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Abstract: Examining fuel droplet evaporation is crucial for enhancing fuel engine efficiency, conserv-
ing energy, and reducing emissions. This study utilizes experimental methods involving ultrasonic
standing wave levitation and high-speed cameras to investigate the impact of temperatures and
droplet properties, including initial diameter and composition, on the evaporation process. The evap-
oration behaviors of fuel droplets, like hexadecane and diesel, are documented across a temperature
spectrum spanning 150 ◦C to 550 ◦C, with an initial droplet equivalent diameter ranging from 0.10 to
0.30 mm. The evaporation rate positively correlates with temperature and may vary by 15% to 71%
between hexadecane and diesel droplets.

Keywords: fuel droplet evaporation; high temperature; acoustical levitation; initial diameter

1. Introduction

Fuel droplet atomization, evaporation, and combustion are crucial for enhancing fuel
efficiency and mitigating emissions for a direct-injection, internal combustion engine that
utilizes liquid fuel [1–4]. The evaporation of fuel droplets within the cylinder during the
operational cycle is a significant factor in creating the combustible gas mixture. Conse-
quently, scientists have been undertaking efforts to comprehend the mechanism of fuel
droplet evaporation [5,6].

Acoustic levitation works for spray polymerization and particle morphology in
a model system. The non-contact nature of acoustic levitation avoids specimen–receptacle
touch, which is an advantage [7]. The heat and mass transmission properties of fuel droplets
may be studied experimentally using this method [8–11]. Due to the prevailing global
trend towards energy preservation and emission reduction, it is inevitable that alterations
to the environmental conditions within the cylinder of an industrial engine will impact
the fuel evaporation and oil–gas mixing processes. Consequently, acoustically levitated
droplet evaporation has been investigated for decades [12–14]. However, the details of
the evaporation mechanism of fuel droplets in a supercritical environment still need to be
better understood [15–17].

Fuel droplet evaporation is a complex process that includes several variables. We
have to learn more about droplet evaporation theory because of the tests under various
conditions. Therefore, it is of utmost importance to conduct experimental research on
the suspension of fuel droplets at a particular temperature, observe and record droplet
evaporation, and conduct quantitative analysis on the heat and mass transfer model.
In this experimental investigation with a high-speed camera, we record the images of
transient droplet evaporation and examine the effects of temperature, droplets’ physical
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and chemical characteristics, their starting diameter, and sonic levitation on the evaporation
characteristics of fuel droplets, including hexadecane and diesel.

2. Acoustically Levitated Droplet

Various factors, including resistance, inertia, gravity, and acoustic radiation, can
affect a droplet moving through a standing acoustic wave field. This secondary, time-
independent flow is caused by the levitated droplet’s role as a barrier to the periodic
acoustic boundary-layer flow [18]. The flow, which comprises an inner and exterior flow,
can be manipulated [19]. Evaporation, concentration distribution, and droplet surface
temperature distribution may affect fluid-type-dependent flow structure [20–24].

The behavior of the droplet surface is primarily influenced by two key factors: the
surface tension force and the acoustic radiation force [25–27], denoted as Fa, which work
together to maintain the droplet in suspension (refer to Figure 1).
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Figure 1. Physical model of an acoustically levitated droplet.

The ultrasonic wavelength:

λ =
c0

f
(1)

where c0 represents the velocity of sound propagation and f represents the frequency.
The acoustic radiation force:

Fa =
5
48

ρgnA2D3sin(2nH) (2)

where A denotes the incident amplitude, n represents the number of ultrasounds, n = 2π/λ,
ρg is the media density, D is the droplet diameter, and H denotes the vertical distance
between the center of the droplet and the transducer.

Acoustic suspension is affected by temperature, which shows that the medium density
(Equation (3)) and sound velocity (Equation (4)) change with temperature.

ρg = ρ0
273
T

(3)

c0 = 331.6 + 0.6(T − 273.15) (4)
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where ρ0 represents the density of the gas at standard atmospheric pressure and T = 273.15 K,
and T is the absolute temperature of the surrounding gas, T = ◦C + 273.15.

The droplet gravity:

G =
1
6

πD3ρl g (5)

where ρl is the droplet density and g is the gravity level.

3. Experimental Methodology

The setup of an experimental system for suspending ultrasonic standing waves at
high temperatures is illustrated in Figure 2. The details of the acoustic levitation system are
described in our previous work [28]. The system comprises critical components, including
an ultrasonic standing wave generator with a frequency of 21.5 ± 0.8 kHz, a droplet
transport device, and a heating cylinder.

The ultrasonic standing wave generator has a frequency f = 21.5 ± 0.8 kHz and
an output amplitude 50~80 µm, which can work in the temperature range of 0~750 ◦C.
The distance between the transmitting end and the reflecting end is set to L = 40 mm,
which can generate n = 5 standing wave nodes. The suspension reflector is equipped
with a micro-lifting platform to adjust the ultrasonic suspension of droplets at the order of
20 µm.

The droplet transport device includes an L-shaped quartz tube, a capillary tube,
a water bath cycle, and a stepper motor. The droplets in the experiment were produced
using a microliter syringe. The inner diameter of the pinhole is 0.2 mm, and the droplet
generated in the ultrasonic standing wave field is usually between 0.1 and 1 mm. The
drop volume can be selected with an uncertainty of ±0.05 µL. In general, an experiment
begins with a drop volume 10% larger than the nominal volume, and then the droplet
volume decreases during evaporation. From there, the data regarding the required volume
are recorded.

To measure the transient evaporation characteristics of liquid droplets at a high-
temperature condition, the high-speed camera pco.dimax is connected to the software
pco.camware64, with a frame rate of 1000~2000 FPS. The experimental electric furnace is
used to heat up the cylinder, with a PID automatic control LED digital display. Additionally,
a thermocouple sensor is used to measure the local temperature in the cylinder; a tempera-
ture controller is used to maintain the expected temperature with an accuracy ≤ ±5 ◦C.

The droplet levitated in the acoustic field has been observed as an ellipsoid [29]. And,
as evaporation proceeds, the droplets tend to be spherical. The aspect ratio, AR = b/a,
can be used to characterize the droplet shape [12]. The diameter of the droplet should be
determined through the calculation D =

3√ba2, where D denotes the equivalent diameter,
a denotes the primary diameter, and b means the semi-diameter [30] (Figure 2a). It is
important to highlight that the method remains effective even when the droplet is spherical
in shape. The droplet diameter presented by the binary image was determined through
the ellipse fitting process using Python 3 programming and OpenCV library (Figure 2b).
As the initial droplet observed in this experiment is obtained by breaking a large droplet
through ultrasonic radiation force, the volume of the initial droplet cannot be estimated.
Nevertheless, the approach mentioned above has been proven to exhibit high precision,
with a presentation accuracy of approximately 2.5% in droplet volume [31].

Variations in the liquid’s surface are indicative of its evaporation behaviors [32],

Kη =
D2

0 − D2
η

tη
(6)

where D0 denotes the initial diameter and Dη and Kη , respectively, denote the instant
diameter and the instant evaporation rate at the time tη .
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The mean evaporation rate, which is calculated according to the evaporation rate of
a suspension droplet at the steady-state evaporation stage, is taken as the droplet evapora-
tion rate, K, which is calculated by

K =
1
N

η=tN

∑
η=t1

Kη (7)

where t1 is a time point to enter the steady-state evaporation stage and tN is the point at
which droplet evaporation ends.

Energies 2024, 17, x FOR PEER REVIEW 4 of 14 
 

 

 
(a) 

 
(b) 

Figure 2. (a) The experimental setup for fuel droplet evaporation with acoustic levitation. (b) Drop-
let image processing process and contour comparison. 

Variations in the liquid’s surface are indicative of its evaporation behaviors [32], 𝐾ఎ = 𝐷ଶ − 𝐷ఎଶ𝑡ఎ  (6)

where 𝐷 denotes the initial diameter and 𝐷ఎ and 𝐾ఎ, respectively, denote the instant 
diameter and the instant evaporation rate at the time 𝑡ఎ. 

The mean evaporation rate, which is calculated according to the evaporation rate of 
a suspension droplet at the steady-state evaporation stage, is taken as the droplet evapo-
ration rate, 𝐾, which is calculated by 

𝐾 = 1𝑁  𝐾ఎఎୀ௧ಿ
ఎୀ௧భ  (7)

Figure 2. (a) The experimental setup for fuel droplet evaporation with acoustic levitation. (b) Droplet
image processing process and contour comparison.

Hexadecane and diesel fuels with the parameters listed in Table 1 were used in our ex-
periment. The temperature range of the investigation was 150~550 ◦C, with a measurement
error range of ≤5 ◦C.

Table 1. Physical and chemical property parameters of fuels.

Item Hexadecane Diesel

Formula C16H34 CnH2n+2
Average molecular weight 226 140~283

Boiling point (◦C) 287 273~392
Density at 20 ◦C

(
g/cm3) 0.77 0.81~0.85
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Table 1. Cont.

Item Hexadecane Diesel

Latent heat of vaporization (KJ/ kg) 232 258
Kinematic viscosity at 20 ◦C ( mm2/s

)
3.027 3.0~8.0

Saturated vapor pressure (MPa) 0.0995 -
Diffusion coefficient at 20 ◦C

(
m2/s

)
0.18 × 10−4 -

Critical pressure (MPa) 1.44 1.90~2.20
Critical temperature (◦C) 449 440~470

where n ∈ [10, 22].

4. Results and Discussion
4.1. Fuel Droplet Evaporation Kinetics

Figure 3 illustrates the evaporation process of fuel droplets at different temperatures.
The number located at the superior right-hand corner of every droplet corresponds to the
evaporation time in seconds. Figure 4 shows the corresponding aspect ratio during their
evaporation history.
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The evaporation behaviors of acoustically suspended fuel droplets are visible (Figure 3).
In Figure 4, the aspect ratio of the initial droplet ranges from 0.6 to 0.8 and changes with
evaporation, indicating that the initial droplet is a flat sphere, and the droplet’s shape also
changes with evaporation. At 350 ◦C and 400 ◦C for hexadecane and 500 ◦C for diesel, the
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final recorded aspect ratios reached one (Figure 3b,c,e). Evaporation leads to a decrease in
the mass and an increase in the surface temperature of droplets [33]. Consequently, under
acoustic radiation force and droplet gravity, droplets levitated in an acoustic field may have
violent and disorderly fluctuations. In addition, the kinematic viscosity of droplets may also
affect the oscillation [34,35]. Ultrasound waves exert control over the droplets; however, when
the kinetic energy of the droplet reaches a certain threshold due to intensified oscillation, the
droplet disengages from the acoustic field, causing it to descend. This complexity makes
the experiments challenging, leading us to present only a subset of relatively reliable results
for analysis.
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4.2. Effects of Temperature

Figure 5 depicts the impact of ambient temperature on the evaporation characteristics
of acoustically levitated fuel droplets. The squares filled with different colors and connected
by dotted lines represent the average evaporation rate of the droplets at various tempera-
tures. The periodic oscillation of ultrasound waves [36] causes droplets to variously move
with time in three-dimensional space, thus decreasing droplet surface area oscillations, as
shown in Figure 5. Therefore, the mean evaporation rate at a constant state is chosen and
computed as the evaporation rate (Equation (7)).
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Figure 5. Effect of temperature on the evaporation characteristics of fuel droplets. Hexadecane
droplet: (a) D0 ∈ (0.10, 0.20), temperature 200~550 ◦C, (b) D0 ∈ (0.20, 0.30), temperature 300~500 ◦C.
Diesel droplet: (c) D0 ∈ (0.10, 0.20), temperature 200~550 ◦C, (d) D0 ∈ (0.20, 0.30), temperature
300~550 ◦C.
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The evaporation rate rises dramatically when the ambient temperature reaches the
critical temperature. Also, droplet expansion can be found at low temperatures. For hex-
adecane, the evaporation rate near the critical temperature is 60% greater than that under
subcritical conditions when D0 ∈ (0.10, 0.20). But, when D0 ∈ (0.20, 0.30), it is only 26%
greater than 300 ◦C and 12% greater than 400 ◦C. At 500 ◦C, both of the evaporation rates
of the droplets with D0 ∈ (0.10, 0.20) and D0 ∈ (0.20, 0.30) are significantly faster than
in subcritical conditions. High temperatures rapidly elevate the surface temperatures of
droplets, effectively boosting heat transfer in their vicinity. Simultaneously, the increased
saturated vapor pressure enhances mass transfer. The presence of an acoustic field capable
of compressing the droplet and thereby expanding its surface area induces acoustic stream-
ing near the droplet, potentially augmenting heat transfer and vapor diffusion. These
dynamics highlight significant variations in evaporation rates at different temperatures.
Hence, establishing a range of droplet diameters becomes a reasonable classification, thus
enabling the analysis of the initial droplet diameter’s impact on subsequent evaporation in
the following section.

The droplet’s surface area fluctuation is more evident for diesel droplets. The reason is
that the kinematic viscosity decreases as droplet compositions evaporate. Also, the change
in acoustic streaming structure may cause a non-linear shear change near the droplet
surface [37] and increase the Reynolds number [38]. The evaporation of diesel droplets is
like that of hexadecane droplets. The evaporation rate near critical temperatures is faster
than in subcritical conditions. When D0 ∈ (0.10, 0.20), it is almost three times higher than
300 ◦C and 350 ◦C, and when D0 ∈ (0.20, 0.30), it is nearly 3.89 times higher than 300 ◦C
and 2.25 times higher than 400 ◦C. The results show a difference from hexadecane.

The evaporation rates of hexadecane droplets with larger initial diameters show
a minor increase as the surrounding gas temperature rises. In contrast, the evaporation
rates of diesel droplets with larger initial diameters display relatively higher growth under
identical conditions. This observation aligns with the characteristic easier-to-evaporate
components in diesel droplets, indicating a prior evaporation behavior [6]. Figure 5c,d
(Diesel droplets) show the temperature is up to 550 ◦C. However, the evaporation rate
decreases. The diesel droplet is falling, and the evaporation is still not entering the steady
stage. However, it is possible to observe that the lifespan of droplets may be considerably
shorter in alternative scenarios.

4.3. Effects of Droplet Properties
4.3.1. Initial Diameters

The difference from the early experimental results in an acoustic field of fuel droplets [39,40]
where D0 ∈ (0.98, 1.46) and D0 ∈ (1.30, 1.80) concludes that the evaporation rate is indepen-
dent of the initial droplet diameter. Figure 6 shows that for both hexadecane and diesel
droplets, the evaporation rate increases with the increase in the initial droplet diameter, where
D0 ∈ (0.10, 0.30). Furthermore, our experimental results indicate that the influence of the initial
droplet diameter on the evaporation rate becomes more pronounced with increasing temper-
ature. This observation aligns with compressibility, heat transfer, and mass transfer theories
regarding acoustically levitated droplets [38,41,42]. These theories suggest that a sizable initial
droplet diameter corresponds to higher Sherwood and Nusselt numbers, leading to an accel-
erated heat and mass transfer rate. Also, other experiment results [16,43] show that a more
significant initial diameter leads to a larger relative velocity and mass transfer rate.

4.3.2. Comparison of Different Fuels

Table 2 concisely compares the evaporation characteristics of diesel and hexadecane at
comparable initial droplet diameters and temperatures. Meanwhile, Figure 7 illustrates the
specific details of their respective evaporation behaviors.
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Table 2. Comparison of the evaporation of diesel and hexadecane under similar experimental conditions.

Temperature (◦C) Droplet D0(mm) K(mm2/s)

200
Hexadecane 0.183 0.01398

Diesel 0.184 0.00562

300
Hexadecane 0.266 0.03837

Diesel 0.282 0.02298

400
Hexadecane 0.269 0.04021

Diesel 0.248 0.04099
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Table 2. Cont.

Temperature (◦C) Droplet D0(mm) K(mm2/s)

450
Hexadecane 0.167 0.02980

Diesel 0.154 0.04878

500
Hexadecane 0.292 0.10415

Diesel 0.299 0.09074
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Figure 7 shows that almost all of these fuel droplets have entered the steady-state
evaporation stage and exhibit different behaviors. Except for 400 ◦C, the evaporation rates
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for hexadecane and diesel are nearly identical. Hence, we conclude that at 400 ◦C, the
component of cetane in diesel droplets is close to hexadecane. The distinction between the
evaporation of the two fuel droplets can be seen when temperatures are 200 ◦C, 300 ◦C,
450 ◦C, and 500 ◦C. Therefore, we will analyze these differences next.

At 450 ◦C, the evaporation of diesel droplets is faster than that of hexadecane droplets.
From Figure 7, it can be seen that the evaporation of diesel droplets has not entered a steady
state, i.e., volatile components still control the evaporation behaviors. And, before entering
steady-state evaporation, the diesel droplet escapes from the acoustic field. But, it does not
influence the analysis of other cases.

Figure 7 also concludes that the evaporation of hexadecane droplets is faster than that
of diesel droplets. At a lower temperature (200 ◦C), the evaporation rate of hexadecane is
2.49 times higher than that of diesel droplets. However, as gas temperatures rise to 300 ◦C
and 500 ◦C, this ratio decreases to 1.71 and 1.45 times, respectively. This means that the
diesel droplet has some non-volatile components [6].

5. Conclusions

Experimental investigation into the evaporation of acoustically levitated fuel droplets
at high temperatures was conducted. Both hexadecane and diesel droplet evaporation have
been conducted at temperatures between 150 and 550 ◦C, and the effects of temperature
and droplet features on evaporation characteristics were examined. The results indicate
that these fuel droplets have the potential to follow the D2-law-governed steady-state
evaporation stage.

The initial diameter of the droplet and the ambient temperature both directly affect
the rate of evaporation. The equilibrium temperature of the droplet’s surface increases
with ambient temperature, and so does the evaporation rate. The initial droplet diameter
significantly impacts the hexadecane or diesel droplet evaporation rate at lower compared
to higher ambient temperatures.

At subcritical temperatures, the hexadecane droplet evaporates more quickly. Hexade-
cane droplets vaporize at a pace akin to diesel droplets when the environment is critical.
Hexadecane vaporizes more rapidly than diesel droplets when the environment is super-
critical. Hexadecane droplets may evaporate 15–71% more quickly than diesel droplets
under similar initial droplet width and somewhat high ambient temperature.

In the future, acoustic levitation technology can be used to study fuel droplet evap-
oration under high-temperature and high-pressure conditions that are closer to the real
conditions inside the cylinder of ICE. This would be of great importance to find ways to
increase efficiency, optimize performance, and reduce emissions for the ICE industry.
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