training data and measured data in machine learning. For instance,
Song et al. [150] have implemented a feedforward neural network (FFNN) trained on a
huge amount of data collected from big data platforms to predict SoH. In [151], the authors
proposed a back propagation neural network (BPNN) to estimate SoH. The reliability and
effectiveness of the proposed approach were tested experimentally. LSTM, as a variant of
a recurrent NN, has also attracted extensive attention for SoH estimation to capture and
update the degradation data due to its ability to learn both on short-term and long-term
scales [149]. Hong et al. [152] proposed an LSTM-based SoH estimation by fitting the rela-
tionships between aging factors and operating conditions. The evaluation was oriented to
real driving conditions. Similarly, Falai et al. [153], based on a LSTM framework, proposed
a novel approach for online SoH estimation to reduce computational time. For further
comparison, DD-based SoH estimation errors are summarized in Table 8.
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Table 8. Data-driven-based SoH estimation errors.

SoH Estimation Approach SoH Estimation Error (%) Reference

FL ±1.46–9.2 [146]
GA Not provided //

FFNN ±0.45 [150]
BPNN ±1.5 [151]
LSTM ±0.13 [152]

In this section, the most common ML approaches for SoH estimation are provided
in brief overview. For a more exhaustive and comprehensive overview of all of the ML
methods for SoH estimation, it is suggested to consult refs. [119,129].

4. Battery Management System Overview

As stated previously, battery-powered vehicles could represent a promising solution
for a more sustainable form of transportation. A reliable and cost-effective management of
on-board ESSs is a key point for the development of vehicles, ensuring proper performance
as well as the safe operation of the on-board ESSs. Figure 10 shows a schematic overview
of the key features of a modern BMS.

Energies 2024, 17, x FOR PEER REVIEW  21  of  34 
 

 

estimation performance [148]. Therefore, extracting effective features correlated to health 

mechanisms is a crucial step for effective and reliable SoH estimation. Currently, various 

advanced methods combined with life-related feature extraction have been proposed and 

widely used for SoH monitoring [149]. Neural networks are one of the most popular al-

gorithms used to process training data and measured data in machine learning. For in-

stance, Song et al. [150] have implemented a feedforward neural network (FFNN) trained 

on a huge amount of data collected from big data platforms to predict SoH. In [151], the 

authors proposed a back propagation neural network (BPNN) to estimate SoH. The relia-

bility and effectiveness of the proposed approach were tested experimentally. LSTM, as a 

variant of a recurrent NN, has also attracted extensive attention for SoH estimation to cap-

ture and update the degradation data due to its ability to learn both on short-term and 

long-term  scales  [149]. Hong  et  al.  [152] proposed  an LSTM-based SoH  estimation by 

fitting the relationships between aging factors and operating conditions. The evaluation 

was oriented  to  real driving  conditions. Similarly, Falai  et al.  [153], based on  a LSTM 

framework, proposed a novel approach  for online SoH estimation  to  reduce computa-

tional time. For further comparison, DD-based SoH estimation errors are summarized in 

Table 8. 

In this section, the most common ML approaches for SoH estimation are provided in 

brief overview. For a more exhaustive and comprehensive overview of all of the ML meth-

ods for SoH estimation, it is suggested to consult refs. [119,129]. 

Table 8. Data-driven-based SoH estimation errors. 

SoH Estimation Approach  SoH Estimation Error (%)  Reference 

FL  ±1.46–9.2  [146] 

GA  Not provided  // 

FFNN  ±0.45  [150] 

BPNN  ±1.5  [151] 

LSTM  ±0.13  [152] 

4. Battery Management System Overview 

As stated previously, battery-powered vehicles could represent a promising solution 

for a more sustainable form of transportation. A reliable and cost-effective management 

of on-board ESSs is a key point for the development of vehicles, ensuring proper perfor-

mance as well as the safe operation of the on-board ESSs. Figure 10 shows a schematic 

overview of the key features of a modern BMS. 

 

Figure 10. BMS main functions. 
Figure 10. BMS main functions.

As can be seen, the main functions can be grouped mainly into the following categories:
data acquisition and storage, monitoring, state estimation, cell balancing, thermal manage-
ment and diagnosis. Each category will be briefly discussed in the following sections.

a. Data acquisition and storage

The BMS data acquisition system is composed of sensors, measurement hardware, the
processor and software [6]. Temperature, terminal voltage, current and other information of
each cell in the battery pack are collected in real-time to obtain an accurate overview of ESS
working conditions. The requirement for voltage and current measurements vary according
to the type of battery technology employed [154]. The acquired data are processed and then
stored by BMS for equalization of the battery cells, thermal management, fault diagnosis
and control of the other functional parts via the BMS controller [31].

b. Monitoring

In real working conditions, battery behavior changes dynamically. Thus, continuous
monitoring is required to obtain information about the battery operating conditions. This
function, involving the acquired data, indicates the necessity of the charge and discharge
control, avoiding overcharging or undercharging conditions, etc. During operation, an
abnormal variation in the battery current and voltage values may cause system failure or
system burnout [31]. Accordingly, it is crucial to monitor the current and voltage of the
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battery to prevent over-current/voltage and undercurrent/voltage operations [155]. The
performance and durability of the battery are primarily contingent on its charging and
discharging processes. An efficient control of these processes can mitigate the memory
effect, thus extending the battery lifespan.

c. State estimation

In real-time operating conditions, the battery state changes due to complex, time-
varying and nonlinear battery characteristics [156]. Battery state estimation enhances the
battery operability and increases the durability of the designed system [157]. State estima-
tion is mainly referred to SoC and SoH estimation. An accurate estimation of the battery
SoC is necessary to prevent battery failure, provide efficient cell balancing, and accurate
SoH estimation. SoH estimation is crucial in selected energy management strategies to
prolong battery life and appropriately arrange for the replacement of the battery [22].
Despite the importance of state estimation, the SoC and SoH values cannot be measured
directly from the battery. As a result, using embedded algorithms, the BMS must estimate
the current state of the battery from collected real-time battery data [156]. As thoroughly
reviewed in this work, several methods are suitable for SoC estimation. According to [60],
KF family algorithms represent the right trade-off between complexity and accuracy due
to their self-correcting nature and acceptable computational burden for online implemen-
tation. Conversely, SoH estimation is more challenging due to the complex nonlinear
aging mechanism of the battery. As reviewed in Section 2, more complex intelligent algo-
rithms have been proposed to enhance SoH estimation accuracy. Nevertheless, their online
implementation is currently challenging owing to BMS limited computer capability and
data storage [158]. Estimation of the battery state not only helps to determine whether
the operational environment is safe and reliable but also provides information about the
charge–discharge operation, which is especially important for cell balancing [159].

d. Cell balancing

The concept of cell balancing is related to the consecutive charge–discharge cycle that
may cause unequal voltage ranges in individual cells due to changes in their physical
characteristics [160]. Imbalanced voltage and charge may reduce the overall performance
and durability of ESSs [80]. Thus, cell balancing is necessary and can be provided by
active and passive balancing techniques. In passive cell balancing, the charge in excess
is dissipated as heat through a resistor. In active cell balancing, the charge is effectively
transferred from a highly charged cell to a low one via a capacitor or an inductor [161].

e. Thermal management

A thermal management system (TMS) is responsible for controlling the heating/cooling
apparatus to maintain the battery temperature within a specific temperature range and
reduce the temperature gradients and temperature inhomogeneity across the pack. Conven-
tionally, the TMS is implemented onboard. Nonetheless, due to the computational limits
of a local BMS, the thermal model is the most common model used for battery TMS [23].
Currently, thermal management represents a challenge for future BMS.

f. Diagnosis

The BMS is essential for evaluating and diagnosing faults. The fault diagnosis tech-
nology is composed of a system database and records, an intelligent control program,
communication networks and other technical measures [31].

5. Towards the Future: BMS in the Cloud Applications

As outlined in the literature studies [158], the conventional BMS is constrained by
limited data logging and computational capability. Currently, as the number of batteries
increases, the amount of computing and data storage required by BMS grows exponentially,
and the state estimation methods exhibit inadequate adaptability under extreme conditions,
making battery safety concerns more prominent [162]. Therefore, the development of more
advanced and intelligent BMS is ongoing [10].
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A promising solution to tackle such limitations in local BMS could be represented
by the adoption of BMS in-cloud solutions. The advantages of adopting a cloud-based
BMS could be related to simplifying local computing and implementing more accurate
and complex algorithms in the cloud for battery system diagnostics [163]. Locally, BMSs
should address their own functions; meanwhile new features, such as data-based lifetime
prediction, system optimization and advanced battery state estimation, which are hard to
implement in onboard BMSs, can be implemented in the cloud [21]. The cell monitoring
function can be improved significantly with the help of the cloud platform, due to the use
of more historical data and a better user interface [22]. As seen in the previous section,
an efficient battery thermal management system is crucial to maintain battery tempera-
tures within the proper range and to decrease the temperature variance between cells.
Cloud-based BMSs can provide computing power support for the identification of these
parameters, so a precise and more accurate thermal management will be realized in the
future [23]. The restricted local data storage capacity of the BMS could be overcome with
the adoption of a cloud-based solution that potentially offers an unlimited data storage ca-
pacity [164]. With the cloud platform, the use of big data and machine learning algorithms
could potentially analyze large quantities of data and identify patterns that can be used to
predict battery states, health status and degradation. The efficiency of such an approach is
related to the amount and consistency of the training dataset [165].

Several research studies have investigated cloud-based solutions for state estimation.
For instance, Li et al. [21] have proposed a cloud-based BMS application for SoC and SoH
estimation using an adaptive extended HIF and PSO, respectively. Similarly, in ref. [166], a
cloud-based SoC and SoH estimation was carried out by adopting different ML techniques.
In ref. [167], a cloud-based SoH estimation method for lithium-ion batteries using sparse
charging data was proposed. A health status indicator was extracted from an ECM model.
By using the experimental data deployed on the cloud computing system, the correlation of
battery health with the health status indicator was verified and SoH was estimated through
data-driven algorithms. In Table 9, estimation errors are reported for further comparisons.

Table 9. In-cloud battery state estimation errors.

In-Cloud Estimation Estimation Error (%) Reference

SoC ±0.49
[21]SoH ±0.74; ±1.74

SoC ±0.549
[166]SoH ±0.603

SoH ≤±2.0 [167]

It is worth dwelling on several drawbacks that need to be addressed to fully exploit
BMS in the cloud. A fast and reliable internet connection is a prerequisite to guarantee
seamless battery system operations [163]. With this regard, a continuous data exchange
is provided from the onboard BMS to the cloud. Thus, a concern may be related to the
communication channel between local and in-cloud systems that can be compromised
and manipulated by adversaries leading to misleading battery control. Security gaps and
potential damage should be addressed for an appropriate cloud-BMS implementation [168].
To ensure secure and private data transmission, including V2X communication, proper
protocols can be used [33]. Complexity and cost of implementation are other two aspects
to take into account that need to be assessed extensively. The costs of operating and
maintaining the cloud platform depend largely on the amount of data and algorithms used
on the cloud [22]. Lastly, a non-negligible aspect is the lack of dedicated legislation and
standardization for this specific field [168].
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6. Summary and Future Outlook

This paper discusses the SoC and SoH estimation approach including their mer-
its, limitations and estimation errors from the literature. For SoC and SoH, the estima-
tion methods can be mainly grouped into three categories: direct, model-based, and
data-driven methods.

Since direct methods are only for laboratory purposes, these methods are not suitable
to be implemented online.

SoC model-based estimation approach, in particular, KF and its extensions, represent
the right trade-off between complexity and estimation accuracy due to their self-correcting
nature and acceptable computational burden for online implementation. Conversely, model-
based SoH estimation is more challenging due to the complex nonlinear aging mechanism
of the battery. Consequently, it is crucial to strike a balance between the accuracy of the
SoH estimation and the complexity of the model. Because of the variability in operating
conditions, EchM- and ECM-based models may not be completely accurate. Accordingly,
accurate model-based SoH estimation remains a challenge.

Data-driven methods have gained increasing attention for estimating battery SoC
and SoH because they do not require an understanding of implicit changes in battery
chemical parameters or working principles. In particular, for the SoH estimation approach,
a growing trend is represented using ML techniques. The main advantage is represented by
the SoH prediction based on previous aging data at the cost of time-consuming experiments
to collect them. With this regard, the consistency and reliability of the training dataset for
the intelligent algorithm is the main concern. Notwithstanding, the computational effort is
another non-negligible aspect to consider. Table 10 summarizes the pros and cons of the
discussed estimation approaches.

Table 10. Summary of the state estimation approaches.

Estimation Approach Pro Cons

OCV Simplicity and high accuracy
Not suitable for online implementation due to long rest

time. Extensive laboratory tests are necessary to find
SoH–OCV correlation

IR Simple and easily implementable
Internal resistance changes slowly and is hard to

observe for SoC estimation, thus it is not suitable for
online estimation.

EMF Simple and easily implementable The OCV relaxation process may take up a lengthy time
and is not suitable for online applications.

IS Accurate, quick, and non-destructive
capturing of dynamic batteries behavior

For lab purposes only; expensive, it requires a dedicated
battery model.

CC Simple to be implemented with low
computational cost

This method is time-consuming due to the continuous
tracking of ampere-hours.

KF Real-time estimation with high accuracy
Non suitable for the non-linear problem. It could not

converge for SoH estimation due to non-linear
degradation process of the battery.

EKF Real-time estimation for non-linear problems A linearization error may occur under highly
non-linear conditions.

UKF For strong non-linear problem; comparable
computational effort with EKF Its robustness depends on the linearization process.

HIF Overcomes the noise influence on the
accuracy of the traditional EKF algorithm

Aging, hysteresis, and temperature effects could
influence its accuracy.

PF Suitable for nonlinear systems with
non-Gaussian noise

The main difficulty is to select the proper proposal
distributions that can approximate the

posterior distributions.
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Table 10. Cont.

Estimation Approach Pro Cons

SMO Compensates for the modelling errors caused
by parameter variations of the circuit model Difficult to determine the gain.

PIO Good accuracy Complicated controllers are necessary.

NLO It does not need complicated matrix
operations; reduced computation cost Accuracy may be influenced by gain determination.

FL
Suitable for complex and non-linear

problems, a precise mathematical model is
not a prerequisite

Expensive in terms of storage and computational effort
requirements. Not suitable for online SoC and

SoH estimation.

GA Precise and robust
Requires high computational effort, generally coupled

with another method for SoC and SoH estimation.
Furthermore, a proper tuning is necessary.

NN
Strong adaptability and self-learning skills;

no knowledge of the cell’s internal structure
is necessary; ideal for parameter estimation

A large amount of training data and storage is required;
non-negligible computational effort; challenging for

on-line implementation.

PSO
Simpler than the GA approach; fewer

parameters to be tuned; lower computational
effort; higher degree of convergence

Time-consuming in parameter tuning

As pointed out, the conventional BMS is constrained by limited data logging and
computational capability. Furthermore, as the number of batteries increases, the amount of
computing and data storage required by BMS grows exponentially. Thus, an improvement
is expected. A promising solution could be represented by bridging the more demanding
features of the local BMS into the cloud. The advantages of adopting a cloud-based BMS
could be related to simplifying local computing and implementing more accurate and
complex algorithms in the cloud for battery state estimation and diagnostics.

In conclusion, the development of the V2X technology and faster connection will
allow an enhancement of BMS bandwidth requirements. Therefore data-driven battery
management schemes based on big data and cloud platform computing will become
potentially the future trend.

7. Conclusions

This study deals with a comprehensive and novel overview with particular reference
to the research status regarding the SoC and SoH estimation methods. The specificity of this
study relies on the fact that it provides an overview of the current BMS key features and
is also provided in terms of functionality and usability highlighting the main drawbacks.
Finally, an assessment of the potential use of a cloud BMS solution is carried out with an
outlook on future perspectives. The main outcomes are summarized as follows.

A battery model is essential to capture battery dynamic behavior and represents a
prerequisite for state estimation.

The physics-based electrochemical models require the definition of proper differential
equations to model battery physics. Despite their accuracy, the overall complexity of
the models and the computational effort requirements make these kinds of models less
attractive for online battery state estimation.

The ECM-based approach is widely used for online implementation due to its low
complexity and good accuracy.

Direct methods are suitable for lab purposes, therefore model-based approaches,
especially KF family algorithms, represent the right trade-off between complexity and
accuracy due to their self-correcting nature and acceptable computational burden for online
implementation.

Model-based SoH estimation is more challenging due to the complex nonlinear ag-
ing mechanism of the battery. Thus, more complex intelligent algorithms have received
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increasing attention to enhance battery state estimation accuracy. Nevertheless, their online
implementation is currently challenging.

The traditional BMS is restricted by insufficient data logging and computational power.
Thus, computationally demanding applications such as thermal management and real-time
SoH estimation remain still a research challenge.

The use of BMS in-cloud applications has the potential to overcome the major chal-
lenges related to local BMS. With the cloud platform, the use of big data and machine
learning algorithms could potentially analyze large amounts of data identifying patterns
capable of predicting battery and health status, and degradation. On the other hand, com-
plexity, maintenance, operating costs, lack of dedicated legislation and standardization,
and reliable and secure connection infrastructure are non-negligible factors to consider for
the use of in-cloud BMS solutions.

Future research activities will be devoted to addressing these concerns to fully exploit
the potential of in-cloud BMS solutions.
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Nomenclature

AEKF Adaptive Extended Kalman Filter
AC Alternate Current
BEVs Battery Electric Vehicles
BMS Battery Management System
BPNN Back Propagation Neural Network
CC Coulomb Counting
CO2 Carbon Dioxide
DC Direct Current
DD Data-Driven
DEKF Dual Extended Kalman Filter
ECM Equivalent circuit model
EChM Electrochemical model
EMF Electromotive Force
ESS Energy Storage System
EU European Commission
EKF Extended Kalman Filter
FL Fuzzy Logic
FNN Feedforward Neural Network
GA Genetic Algorithm
HIF H∞(Infinity) Filter
IEA International Energy Agency
IR Internal Resistance
IS Impedance Spectroscopy
LKF Linear Kalman Filter
LS Least Square
LSTM Long Short-Term Memory
KF Kalman Filter
ML Machine Learning
NLO Non Linear Observer
NN Neural Network
OCV Open Circuit Voltage
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P2D Pseudo Two Dimension
PF Particle Filter
PIO Proportional Integral Observer
PSO Particle Swarm Optimization
PNGV Partnership for New Generation of Vehicles
RC Resistor–Capacitor
SMO Sliding Mode Observer
SoC State of Charge
SoH State of Health
SoP State of Power
TMS Thermal Management System
UKF Unscented Kalman Filter
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