The Effect of Internal Combustion Engine Nozzle Needle Profile on Fuel Atomization Quality
Abstract
:1. Introduction
1.1. Modification of the Characteristics of a Combustible Mixture
1.2. Fuel Droplet Size Distribution
- Fuel flow rate from the nozzle;
- Density of the fuel and the density of the medium into which the fuel is injected;
- Fuel intermolecular bonds (fuel viscosity and surface tension);
- Effects of the aerodynamic drag forces of the medium into which the fuel is injected;
- Dimensions and shape of the discharge channel.
1.3. Criterion Numbers Characterizing Fuel Flow
1.4. Motivation for the Experimental Research Performed
2. Materials and Methods
- Distribution of the actual droplet diameters depending on the spray stream’s development time interval;
- Time distribution of the Sauter mean diameter, D[3,2], depending on the spray stream’s development time interval;
- Percentiles of the droplet diameters Dv (10), Dv (50), and Dv (90), representing, respectively, 10%, 50%, and 90% of the volume of the generated spray;
- Distribution span of the percentiles of the SPAN droplet diameters during the development of the spray stream;
- Time distribution of the selected diameter classes, D[x1−x2], during the development of the spray stream.
3. Results and Discussion
3.1. Temporal Percentage Distribution of Aerosol Fuel Droplet Diameters
3.2. Temporal Percentage Distribution of Aerosol Fuel Droplet Diameters in Assumed Size Ranges
3.3. Temporal Distribution of the Sauter Mean Diameter of Spray Fuel Droplets
4. Conclusions
- The results of the measurement of the drop diameter distribution imply that the use of nozzles with a modification to the flow channel allows for increasing the share of drops with smaller diameters compared to the standard nozzle. This is due to the greater degree of atomization, which is one of the two conditions for improving the atomization quality. Shifting the distribution of the droplet diameters toward smaller values is important from the point of view of the fuel injection and combustion process in a compression–ignition engine.
- The results of the atomization quality, based on the time analysis of the Sauter mean diameter, D[3,2], indicate that the use of each type of modernization improved the degree of atomization compared to the standard nozzle. This applies to both average and extreme values. Statistical data on the distribution of D[3,2] make it possible to conclude that the 2L atomizer was characterized by the most stable degree of atomization.
- The results of the atomization quality based on the time analysis of the distribution of the percentile diameters Dv (10), Dv (50), and Dv (90) show an improvement in the atomization uniformity of the 1L needle compared to the standard nozzle needle. The remaining modifications, 2L and 3L, displayed a greater range of the distribution of the percentile diameters compared to the standard nozzle. This applies to both average and extreme values.
- The results of the experiment signify significant differences in the time distribution of selected classes of fuel spray diameters. In the spray produced by the standard atomizer, diameters in the range of 20–40 µm (appropriate for proper combustion) had a volume fraction half that of the diameters in the range of 40–100 µm (which is potentially problematic under certain combustion conditions). In the spray produced by all of the modified atomizers, the share of diameters in the optimal range definitely exceeded the share of the other diameter classes.
- The comparison of the time distributions of the relationship of two diameter ranges, resulting from a bimodal distribution, with a limit value of 150 µm (significant from the point of view of the jet penetration range) for the ignition delay and combustion time, allowed for identifying a significant difference between the standard nozzle and its modifications. The characteristics of the spray produced by the standard atomizer strictly depended on the time interval of the stream’s development. The characteristics of the 2L and 3L needles showed a relatively higher level of variability in the diameter relationships resulting from the bimodal distribution compared to those of the 1L and standard nozzle needles. The lowest value for the diameter relationship resulting from the bimodality of the distribution was shown by the 1L needle.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Symbols
3D | three dimensions |
1L, 2L, 3L | designations of the profiles of the passive part of the atomizer needle |
A | area at the nozzle exit |
Ap | external particle surface area |
CD | discharge coefficient |
CN | cetane number |
CO2 | carbon dioxide |
D100 | diesel oil without biocomponents |
D | particle diameter |
D[2.0] | surface diameter |
D[3.0] | volume diameter |
D[3,2] | Sauter diameter |
D[p,q] | particle diameter in moment-ratio notation |
D[x1−x2] | class of droplet diameters covering all drops with diameters in the range [x1,x2] |
Dv | percentile of the volume distribution of droplet size (diameter) |
dN | atomizer slot diameter |
i | number of the size class with upper particle size xi |
ISO | International Organization for Standardization |
K | cavitation number |
L | channel length atomizer |
fuel mass flow | |
n | number of particles in the i-th size class |
N | number of size classes |
NIST | National Institute of Standards and Technology |
NOx | general designation of NO and NO2 nitrogen oxides |
Oh | Ohnesorge number |
Δpw | differential pressure |
pair | air pressure in space |
pinj | injection pressure |
Re | Reynolds number |
R&D | research and development |
SMD | Sauter mean diameter |
SPAN | relative width of the statistical distribution of droplet sizes in the mixture volume |
Vp | particle volume |
We | Weber number |
w | fuel flow rate from the nozzle |
x1, x2 | limits of the range defining a given class of fuel droplet diameters |
discharge coefficient, including losses related to the shape of the atomizer nozzle channel | |
μ | fuel dynamic viscosity |
ν | kinematic viscosity of the fuel |
ρ | density of the fuel |
σ | surface tension cohesive forces of fuel |
References
- Ranganathan, S.; Kumar, S.; Thirunavukkarasu, S.; Muthuswamy, S.P. Modular Design and Analyze of Air Intake Manifold for Formula Vehicle; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Yerrennagoudaru, H.; Desai, S. Effect of inlet air swirl on four stroke single cylinder dieselengine’s performance. IOSR J. Mech. Civ. Eng. 2014, 11, 59–68. [Google Scholar] [CrossRef]
- Luo, W.; Liu, H.; Liu, L.; Liu, D.; Wang, H.; Yao, M. Effects of scavenging port angle and combustion chamber geometry on combustion and emmission of a high-pressure direct-injection natural gas marine engine. Int. J. Green Energy 2023, 20, 616–628. [Google Scholar] [CrossRef]
- Harshavardhan, B.; Mallikarjuna, J.M. Effect of Combustion Chamber Shape on In-Cylinder Flow and Air-Fuel Interaction in a Direct Injection Spark Ignition Engine—A CFD Analysis; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Pakale, P.N. Review on Cylinder Head Design for Swirl Optimization. Int. J. Eng. Res. 2020, 9. [Google Scholar] [CrossRef]
- Klyus, O.; Zamiatina, N. Residual fuel atomization process simulation. Combust. Engines 2017, 169, 108–112. [Google Scholar] [CrossRef]
- Chybowski, L.; Szczepanek, M.; Gawdzińska, K.; Klyus, O. Particles Morphology of Mechanically Generated Oil Mist Mixtures of SAE 40 Grade Lubricating Oil with Diesel Oil in the Context of Explosion Risk in the Crankcase of a Marine Engine. Energies 2023, 16, 3915. [Google Scholar] [CrossRef]
- Yang, L.; Fu, Q.; Zhang, W.; Du, M.; Tong, M. Atomization of gelled propellants from swirl injectors with leaf spring in swirl chamber. At. Sprays 2011, 21, 949–969. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Yue, Z.; Wu, Y.; Kong, X.; Zheng, Z.; Yao, M. Effects of Multiple Injection Strategies on Heavy-Duty Diesel Energy Distributions and Emissions Under High Peak Combustion Pressures. Front. Energy Res. 2022, 10, 857077. [Google Scholar] [CrossRef]
- Nozdrzykowski, K. Force analysis and simulation—Experimental research on the measurement of cylindrical surface. Zesz. Nauk. Akad. Morskiej Szczecinie Sci. J. Marit. Univ. Szczec. 2016, 48, 37–42. [Google Scholar]
- Włodarski, J.; Podsiadło, A.; Kluj, S. Uszkodzenia Systemu Tłok-Cylinder (TC) Okrętowych Silników Spalinowych; Wydawnictwo Akademii Morskiej w Gdyni: Gdynia, Poland, 2011. [Google Scholar]
- Borkowski, T.; Kowalak, P.; Myśków, J. Vessel main propulsion engine performance evaluation. J. KONES 2012, 19, 53–60. [Google Scholar] [CrossRef]
- Kowalak, P.; Borkowski, T.; Bonisławski, M.; Hołub, M.; Myśków, J. A statistical approach to zero adjustment in torque measurement of ship propulsion shafts. Measurement 2020, 164, 108088. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Yue, Z.; Li, Y.; Liang, H.; Kong, X.; Zheng, Z.; Yao, M. Effects of intake high-pressure compressed air on thermal-work conversion in a stationary diesel engine. Int. J. Green Energy 2023, 20, 338–351. [Google Scholar] [CrossRef]
- Bogdanowicz, A.; Kniaziewicz, T. Marine Diesel Engine Exhaust Emissions Measured in Ship’s Dynamic Operating Conditions. Sensors 2020, 20, 6589. [Google Scholar] [CrossRef] [PubMed]
- ASTM D6890-22; Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber. ASTM: West Conshohocken, PA, USA, 2022.
- ASTM D4737-21; Standard Test Method for Calculated Cetane Index by Four Variable Equation. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM D 7668-17; Standard Test Method for Determination of Derived Cetane Number (DCN) of Diesel Fuel OilsIgnition Delay and Combustion Delay Using a Constant Volume Combustion Chamber Method. ASTM: West Conshohocken, PA, USA, 2017.
- Ramadan, O.; Menard, L.; Gardiner, D.; Wilcox, A.; Webster, G. Performance Evaluation of the Ignition Quality Testers Equipped with TALM Precision Package (TALM-IQTTM) Participating in the ASTM NEG Cetane Number Fuel Exchange Program; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Burgoyne, J.; Cohen, L. The effect of drop size on flame propagation in liquid aerosols. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1954, 225, 375–392. [Google Scholar] [CrossRef]
- Wärtsilä Wärtsilä Introduces New Pre-Swirl Stator. Available online: https://www.wartsila.com/media/news/07-11-2017-wartsila-introduces-an-innovative-pre-swirl-stator-to-improve-fuel-efficiency (accessed on 21 November 2020).
- Babrauskas, V. Ignition Handbook; Society of Fire Protection Engineers: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill, Inc.: New York, NY, USA, 1988; ISBN 0-07-028637-X. [Google Scholar]
- Bielecki, Z.; Ochowiak, M.; Włodarczak, S.; Krupińska, A.; Matuszak, M.; Lewtak, R.; Dziuba, J.; Szajna, E.; Choiński, D.; Odziomek, M. The Analysis of the Possibility of Feeding a Liquid Catalyst to a Coal Dust Channel. Energies 2021, 14, 8521. [Google Scholar] [CrossRef]
- Włodarski, K.K.; Witkowski, K. Okrętowe Silniki Spalinowe. Podstawy Teoretyczne; Akademia Morska w Gdyni: Gdynia, Poland, 2006. [Google Scholar]
- Sauter, J. Untersuchung der von Spritzvergasern Gelieten Zerstäubung, Forschungsarbeiten auf dem Gebiete des Ingenieurwesens; Heft 312; VDI-Verlag: Berlin, Germany, 1928. [Google Scholar]
- Sauter, J. Die Grössenbestimmung von Brennstoffteilchen, Forschungsarbeiten auf dem Gebiete des Ingenieurwesens (Mitteilung aus dem Laboratorium für Technische Physik der Technischen Hochschule München); Heft 279; VDI-Verlag: Berlin, Germany, 1926. [Google Scholar]
- Li, T.; Nishida, K.; Hiroyasu, H. Droplet size distribution and evaporation characteristics of fuel spray by a swirl type atomizer. Fuel 2011, 90, 2367–2376. [Google Scholar] [CrossRef]
- Xiong, H.; Sun, W. Investigation of Droplet Atomization and Evaporation in Solution Precursor Plasma Spray Coating. Coatings 2017, 7, 207. [Google Scholar] [CrossRef]
- Sher, E.; Bar-Kohany, T.; Rashkovan, A. Flash-boiling atomization. Prog. Energy Combust. Sci. 2008, 34, 417–439. [Google Scholar] [CrossRef]
- ISO 9276-2; Representation of Results of Particle Size Analysis—Part 2: Calculation of Average Particle Sizes/Diameters and Moments from Particle size Distributions. ISO: Geneva, Switzerland, 2014.
- Bielecki, Z.; Ochowiak, M.; Włodarczak, S.; Krupińska, A.; Matuszak, M.; Jagiełło, K.; Dziuba, J.; Szajna, E.; Choiński, D.; Odziomek, M.; et al. The Optimal Diameter of the Droplets of a High-Viscosity Liquid Containing Solid State Catalyst Particles. Energies 2022, 15, 3937. [Google Scholar] [CrossRef]
- Malvern Instruments. Spraytec User Manual; Malvern Instruments: Worcestershire, UK, 2007. [Google Scholar]
- Sun, Z.-Y.; Li, G.-X.; Yu, Y.-S.; Gao, S.-C.; Gao, G.-X. Numerical investigation on transient flow and cavitation characteristic within nozzle during the oil drainage process for a high-pressure common-rail DI diesel engine. Energy Convers. Manag. 2015, 98, 507–517. [Google Scholar] [CrossRef]
- Ommi, F.; Alavioun, S.S.A.; Mirmohammadi, A.; Nekofar, K. Reviewing the Forces on the Drops of Fuel into the Combustion Chamber of Diesel OM-355 with a Numerical Simulation. Aust. J. Basic Appl. Sci. 2011, 5, 2513–2521. [Google Scholar]
- Hyrouki, H.; Toshikazu, K. Fuel droplet size distribution in diesel combustion chamber. Bull. JSME 1976, 19, 1064–1072. [Google Scholar]
- Brun, R. Szybkobieżne Silniki Wysokoprężene; WKiŁ: Warszawa, Poland, 1973. [Google Scholar]
- Ghurri, A.; Kim, J.-D.; Kim, H.G.; Jung, J.-Y.; Song, K.-K. The effect of injection pressure and fuel viscosity on the spray characteristics of biodiesel blends injected into an atmospheric chamber. J. Mech. Sci. Technol. 2012, 26, 2941–2947. [Google Scholar] [CrossRef]
- Desantes, J.M.; Arrègle, J.; Pastor, J.V.; Delage, A. Influence of the Fuel Characteristics on the Injection Process in a D.I. Diesel Engine. J. Engines 1998, 107, 1185–1195. [Google Scholar]
- Brandão, L.F.P.; Suarez, P.A.Z. Study of kinematic viscosity, volatility and ignition quality properties of butanol/diesel blends. Braz. J. Chem. Eng. 2018, 35, 1405–1414. [Google Scholar] [CrossRef]
- Blaisot, J.B.; Yon, J. Droplet size and morphology characterization for dense sprays by image processing: Application to the Diesel spray. Exp. Fluids 2005, 39, 977–994. [Google Scholar] [CrossRef]
- Chybowski, L. Study of the Relationship between the Level of Lubricating Oil Contamination with Distillation Fuel and the Risk of Explosion in the Crankcase of a Marine Trunk Type Engine. Energies 2023, 16, 683. [Google Scholar] [CrossRef]
- Ships Business Fuel Oil (FO) Injection Viscosity Control for a Marine Diesel Engine. Available online: http://shipsbusiness.com/fuel-oil-viscosity-control.html (accessed on 17 May 2023).
- Szczepanek, M. Biofuels as an alternative fuel for West Pomeranian fishing fleet. J. Phys. Conf. Ser. 2019, 1172, 012074. [Google Scholar] [CrossRef]
- Hiroyasu, H.; Arai, M.; Tabata, M. Empirical Equations for the Sauter Mean Diameter of a Diesel Spray. J. Engines 1989, 98, 868–877. [Google Scholar]
- Ashgriz, N. (Ed.) Handbook of Atomization and Sprays; Springer: Boston, MA, USA, 2011; ISBN 978-1-4419-7263-7. [Google Scholar]
- Moreau, J.; Simonin, O.; Habchi, C. A Numerical Study of Cavitation Influence on Diesel Jet Atomisation. In Proceedings of the ILASS Europe Conference, Nottingam, UK, 6–8 September 2004; pp. 1–6. [Google Scholar]
- McKinley, G.H.; Renardy, M. Wolfgang von Ohnesorge. Phys. Fluids 2011, 23, 127101. [Google Scholar] [CrossRef]
- Turner, M.R.; Sazhin, S.S.; Healey, J.J.; Crua, C.; Martynov, S.B. A breakup model for transient Diesel fuel sprays. Fuel 2012, 97, 288–305. [Google Scholar] [CrossRef]
- Payri, R.; Guardiola, C.; Salvador, F.J.; Gimeno, J. Critical cavitation number determination in diesel injection nozzles. Exp. Tech. 2004, 28, 49–52. [Google Scholar] [CrossRef]
- Abderrezzak, B.; Huang, Y. A contribution to the understanding of cavitation effects on droplet formation through a quantitative observation on breakup of liquid jet. Int. J. Hydrog. Energy 2016, 41, 15821–15828. [Google Scholar] [CrossRef]
- Lefebvre, A.H.; McDonell, V.G. Atomization and Sprays, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315120911. [Google Scholar]
- Chybowski, L.; Kowalak, P.; Dąbrowski, P. Assessment of the Impact of Lubricating Oil Contamination by Biodiesel on Trunk Piston Engine Reliability. Energies 2023, 16, 5056. [Google Scholar] [CrossRef]
- Mohan, B.; Yang, W.; Chou, S. kiang Development of an accurate cavitation coupled spray model for diesel engine simulation. Energy Convers. Manag. 2014, 77, 269–277. [Google Scholar] [CrossRef]
- Cristofaro, M.; Edelbauer, W.; Koukouvinis, P.; Gavaises, M. A numerical study on the effect of cavitation erosion in a diesel injector. Appl. Math. Model. 2020, 78, 200–216. [Google Scholar] [CrossRef]
- Örley, F.M. Numerical Simulation of Cavitating Flows in Diesel Injection Systems; TU Munchen: Munchen, Germany, 2015. [Google Scholar]
- Lee, W.G.; Reitz, R.D. A Numerical Investigation of Transient Flow and Cavitation within Minisac and Valve-Covered Orifice Diesel Injector Nozzles. J. Eng. Gas Turbines Power 2010, 132, 052802. [Google Scholar] [CrossRef]
- Alam, M.M.A.; Setoguchi, T.; Matsuo, S.; Kim, H.D. Nozzle geometry variations on the discharge coefficient. Propuls. Power Res. 2016, 5, 22–33. [Google Scholar] [CrossRef]
- Schmidt, D.P.; Rutland, C.J.; Corradini, M.L.; Roosen, P.; Genge, O. Cavitation in Two-Dimensional Asymmetric Nozzles. J. Engines 1999, 108, 613–629. [Google Scholar]
- Dabiri, S.; Sirignano, W.A.; Joseph, D.D. Cavitation in an orifice flow. Phys. Fluids 2007, 19, 072112. [Google Scholar] [CrossRef]
- Price, R.J.; Blazina, D.; Smith, G.C.; Davies, T.J. Understanding the impact of cavitation on hydrocarbons in the middle distillate range. Fuel 2015, 156, 30–39. [Google Scholar] [CrossRef]
- Mohan, B.; Yang, W.; Chou, S. Cavitation in Injector Nozzle Holes—A Parametric Study. Eng. Appl. Comput. Fluid. Mech. 2014, 8, 70–81. [Google Scholar] [CrossRef]
- Park, S.H.; Suh, H.K.; Lee, C.S. Effect of Cavitating Flow on the Flow and Fuel Atomization Characteristics of Biodiesel and Diesel Fuels. Energy Fuels 2008, 22, 605–613. [Google Scholar] [CrossRef]
- Molina, S.; Salvador, F.J.; Carreres, M.; Jaramillo, D. A computational investigation on the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development in diesel injector nozzles. Energy Convers. Manag. 2014, 79, 114–127. [Google Scholar] [CrossRef]
- Winklhofer, E.; Kelz, E.; Morozov, A. Basic flow processes in high pressure fuel injection equipment. In Proceedings of the International Conference on Liquid Atomization and Spray Systems, Sorrento, Italy, 13–17 July 2003; pp. 1–13. [Google Scholar]
- He, Z.; Zhong, W.; Wang, Q.; Jiang, Z.; Shao, Z. Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle. Int. J. Therm. Sci. 2013, 70, 132–143. [Google Scholar] [CrossRef]
- He, Z.; Tao, X.; Zhong, W.; Leng, X.; Wang, Q.; Zhao, P. Experimental and numerical study of cavitation inception phenomenon in diesel injector nozzles. Int. Commun. Heat Mass Transf. 2015, 65, 117–124. [Google Scholar] [CrossRef]
- Mitroglou, N.; Stamboliyski, V.; Karathanassis, I.K.; Nikas, K.S.; Gavaises, M. Cloud cavitation vortex shedding inside an injector nozzle. Exp. Therm. Fluid Sci. 2017, 84, 179–189. [Google Scholar] [CrossRef]
- Sa, B.; Klyus, O.; Markov, V.; Kamaltdinov, V. A numerical study of the effect of spiral counter grooves on a needle on flow turbulence in a diesel injector. Fuel 2021, 290, 120013. [Google Scholar] [CrossRef]
- Klyus, O.; Mysłowski, J.; Osipowicz, T. Wtryskiwacza. Paliwa. Patent 205428, 28 December 2006. [Google Scholar]
- Klyus, O.; Eliasz, J.; Klyus, I. Wtryskiwacz. Paliwa. Patent 239493, 11 January 2016. [Google Scholar]
- WSK PRW3. Próbnik Wtryskiwaczy. Available online: http://www.wsk.com.pl/wtrysk_2.html (accessed on 26 January 2023).
- Hahn, D.W. Light Scattering Theory. Available online: http://plaza.ufl.edu/dwhahn/RayleighandMieLightScattering.pdf (accessed on 26 February 2023).
- Jenkins, F.A.; White, H.E. Fundamentals of Optics; IV; McGraw-Hill Higher Education: Boston, FL, USA, 2001. [Google Scholar]
- Klyus, O.; Szczepanek, M.; Kidacki, G.; Krause, P.; Olszowski, S.; Chybowski, L. Dataset: Effect of Needle Profile in the ICE Fuel Injector Nozzle on the Quality of Fuel Atomisation; Maritime University of Szczecin: Szczecin, Poland, 2023. [Google Scholar]
No. | Parameter | Value | Unit |
---|---|---|---|
1. | Density at 15 °C | 828.5 | kg/m3 |
2. | Kinematic viscosity at 40 °C | 2.456 | mm2/s |
3. | Cetane number | 54 | - |
4. | Flashpoint (determined in a close cup) | 60.5 | °C |
5. | Cold filter plugging point temperature | −29 | °C |
6. | Cloud point | −8 | °C |
7. | Water content | 0.003% | m/m |
8. | Coking residue (10% distillation residue) | 0.09% | m/m |
9. | Impurity content | 8 | mg/kg |
10. | Lubricity, wear scar diameter WSD1.4 at 60 °C | 343 | µm |
11. | Corrosive action on copper plates | 1a | - |
12. | Lower calorific value | 42.73 | MJ/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klyus, O.; Szczepanek, M.; Kidacki, G.; Krause, P.; Olszowski, S.; Chybowski, L. The Effect of Internal Combustion Engine Nozzle Needle Profile on Fuel Atomization Quality. Energies 2024, 17, 266. https://doi.org/10.3390/en17010266
Klyus O, Szczepanek M, Kidacki G, Krause P, Olszowski S, Chybowski L. The Effect of Internal Combustion Engine Nozzle Needle Profile on Fuel Atomization Quality. Energies. 2024; 17(1):266. https://doi.org/10.3390/en17010266
Chicago/Turabian StyleKlyus, Oleh, Marcin Szczepanek, Grzegorz Kidacki, Paweł Krause, Sławomir Olszowski, and Leszek Chybowski. 2024. "The Effect of Internal Combustion Engine Nozzle Needle Profile on Fuel Atomization Quality" Energies 17, no. 1: 266. https://doi.org/10.3390/en17010266
APA StyleKlyus, O., Szczepanek, M., Kidacki, G., Krause, P., Olszowski, S., & Chybowski, L. (2024). The Effect of Internal Combustion Engine Nozzle Needle Profile on Fuel Atomization Quality. Energies, 17(1), 266. https://doi.org/10.3390/en17010266