
Citation: Huang, J.; Zhang, W.; Qin, J.;

Song, S. Ultra-Short-Term Wind

Power Prediction Based on

eEEMD-LSTM. Energies 2024, 17, 251.

https://doi.org/10.3390/en17010251

Academic Editors: Sonia Leva,

Emanuele Ogliari and Alessandro

Niccolai

Received: 3 November 2023

Revised: 30 December 2023

Accepted: 31 December 2023

Published: 3 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Ultra-Short-Term Wind Power Prediction Based
on eEEMD-LSTM
Jingtao Huang 1,2,* , Weina Zhang 1, Jin Qin 1 and Shuzhong Song 1

1 Information Engineering College, Henan University of Science and Technology, Luoyang 471023, China
2 Henan Engineering Laboratory of Power Electronic Devices and Systems, Luoyang 471023, China
* Correspondence: jthuang@haust.edu.cn

Abstract: The intermittent and random nature of wind brings great challenges to the accurate
prediction of wind power; a single model is insufficient to meet the requirements of ultra-short-term
wind power prediction. Although ensemble empirical mode decomposition (EEMD) can be used
to extract the time series features of the original wind power data, the number of its modes will
increase with the complexity of the original data. Too many modes are unnecessary, making the
prediction model constructed based on the sub-models too complex. An entropy ensemble empirical
mode decomposition (eEEMD) method based on information entropy is proposed in this work.
Fewer components with significant feature differences are obtained using information entropy to
reconstruct sub-sequences. The long short-term memory (LSTM) model is suitable for prediction after
the decomposition of time series. All the modes are trained with the same deep learning framework
LSTM. In view of the different features of each mode, models should be trained differentially for each
mode; a rule is designed to determine the training error of each mode according to its average value.
In this way, the model prediction accuracy and efficiency can make better tradeoffs. The predictions
of different modes are reconstructed to obtain the final prediction results. The test results from a
wind power unit show that the proposed eEEMD-LSTM has higher prediction accuracy compared
with single LSTM and EEMD-LSTM, and the results based on Bayesian ridge regression (BR) and
support vector regression (SVR) are the same; eEEMD-LSTM exhibits better performance.

Keywords: wind power prediction; entropy ensemble empirical mode decomposition (eEEMD);
differentiated training; long short-term memory (LSTM)

1. Introduction

With the increase in fossil fuel consumption and the impact of global climate change,
renewable energy has become a focus topic worldwide [1,2]. Over the past decades, wind
power has rapidly and drastically developed as a clean, sustainable alternative energy
source. The more complex the time series, the greater the difficulty of model prediction,
and wind power generation is highly uncertain due to its randomness, fluctuation, and
intermittence, which brings great challenges to the accurate prediction of wind power
and poses potential dangers to the safe and stable operation of the power system when
integrated on a large scale [3,4]. Therefore, accurate wind power prediction is critical to
ensuring the safe operation of the power system.

Research has shown that shallow machine learning wind power forecasting methods,
such as the support vector machine (SVM) [5] and logistic regression (LR) [6] methods, are
more accurate than traditional methods. Nevertheless, these models can only evaluate the
fundamental characteristics of wind power time series. With time series data becoming
more complex, traditional statistical models encounter difficulties in extracting pertinent
data features and may not meet the accuracy standards required for prediction.

Advanced deep learning techniques can extract complex and hidden features from
data, thereby achieving more accurate ultra-short-term wind power forecasting. The preci-
sion and efficacy of prediction models employing deep learning, particularly the recurrent
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neural network type known as LSTM, have been widely recognized [7,8]. Scholars [9–11]
have compared and analyzed various wind power prediction methods based on LSTM,
concluding that LSTM can improve prediction performance more than other techniques.
However, a single LSTM prediction model has limitations, and its prediction performance
makes it difficult to meet the prediction demand when predicting wind power with com-
plex time series characteristics. Therefore, a combined model that utilizes LSTM to extract
hidden time series information from different perspectives could improve wind power
prediction accuracy. Combination models based on LSTM have proven effective in recent
years [12].

To improve the accuracy of wind power prediction, researchers use empirical mode
decomposition (EMD) to decompose time series into modal functions and residuals [13–15].
However, EMD may lead to modal confusion [16,17]. The EEMD approach is introduced
to solve the problem, which decomposes the local characteristics of complex time series
into multiple more stable and regular sub-sequences, thereby improving the prediction
accuracy of the model [18–20]. However, generating more intrinsic mode function (IMF)
components in highly complex data can significantly affect the prediction efficiency of
the model.

To solve the problem of excessive prediction components in highly complex data
situations, we propose an eEEMD method to reconstruct EEMD components by using
information entropy. We use information entropy to determine the complexity of the
time series, then reconstruct time series with similar complexity based on the difference
coefficient. However, using the same model for different complexity components may
not be the most effective way to optimize prediction performance. Therefore, we propose
setting distinct training error targets based on the average values of the reconstructed
components. This method can help minimize the possibility of over-learning or under-
learning and ultimately improve wind power performance. The eEEMD-LSTM model
combines the strengths of eEEMD and LSTM. The final experimental results demonstrate
that the eEEMD-LSTM method outperforms other methods in terms of predicted results.

The contributions lie in two aspects: 1. An eEEMD method for time series decomposi-
tion is proposed, which can improve the prediction efficiency of the model. 2. Based on
sub-sequences, an adaptive differential training method is proposed, ultimately effectively
improving the prediction accuracy of the model. The rest of this article is organized as
follows. In Section 2, the potential of the eEEMD method for time series decomposition is
theoretically analyzed in detail. Section 3 elaborates on differential training based on the
LSTM network. Section 4 provides the experiments and results analysis. Finally, Section 5
provides a summary of this article.

2. Wind Power Time Series Decomposition Method Based on eEEMD

Figure 1 shows wind power data collected from a wind farm in 2017, with a sampling
interval of 15 min. These data exhibit intermittent and volatile behavior, posing challenges
for accurate wind power prediction. However, the time series decomposition method
provides a solution by extracting local features and decomposing complex time series
features into simpler ones. This method can significantly enhance the accuracy of wind
power prediction.

2.1. EMD Method and EEMD Method

EMD is an effective technique for decomposing time series data into a set of IMF and
residual waves. It is highly effective at extracting valuable information from complex time
series and has been proven to enhance the accuracy and efficiency of time series-based
prediction methods.

However, the EMD method may be prone to mode mixing, which can lead to unclear
features in the IMFs or the decomposition of the same feature into multiple sub-time
series. To address this limitation, EEMD was developed. EEMD decomposes the original
time series into several sub-time series components, and the original sequence is the sum
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of all sub-sequences. Based on EMD decomposition, EEMD adds Gaussian noise in the
decomposition process, which can effectively reduce the local feature aliasing phenomenon
in the decomposition process, and is more empirical, adaptive, and intuitive. It has been
successfully used to decompose time-frequency data from non-stationary and nonlinear
time series across various fields. The EEMD algorithm is presented in Algorithm 1.
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Figure 1. Original wind power data.

Algorithm 1 EEMD algorithm

Initialization: sigma = 0.05, R ∈ [10, 15], N ∈ [30, 50]
while i← 0 to N do

Add Gaussian noise ni(t) to the original Xi(t).
xi(t) = Xi(t) + ni(t)
while j← 0 to R do

Find the local maximum and minimum values of the input.
Calculate the average mi(t) of the two envelopes.
Calculate the difference hi(t) according to xi(t) and mi(t).
hi(t) = xi(t)−mi(t)
if the stop condition is met then

end while
Calculate the average of xi,j(t).

xi,j(t) = 1
N

N
∑

i=1
hi,j(t)

end while
return x1, x2, . . . , xj

Where sigma = 0.05 indicates that the value range of Gaussian noise of EEMD is 0.05;
N represents the range of the decomposition cycle’s numbers; R represents the range of
the number of sub-components. x1, x2, . . . , xj represent EEMD results; i = 1, 2, . . ., N; j = 1,
2, . . ., R.

It is important to consider that the EEMD decomposition method may not be the
optimal selection for datasets containing substantial amounts of wind power data. This
method tends to produce numerous IMFs, potentially decreasing the efficacy of wind
power prediction.
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2.2. Wind Power Decomposition with eEEMD

EEMD can reduce the modal confusion in EMD, but it will produce large quantum
components when decomposing complex time series data, which will seriously affect the
performance of wind power prediction.

To minimize the number of IMFs, it is crucial to understand the characteristics of
each component group. The information entropy method comprehensively presents data
information. The entropy weight method allocates weights based on information entropy,
and even if negative values exist in the matrix, this method is still effective. However, this
article aims to extract data information without weight assignments, using the entropy
method’s information entropy and difference coefficient calculation method instead.

The entropy weight method objectively evaluates the amount of data information
based on the entropy value. When the time series features are fully extracted, the entropy
value is low, while when the sequence features in the component are unclear, the entropy
value is high. The difference coefficient and entropy value reflect opposite characteristics,
allowing for the reconstruction of information characteristics in the sub-sequence to con-
trol the number of sub-sequences. The sequence is reconstructed using the entropy and
difference coefficient calculation formulas.

After calculating the information characteristics of each IMF group separately, redun-
dant IMFs are reconstructed based on relevant characteristics. The reconstruction rules
are combined with the decomposition method to produce the new eEEMD-reconstructed
decomposition method, as shown in Algorithm 2.

Algorithm 2 eEEMD algorithm

Initialization: R ∈ [10, 15], M ≤ 20

while j← 0 to R do
if xi,j(t) ≤ 0 then

Re-standardize to a non-negative interval.

zi,j =
xi,j−min{x1,j ,...,xN,j}

max{x1,j ,...,xN,j}−min{x1,j ,...,xN,j}
else zi,j =

xi,j√
n
∑

i=1
x2

i,j

Calculate the proportion Pi,j(t) of the sample of xi(t).
Pi,j =

Zi,j
n
∑

i=1
Zi,j

if Pi,j(t) = 0 then
ej = 0

else ej = − 1
ln N

N
∑

i=1
Pi,j ln(Pi,j)

Calculate difference coefficient dj.
dj = 1− ej

end while
Reconstruct xi,j(t) to Xi,j(t) according to specific merger rules.
return ej, dj, X1, X2, . . . , Xj

Where xi,j(t) is the result of EEMD; X1, X2, . . . , Xj is the decomposition result of
eEEMD; i = 1, 2, . . ., N; j = 1, 2, . . ., R.

This article introduces a new method called the eEEMD decomposition and recon-
struction method to solve the problem of generating an excessive number of IMFs when
EEMD decomposes large amounts of wind power data. This method combines information
entropy and EEMD, and according to the characteristics of information entropy, determines
the similarity of difference coefficients between subassemblies. To ensure best wind power
prediction efficiency, a certain degree of reconstruction can be carried out.

However, it is important to note the limitations of the eEEMD reconstruction method.
If the number of decomposed sub-sequences is less than R, a zero sequence is added to
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ensure that the number of sub-sequences remains R. If the number of decomposed sub-
sequences exceeds R, the decomposition process is stopped. If R is too small, incomplete
decomposition may occur, which will affect the subsequent component feature analysis.
Conversely, if R is too large, the number of reconstructed sub-sequences may still be too
high, making it difficult to limit the number of IMFs. Therefore, R should be adjusted
according to the complexity of the data. We suggest that the interval size of M should be
kept below 20 units for the same order of data.

It is important to remember that the difference coefficient in the same range may
change from time to time during the reconstruction process. This means that if two or more
sequence components exist in different intervals between two sequences and the difference
coefficient values fall within the same interval, the two sequence components should be
reconstructed into different new sequence components.

Based on the entropy calculation results, it is obvious that the characteristics of the
components can be significantly different. Attempting to use a unified model to predict
the IMFs may result in under-learning or over-learning. To alleviate this problem, the
eEEMD decomposition method decomposes the original wind power data gradually, from
high to low frequency. It is worth noting that the high-frequency sub-component ex-
hibits a substantially lower average value, while the low-frequency sub-component has
a significantly higher average value. Consequently, the average value characteristics of
the sub-components can be leveraged to distinguish between the prediction models of
distinct components.

3. eEEMD-LSTM Method Based on Sub-Model Differential Training

After decomposing the complex wind power data through eEEMD, wind power pre-
diction can meet the basic requirements for wind power prediction using LSTM. However,
due to the obvious differences in sub-model features, it is difficult to obtain the optimal
prediction results using the same model, so a sub-model differentiation training rule for
different sub-models is proposed.

3.1. LSTM Network

Recurrent neural networks (RNNs) have been exploited by researchers in various
applications to extract hidden nonlinear and non-static features. A simple RNN consists of
three layers: an input layer, a hidden layer, and an output layer. Compared with the RNN,
the basic LSTM also consists of three layers, but the hidden layer of the LSTM adds some
threshold units for controlling information transmission, which gives the neural network a
unique memory mode.

The LSTM can overcome the RNN disadvantage of the vanishing gradient. It consists
of recurrent network units that maintain the short-term and long-term duration values,
which use memory cells to store information and are better at discovering and eliminating
long-term context. The memory cell helps to train and store the previously predicted
time information and propagate it to the network when necessary. These units are the
input unit, forget unit, and output unit. The information that resides in memory depends
on the high activation results; if the input unit has high activation, the information is
stored in the memory cell. Similarly, if the output unit has high activation, it will transmit
the information to the next neuron. Forget unit has high activation and it will erase the
memory cell.

The specific workflow of the LSTM network is in Figure 2.
In the lth layer, the input of each hidden layer includes the present input xi,j(t), the

state of the hidden layer C′t and the output ht−1. During calculation, the output ht is
derived and the current state is updated to Ct. it, ft, Ot respectively represent the values of
the input gate, forget gate, and output gate. W f , Wi, Wo, Wc indicate the weights matrix in
different gates, and b f , bi, bo, bc are their corresponding bias terms. σ and tanh denote the
sigmoid function and hyperbolic tangent function, respectively.
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The input gate of the cell uses the Logistic sigmoid function to decide whether to store
the current input and the new cell state in the memory. Similarly, the forget gate of the
cell uses the Logistic sigmoid function to decide whether to remove the previous cell state
from the memory. The new cell state is determined by the number of old cell states to be
forgotten and the number of new information to be included. The output gate uses the
Logistic sigmoid function to filter information from the current input, previous cell state,
and previous hidden state. The new hidden state is calculated as the Hadamard product
between the output gate value and the tanh function value of the current state. Finally, the
output of the memory cell is calculated from the hidden state cell state. The pseudo-code of
the classic LSTM is shown in Algorithm 3 [21].

Algorithm 3 LSTM algorithm

Initialization: Initialize the hyper parameters, including Uf, Ui, Uc, bf, bi, bo, and bc, set ho = 0,
Co = 0.

For t← 1 to n do
Calculate forget gate ft, decide how much information to forget.
ft = σ(ht−1 ·W f + xt ·U f + b f )

Calculate input gate it, determine the information to be stored.
it = σ(ht−1 ·Wi + xt ·Ui + bi)
Calculate output gate Ot, filter information.
Ot = σ(ht−1 ·Wo + xt ·Uo + bo)
Calculate temporary state C′t.
C′t = tanh(ht−1 ·Wc + xt ·Uc + bc)
Calculate current state Ct, update cell state.
Ct = ft ◦ Ct−1 + it ◦ C′t
Calculate output ht.
ht = Ot ◦ tanh(Ct)

return h1, h2, . . . , hn
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3.2. Differential Training Based on Sequence Mean

Using the difference coefficient to reconstruct the component can reduce the calculation
of the model to some extent. During the same data training process, the network error target
setting can affect the prediction performance of the model. To minimize the prediction
error, it is necessary to adjust the network error target. However, please note that there
are significant differences in signal sizes between the different sub-components, so it is
unreasonable to use a uniform error target for all sub-components.

To prevent over-learning or under-learning when training different sub-component
signals under the same error metric, it is equally important to rely on the feature relation-
ships between sequences. Differentiated training of the model can make the same model
have different training performances and meet the prediction requirements of different
sub-sequences. According to the principle of EEMD decomposition, it can be concluded
that the decomposition components change regularly from high frequency to low frequency,
with the mean of high-frequency components being significantly smaller and the mean of
low-frequency components being significantly larger. The mean can be used to distinguish
different components. Therefore, the average value of each component can be used to
adaptively adjust the erroneous target of each network.

Based on the reference error target, adjust the training error of the model according
to the difference in the average value of each component signal. Due to the possibility of
small differences in average amplitudes of different component signals, an exponential
function is utilized to set the strategy. It is important to establish an upper limit for the
adjustment coefficient of the error target to prevent the error target adjustment magnitude
from becoming too large or unreasonable due to the differences in average values and
set the Kmax limit. Following this, the training error target of each component is adjusted
differentially, and then the component model network is trained and tested. As shown in
Equation (1). errorj = max(eAvgj−Avgq , Kmax)·errorq

Avgj =
1
n

n
∑

i=1
xi,j

(1)

where errorj is the training error of IMFj; errorq is the training error of IMFq, and Avgq is the
mean of IMFq; Avgj is the mean of IMFj; xi,j is the decomposition data of sub-components;
Kmax is the maximum adaptive adjustment coefficient.

Because it takes a lot of time to input wind power data into the network for forecasting
after decomposition and reconstruction, online training is insufficient to ensure the effi-
ciency of wind power prediction. Therefore, an offline training model is used for training
and learning.

3.3. Wind Power Prediction Based on eEEMD-LSTM

With the annual expansion of wind power generation scale, higher requirements have
been put forward for the accuracy and efficiency of wind power prediction. The traditional
simple wind power prediction method can no longer meet the requirements of prediction
performance. Therefore, the combination prediction method of the EEMD decomposition
algorithm and LSTM has been widely considered.

In highly complex data scenarios, the LSTM prediction method is superior to other
deep learning methods, but the EEMD decomposition method is prone to large IMF
components when processing wind power with large data, which will seriously affect the
timeliness of ultra-short-term wind power prediction. Due to the varying complexity of
data for different components, using the same prediction model for each component can
easily lead to over-learning or under-learning.

The eEEMD decomposition method utilizes information entropy to calculate the
characteristics of each component and combines with the features to reconstruct the process,
which can effectively reduce the number of components and improve the efficiency of wind
power prediction. At the same time, adaptive adjustment of LSTM error learning target
hyperparameters can effectively improve the accuracy of wind power prediction.
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This study provides a detailed introduction to the ultra-short-term wind power pre-
diction method based on eEEMD-LSTM, as shown in Figure 3. This method starts with
the normalization of wind power data to avoid possible unit problems in the subsequent
prediction process. Thereafter, the complex wind power sequence is decomposed into
several relatively simple IMF components {IMF1, IMF2, . . ., IMFi}, to improve prediction
accuracy. Next, the information entropy is used to extract eigenvalues in the sequence to
reconstruct the IMF components {IMF1, IMF2, . . ., IMFR}, which significantly reduces the
computational complexity of the model. Then, an error target is set according to the mean
value of each reconstructed component. The LSTM network is then inputted separately,
obtaining the predicted value. Finally, the predicted value of each sequence is reconstructed
to obtain the final predicted results. The final wind power prediction results are inverse-
normalized to obtain the actual prediction data, which provides the basis for wind farm
scheduling and power generation.
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4. Experiment and Result Analysis

To verify the performance of these methods, the efficiency and precision of eEEMD-
LSTM are compared with other classical models. This chapter mainly includes the data
selection processing and the wind power forecast performance chart contrast analysis.
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4.1. Data Preprocessing
4.1.1. Data Selection

This section focuses on the experimental data used in the study. Considering the cli-
mate of a specific location changes little in the span of several years, the wind characteristics
are also similar in different years; we take the sampled wind power data (sampling period:
15 min, unit: MW) from 2017 to validate the proposed method.

To better test the prediction effectiveness of the proposed method, we use three
datasets of actual wind power data from the same wind farm in different periods, which
are drawn from different seasons in 2017. The first dataset (data 1) is taken from a total of
10,000 wind power raw data from February 3 to May 19, the second (data 2) is taken from a
total of 10,000 wind power raw data from May 19 to August 31, and the third (data 3) is
taken from a total of 10,000 wind power raw data from August 31 to December 12. The
values of data 1, data 2, and data 3 do not overlap. For every dataset, the sample is obtained
from a scrolling window with a window size of 12, i.e., using the past 12 actual wind power
values to predict the next one with 15-min intervals. The training set accounts for 90%, and
the test set accounts for 10%.

The three sets of original wind power data are shown in Figure 4.
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Figure 4. Original wind power of data 1, data 2 and data 3.

To avoid problems caused by the order of magnitude of sample data, the maximum
and minimum normalization method is adopted to normalize the data. The normalization
formula is (2).

x′ =
x− xmin

xmax − xmin
(2)

where xmin is the minimum value in the original data; xmax is the maximum value in the
original data, and x is the original data.
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4.1.2. Evaluation Metrics

Root mean square error (RMSE), also known as standard error, is a widely used
evaluation metric which is very sensitive to small or significant errors in test data, as shown
in Equation (3).

ERMSE =

√
1
n

n

∑
k=1

(PM,k − PP,k)
2 (3)

Mean absolute error (MAE) is the mean of absolute error, which can better reflect the
actual situation of predicted error, as shown in Equation (4).

EMAE =
1
n

n

∑
k=1

∣∣(PM,k − PP,k)
∣∣ (4)

Mean absolute percentage error (MAPE) stands for mean absolute percentage error
and is a relative measure that actually identifies the MAE scale as a unit of percentage
rather than a unit of variable. MAPE is a relative error measure that uses absolute values to
avoid positive and negative errors canceling each other out, as shown in Equation (5).

EMAPE =
100%

n

n

∑
k=1

∣∣∣∣PM,k − PP,k

PP,k

∣∣∣∣ (5)

where PP,k is the forecasting value of wind power and PM,k is the true value of wind power.

4.2. Predictive Performance Analysis

To compare with other methods, we chose 12 prediction methods to test the same
experimental data. Therefore, in this paper, we will analyze the event results in terms of
two aspects: prediction efficiency and prediction performance.

4.2.1. Efficiency Analysis

In many experiments, it has been found that excessive IMF components have a sig-
nificant impact on the efficiency of the ultra-short-term wind power prediction model, so
eEEMD is used to reconstruct the data. Table 1 shows the figures obtained from IMF after
EEMD and eEEMD processed the datasets.

Table 1. The number of IMFs with EEMD and eEEMD.

Data The Number of IMFs with EEMD The Number of IMFs with eEEMD

Data 1 12 6
Data 2 12 5
Data 3 12 5

Table 1 lists the number of IMFs obtained by applying EEMD and eEEMD to three
datasets separately. The decomposed components of each dataset need to be predicted
separately using a separate model. For the three sets of data currently used, the EEMD
method decomposes each dataset into 12 components, and it is time-consuming to predict
each component separately for the final reconstruction results. This method greatly affects
the efficiency of wind power prediction. In this regard, we consider the eEEMD method
for the reconstruction. Figure 5 shows the decomposition outcomes of dataset 1, which is
obtained by applying the EEMD and the eEEMD algorithms.
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Figure 4 shows the distribution of a single IMFs using EEMD and eEEMD to decom-
pose data 1. The comparison of the two decomposition methods for IMF fluctuation and
decomposition shows that the eEEMD is a more effective data decomposition method. By
reducing the number of IMFs and alleviating the endpoint problems in the decomposition
process, eEEMD can extract time characteristics of data, thereby improving prediction
efficiency. To compare the effects of EEMD and eEEMD on the prediction efficiency of the
model more intuitively, the decomposition and reconstruction processes of the specific time
required for two algorithms. Figure 6 shows the comparison results of the specific time
required by the two algorithms. These findings indicate that eEEMD is a superior choice
for data decomposition and prediction.
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Figure 6 clearly shows that eEEMD can effectively improve the prediction efficiency
of the model, and when the partial features of reconstruction are prominent. It can more
significantly reduce the modeling time and improve the wind power prediction efficiency.
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4.2.2. Accuracy Analysis

To compare the advantages and disadvantages of various prediction methods, we
choose BR, SVR, gated recurrent unit (GRU), LSTM, EEMD-BR, EEMD-SVR, EEMD-GRU,
EEMD-LSTM, eEEMD-BR, eEEMD-SVR, eEEMD-GRU, and eEEMD-LSTM to predict the
same experimental data. In the experiment, the penalty coefficient is 1.0 of SVR. The
parameters of the specific eEEMD-LSTM model are shown in Table 2.

Table 2. Parameter settings.

Parameter Value

Epochs 600
Learning rate 0.001

Training error targets 0.0001
Hidden layers 2

Number of neurons per layer 4
Optimization functions Adam

Batch_size 1024
Kmax 10

GRU retains the necessary architecture of LSTM, which can control the forgetting factor
and update the state unit simultaneously through a single gating unit, and dynamically
control the time scale and forgetting behavior of different units in the network [22]. Too
many comparison methods in the picture will affect the clarity. Therefore, the GRU, EEMD-
GRU, and eEEMD-GRU methods no longer appear in the image analysis of the article and
only the evaluation metrics result of the three methods are shown in Table 3.

Table 3. Comparison of evaluation metrics.

Data Model RMSE MAE MAPE

Data 1

BR 0.1658 0.1177 43.71%
EEMD-BR 0.2041 0.1433 15.27%
eEEMD-BR 0.09290 0.09125 10.33%

SVR 0.06804 0.05575 32.71%
EEMD-SVR 0.05709 0.04668 5.425%
eEEMD-SVR 0.05708 0.04670 5.427%

GRU 0.04316 0.02961 13.78%
EEMD-GRU 0.04711 0.03540 15.71%
eEEMD-GRU 0.03491 0.02106 15.98%

LSTM 0.04378 0.03042 22.62%
EEMD-LSTM 0.03715 0.02175 17.42%
eEEMD-LSTM 0.02444 0.01797 8.343%

Data 2

BR 0.1390 0.1045 45.64%
EEMD-BR 0.1736 0.1323 14.86%
eEEMD-BR 0.04737 0.03223 3.506%

SVR 0.06408 0.04815 26.67%
EEMD-SVR 0.05473 0.04259 4.859%
eEEMD-SVR 0.05769 0.04409 4.964%

GRU 0.05191 0.03551 8.313%
EEMD-GRU 0.04775 0.03422 3.764%
eEEMD-GRU 0.04161 0.03151 3.563%

LSTM 0.05540 0.03667 11.54%
EEMD-LSTM 0.03661 0.02870 3.217%
eEEMD-LSTM 0.04078 0.02856 3.200%
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Table 3. Cont.

Data Model RMSE MAE MAPE

Data 3

BR 0.1452 0.1098 8.850%
EEMD-BR 0.06111 0.04591 4.240%
eEEMD-BR 0.04977 0.03767 2.560%

SVR 0.06570 0.05555 36.34%
EEMD-SVR 0.05504 0.04594 5.452%
eEEMD-SVR 0.05283 0.04366 5.139%

GRU 0.1416 0.2515 13.46%
EEMD-GRU 0.07479 0.05786 6.287%
eEEMD-GRU 0.04959 0.03255 5.655%

LSTM 0.09904 0.07579 11.50%
EEMD-LSTM 0.05270 0.04022 3.953%
eEEMD-LSTM 0.04303 0.03112 3.345%

To further compare the prediction performance of different methods, EEMD and
eEEMD are combined with BR, SVR, and LSTM models separately, and 6 methods to
predict wind power are obtained. Figure 7 shows the prediction error distribution of EEMD
and eEEMD of the same model. The prediction error shown in Figure 7 is the absolute error
of each data after the inverse normalization.
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Figure 7 shows the prediction error, which fluctuates around zero. The figure compares
and analyzes the frequency distribution of prediction errors for various methods. In
particular, Figure 7a compares BR, EEMD-BR, and eEEMD-BR methods, while Figure 7b,c
compare the frequency distribution of prediction errors for SVR-related methods and
LSTM-related methods, respectively.

It can be clearly seen from Figure 6 that regardless of which model is used, the
model with EEMD can effectively reduce the error, and the frequency of error close to
zero increases significantly. Furthermore, the error frequency of the eEEMD optimization
algorithm is closest to zero. It is observed that the eEEMD-LSTM model has the highest
error frequency near zero.

This phenomenon is attributed to the fact that the IMFs obtained from EEMD de-
composition has more distinct time series characteristics than the original dataset. The
combined model reduces the complexity of model prediction, and the prediction error is
smaller than that of a single model. By combining differential training with reconstructed
components, the combined use of eEEMD and model has been able to prove a significant
improvement in reducing prediction errors. Our research findings indicate that differential
training may alleviate the situation of under-learning or over-learning situation up to some
extent. The eEEMD-LSTM model showed the most significant improvement in reducing
prediction error, while the eEEMD-SVR showed the least improvement. This observation
indicates that the effectiveness of optimization algorithm has limited benefit in improving
the prediction performance of different methods. However, the entire pair is still effective
in improving the prediction results.

To further analyze the forecast trend of the 9 methods, the predicted value of each
model is compared with the actual value. The overall forecast trend of 9 methods in data 1
is shown in Figure 8, and the partly forecast trend is shown in Figure 9.
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The results of Figures 8 and 9 indicate that the prediction performance of a single
model is relatively poor. Among various methods, the fitting curve of the BR model
has a large deviation, while the fitting effect of the LSTM model is better. Although the
EEMD decomposition algorithm improves the predictive performance of a single model,
the overall prediction effect is still not ideal. The combination of the eEEMD method
and the model effectively improves the prediction effect, and the improvement effect
is more obvious than EEMD. The eEEMD method is implemented in all methods, and
the prediction effect results show that the eEEMD-LSTM has the best prediction effect.
Additionally, Figures 8 and 9 show the prediction trends for the 9 methods, which are
consistent with the overall error variation shown in Figure 7.

The experimental results in Table 3 were calculated using RMSE, MAE, and MAPE.
The smaller the calculation result, the better the prediction effect of this method. The
evaluation metrics calculation results are the normalized results of the data.

Table 3 mainly compares the differences of different evaluation metrics of BR, SVR,
GRU, and LSTM in 3 sets of data when EEMD and eEEMD are used respectively. Table 3
shows that the independent BR model has the weakest prediction performance, while
LSTM surpasses all models in effectiveness of all models.

Regarding the RMSE evaluation metrics, EEMD-BR increased by 57.9% at most, while
EEMD-SVR increased by 15.7% on average, and EEMD-LSTM increased by at least 15.1%.
The MAE evaluation metrics show that EEMD-BR has increased by 58.2% at the maximum,
EEMD-SVR by 15.2% on average, EEMD-GRU by 21.28% on average, and EEMD-LSTM
by at least 21.7%. Finally, the MAPE evaluation metrics show EEMD-BR increasing by a
maximum of 67.4%, EEMD-SVR by an average of 83.6%, and EEMD-LSTM by at least 23.0%.

When the methods are decomposed by eEEMD, the eEEMD-SVR model showed the
most stable improvement in prediction effectiveness, while the eEEMD-LSTM model shows
the best overall prediction results. Furthermore, when the eEEMD method is used for
reconstruction, eEEMD-LSTM produces the best overall prediction results, while eEEMD-
BR shows the most significant improvement.

Considering the RMSE evaluation metrics, the increase rate of eEEMD-BR is at least
18.6%, and the maximum increase rate of eEEMD-LSTM is 34.2%. For the MAE evaluation
metrics, eEEMD-BR increased by at least 17.9%, eEEMD-SVR by 6.8% on average, and
eEEMD-LSTM by 22.6% at the maximum. Finally, the MAPE evaluation metrics show
eEEMD-BR increasing by at least 1.3%, eEEMD-SVR by an average of 83.6%, eEEMD-GRU
increased by 1.72% and eEEMD-LSTM by 52.1% at the maximum.
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The predictive performance of the method not only focuses on the numerical results of
one of the evaluation indicators, but also requires analysis from multiple perspectives. The
proposed method eEEMD-LSTM is not very efficient on MAPE evaluation metrics of data 1
and data 3, but is still superior to most models. Except for the MAPE evaluation metrics,
the eEEMD-LSTM method is better than other models in other metrics. By analyzing the
prediction results of different models, it can be concluded that this method has a better
prediction performance than other methods.

To more clearly compare the evaluation indicators of different methods, the specific
values are visualized. The error comparison of different methods is shown in Figure 10
below.
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The histograms for the relevant evaluation metrics are shown in Figure 10. In particular,
the red column depicts the RMSE1 of nine methods, including BR, EEMD-BR, eEEMD-BR,
SVR, EEMD-SVR, eEEMD-SVR, LSTM, EEMD-LSTM, and eEEMD-LSTM, with data 1.
Similarly, the green MAE1 and purple columns MAPE1 indicate the MAE and MAPE of
each model with data 1, respectively. The yellow columns RMSE2, blue columns MAE2,
and pink columns MAPE2 show the relevant evaluation with data 2, while the dark
green columns RMSE3, cyan columns MAE3, and orange columns MAPE3 represent the
relevant evaluation with data 3. Based on Figure 10, the eEEMD-LSTM, as described in
the present study, exhibited the minimum evaluation error, irrespective of the evaluation
standard employed.

5. Conclusions

Accurately predicting wind power is a key aspect of the development of wind power
generation. However, the ability to efficiently predict wind power is hindered when deal-
ing with a large amount of data related to EEMD decomposition and training different
sub-components. To address these issues, we propose a new ultra-short-term wind power
prediction method using eEEMD-LSTM. Among them, the LSTM model is suitable for the
prediction of complex time series and has good generalization performance. eEEMD can
solve the problem of excessive sequence components, thereby improving the efficiency of
ultra-short-term wind power prediction. The eEEMD method has better generalization
performance, shorter off-line training time, and higher efficiency. The methods proposed
in this article include data selection, eEEMD decomposition and reconstruction, eEEMD-



Energies 2024, 17, 251 17 of 18

LSTM prediction, differential training error target setting, and comparative analysis of
different methods. The experimental results show that LSTM has better fitting and predic-
tion performance than BR, SVR, and GRU when dealing with the same data complexity.
Compared with EEMD, the eEEMD method can effectively improve prediction efficiency.
In addition, the analysis of wind power data at the same time by different methods shows
that the eEEMD-LSTM network can improve the accuracy of wind power prediction and
perform well in ultra-short-term wind power prediction of complex time series. However,
under extreme working conditions, it is relatively weak to suppress possible over-learning
or under-learning by adjusting the training error of the model through differentiation, so it
is urgent to improve the differentiation degree of the sub-model. Therefore, adjusting other
parameters of the model based on data differences, and this measure will help to further
improve the prediction performance of the model.
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