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Abstract: Energy demand forecasting is a fundamental aspect of modern energy management. It
impacts resource planning, economic stability, environmental sustainability, and energy security.
This importance is making it critical for countries worldwide, particularly in cases like Tiirkiye,
where the energy dependency ratio is notably high. The goal of this study is to propose ensemble
machine learning methods such as boosting, bagging, blending, and stacking with hyperparameter
tuning and k-fold cross-validation, and investigate the application of these methods for predicting
Ttirkiye’s energy demand. This study utilizes population, GDP per capita, imports, and exports as
input parameters based on historical data from 1979 to 2021 in Ttirkiye. Eleven combinations of all
predictor variables were analyzed, and the best one was selected. It was observed that a very high
correlation exists among population, GDP, imports, exports, and energy demand. In the first phase,
the preliminary performance was investigated of 19 different machine learning algorithms using
5-fold cross-validation, and their performance was measured using five different metrics: MSE, RMSE,
MAE, R-squared, and MAPE. Secondly, ensemble models were constructed by utilizing individual
machine learning algorithms, and the performance of these ensemble models was compared, both
with each other and the best-performing individual machine learning algorithm. The analysis of
the results revealed that placing Ridge as the meta-learner and using ET, RF, and Ridge as the base
learners in the stacking ensemble model yielded the highest R-squared value, which was 0.9882,
indicating its superior performance. It is anticipated that the findings of this research can be applied
globally and prove valuable for energy policy planning in any country. The results obtained not only
highlight the accuracy and effectiveness of the predictive model but also underscore the broader
implications of this study within the framework of the United Nations” Sustainable Development
Goals (SDGs).

Keywords: energy demand; ensemble machine learning; SDGs; Tiirkiye

1. Introduction

Energy plays a vital role in supporting the social and economic development of a coun-
try from past to present. It drives economic growth, improves living standards, supports
social services, enhances national security, and contributes to environmental sustainability.
Ensuring reliable, affordable, and sustainable energy access is essential for a country’s
overall development and progress. Therefore, the development of energy policies and the
estimation of energy demand are a most important priority for developed and developing
countries. Tiirkiye is the 19th largest economy in the world, with a gross domestic product
(GDP) of roughly USD 906 billion [1]. Therefore, as a fast-growing economy, Tiirkiye’s
energy consumption has undergone significant growth and diversification over the years.
As a rapidly developing country, Tiirkiye has experienced a substantial increase in en-
ergy demand due to population growth, urbanization, industrialization, and economic
expansion. In terms of energy sources, Ttirkiye has a mix of fossil fuels, renewable energy,
and imports. Electricity consumption constitutes a significant portion of Tiirkiye’s energy
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consumption. However, the energy production in Tiirkiye is rather low, in spite of the
considerable increase in energy consumption.

In 2021, Tiirkiye produced approximately 41.3 MTOE (million tons of oil equivalent),
mostly based on coal and lignite (57.5%). In contrast, the country’s energy consump-
tion reached approximately 109.8 MTOE in the same year. This substantial gap between
energy production and consumption has led to Tiirkiye becoming one of the major energy-
importing countries in Europe [2]. According to a report by the Ministry of Energy and
Natural Resources in September 2021, Tiirkiye’s energy dependency rate was reported to
be around 74%. This means that Tiirkiye relied on imports to meet approximately 74% of
its total energy consumption. The country heavily depended on imports of natural gas and
oil to bridge the energy gap between domestic production and demand [3].

To provide energy either by importing or by producing it, forecasting energy con-
sumption, and analyzing the relationship between energy demand and supply, are crucial
issues in short- and long-term energy planning. Managing energy demand also involves
identifying and prioritizing energy resources, optimizing energy utilization, improving
energy efficiency, shaping policy decisions, and devising strategies to reduce emissions.

Furthermore, it is important to emphasize that the United Nations” SDGs provide a
comprehensive blueprint for addressing global challenges and promoting sustainability by
2030 [4]. This study aligns closely with several of these goals, including Goal 7, Goal 8, and
Goal 13, making a significant contribution to the broader aims of sustainable development.
Accurate energy demand forecasting plays a central role in achieving ‘Goal 7: Affordable
and Clean Energy’. By optimizing energy production, distribution, and consumption,
this study facilitates the provision of affordable, reliable, and clean energy. This, in turn,
supports economic growth, enhances energy access, and reduces environmental impacts.
Moreover, this study directly addresses ‘Goal 13: Climate Action’ by mitigating the effects
of climate change. Through precise energy demand predictions, it empowers Tiirkiye to
make informed decisions that reduce greenhouse gas emissions, promote renewable energy
adoption, and foster a low-carbon, sustainable energy sector. Energy efficiency serves as
a catalyst for economic growth and job creation, aligning with ‘Goal 8: Decent Work and
Economic Growth’. This study enables Tiirkiye to implement energy-efficient measures,
leading to cost savings for industries and households.

Researchers have developed various statistical techniques, meta-heuristic algorithms,
and artificial intelligence techniques in energy modeling. Artificial neural networks (ANNSs)
have garnered significant interest in energy planning due to their ability to handle complex
nonlinear relationships between input and output data [5]. ANNs have been applied in
various energy forecasting applications, including gas consumption [6], energy demand [7],
electricity consumption [8], transportation energy demand [9-11], energy source analy-
sis [12], and energy dependency [7]. Apart from ANNSs, other prediction methods have
emerged, such as fuzzy logic, adaptive network-based fuzzy inference systems (ANFIS),
and general machine learning algorithms [13-15]. It is important to recognize that artificial
neural networks (ANNSs) are a subfield of machine learning (ML), which, in itself, is a subset
of artificial intelligence (AI). Frequently, the terms Al, ML, and deep learning (DL) are
used interchangeably to refer to intelligent systems or software. DL, specifically, extends
the concept of ANNs by incorporating extra hidden layers and employing specialized
activation functions that are not typically found in traditional ANN models.

Al-based prediction models have received considerable interest for solving a variety
of problems in energy planning recently. These models leverage the power of artificial
intelligence techniques to forecast future outcomes based on historical data patterns. These
models use advanced algorithms and machine learning methods to analyze large datasets,
identify patterns, and make predictions.

Research on predicting Tiirkiye’s energy requirements began in the 1960s, with the
State Planning Organization (SPO) employing basic regression techniques for energy fore-
casting. In the late 1970s, the Ministry of Energy and Natural Resources (MENR) and the
Turkish Statistical Institute (TSK) started preparing energy demand projections [16], but
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the estimated values provided by MENR were found to be higher than the actual energy
demand [17]. Numerous econometric modeling techniques were applied to forecasting
energy consumption after 1984. The Model for Analysis of Energy Demand (MAED) is
the most frequently used approach developed by MENR [18]. Nevertheless, the energy
demand predictions generated by MAED continued to overstate actual demand, rendering
them unreliable [19,20]. Utgikar and Scott [21] conducted an inquiry to understand the
reasons behind unsuccessful energy predictions. They found that, although statistical
models are favored by researchers due to their simplicity, they tend to deliver acceptable
results only for short-term periods, while becoming increasingly unstable for longer-term
forecasts. While statistical models have contributed valuable insights to energy forecasting
studies, El-Telbany and El-Karmi [22] argue that these models, which rely on statistical
methods, perform well under normal conditions but struggle to account for sudden changes
in environmental or sociological variables. Due to the reasons discussed above, researchers
have become interested in the field of energy demand modeling.

Al-based prediction methods utilize advanced algorithms and models that learn
patterns, relationships, and trends from historical data to make accurate predictions about
future events or outcomes. Al-based prediction methods have gained significant popularity
due to their ability to handle complex, non-linear relationships and adapt to changing data
patterns. Machine learning (ML) is an Al-based prediction method, which encompasses a
range of algorithms that automatically learn and improve from data without being explicitly
programmed. Deep learning (DL), a subset of ML, has emerged as a powerful Al-based
prediction method.

Al-based prediction methods have demonstrated their effectiveness in various fields,
including finance, healthcare, weather forecasting, sales forecasting, demand prediction,
and fraud detection [23-26]. However, it is important to note that, when applying these
methods to real-world scenarios, factors such as data quality, feature selection, model com-
plexity, and interpretability should be carefully considered. Machine learning approaches
can be broadly categorized into three main types: supervised learning, unsupervised learn-
ing, and reinforcement learning. Supervised learning algorithms include classification and
regression tasks. Regression is used for energy demand in this work. In machine learning,
ensemble learning and deep learning methods outperform traditional algorithms. Ensem-
ble methods are learning algorithms that build a set of classifiers and then classify new data
points by taking (weighted) votes of their predictions. The effectiveness of an ensemble
method depends on several factors, including how the underlying models are trained
and how they are combined. In the literature, there are common approaches to building
ensemble models that have been successfully demonstrated in various domains [27-29].

Ensemble machine learning is a powerful technique in the field of machine learning
that involves combining the predictions of multiple individual models (base models) to
create a more accurate and robust predictive model. This approach, preferred over single
methods, offers several key advantages. Firstly, ensembles enhance prediction accuracy by
aggregating multiple models, reducing errors and biases. Secondly, they mitigate overfit-
ting, a common issue in machine learning, by balancing out individual model weaknesses.
Moreover, ensembles prove their robustness by effectively handling noisy data and outliers,
making them suitable for real-world applications [30]. In automated decision-making
applications, especially in engineering, ensemble methods have demonstrated superior
performance compared to individual learners. This is attributed to their ability to capture
diverse patterns, reduce bias and variance, and improve generalization. Ensemble methods
are particularly effective when there is a large amount of data, complex relationships, and
a need for high predictive accuracy.

Common ensemble method strategies comprise bagging, boosting, blending, and
stacking. Bagging, exemplified by the Random Forest algorithm, enhances model robust-
ness by reducing overfitting and improving prediction accuracy through the wisdom of
the crowd [31]. Boosting is another ensemble technique that iteratively builds a strong
predictive model by giving more weight to the data points that previous models mis-
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classified [32]. Bagging reduces variance by averaging over multiple models; boosting
focuses on reducing bias through weighted data points. Blending, sometimes referred to
as model stacking or meta-ensembling, involves training multiple diverse base models on
the same dataset and then combining their predictions using a separate model trained on
the validation set. Stacking, similar to blending, combines multiple base models to form
a meta-model but differs in its approach. In stacking, the predictions of the base models
serve as input features for a meta-model, which learns to make the final predictions [33].
Blending combines diverse models with a separate meta-model, and stacking uses base
models to create a meta-model for predictions. The choice among these ensemble methods
depends on the specific problem, dataset, and the trade-off between bias and variance in
the model [28].

The main objective of this study is to use ensemble machine learning methodologies,
which have not received much attention in prior research on energy, to assess energy
demand in Tiirkiye. In this paper, several significant contributions to the field of energy
demand forecasting are presented. This study stands out for its exhaustive examination
of 19 distinct ML algorithms, evaluated using five different performance metrics, offering
a detailed understanding of their strengths and weaknesses. The study involves compre-
hensive hyperparameter tuning, ensuring that the models are finely tailored to Tiirkiye’s
energy demand data, enhancing their predictive accuracy. Additionally, the utilization of
ensemble methods, which combine the predictions of multiple ML algorithms, leveraging
their individual strengths, has led to an improved forecasting performance compared to
relying on a single algorithm. This approach contributes to the understanding of how
different ensemble strategies can be applied effectively in the domain of energy forecasting
and provides valuable insights for future research and applications. To the best of my
knowledge, this paper is the first to investigate Tiirkiye’s energy demand using ensemble
ML models. Collectively, these innovative elements contribute not only to the accuracy
and efficacy of the predictive model but also have broader implications for energy policy
planning, aligning with the United Nations” SDGs.

This paper is organized as follows: Section 2 will provide an overview of the scope
and definition of energy demand studies. Section 3 will present the primary methods and
approaches employed in energy demand study, along with the main data sources and
challenges associated with energy. In Section 4, the principal findings and trends will be
discussed using various ensemble learning algorithms. Section 5 will summarize the main
implications and recommendations from the results of energy demand study. Finally, this
paper will conclude with a discussion of limitations and directions for future research.

2. Literature Review

Energy demand forecasting is an important task for planning and managing energy
systems. It involves predicting the future energy consumption of different sectors, regions,
or appliances based on various factors such as weather, economic activity, population,
lifestyle, etc. This literature review aims to summarize some of the key findings and trends
from recent articles on this topic.

2.1. Review of Energy Demand Forecasting in the World

Global energy demand has been affected by the COVID-19 pandemic and the economic
recovery in 2021. According to the Global Energy Review 2021 by the International Energy
Agency (IEA), global energy demand is expected to grow by 4.6% in 2021. The IEA projects
that global energy demand will grow by 0.8% per year on average between 2021 and 2030
in its Stated Policies Scenario (STEPS), which reflects current and announced policies and
targets [34].

This literature review provides a brief overview of some of the main findings and
trends from recent articles on energy demand in the world. There are many methods of
energy demand forecasting, spanning from conventional approaches like econometric and
time series models [35-38] to contemporary soft computing techniques, including artificial
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intelligence methods and evolutionary algorithms [39—-44]. A systematic literature review
encompassing 419 articles on energy demand modeling, covering the period between
2015 and 2020, was conducted by Verwiebe et al. [45]. They analyzed the methodologies,
prediction accuracy, input variables, energy sources, sectors, temporal scopes, and spatial
resolutions employed in these models. They found that machine learning techniques were
the most used, followed by engineering-based models, metaheuristic and uncertainty tech-
niques, and statistical techniques. They also discussed the drawbacks and countermeasures
of each technique. Another systematic literature review of energy demand forecasting
methods published in 2005-2015 was conducted by Ghalehkhondabi et al. [46]. They
focused on the methods that are used to predict energy consumption and compared their
performance and applicability. They reported that neural networks were the most cited
technique and had notable performance but also high computation time. They suggested
that hybrid methods could be a promising field for future research.

2.2. Energy Demand Forecasting in Tiirkiye

A summary of studies for Ttirkiye’s energy demand forecasting is tabulated in Table 1.
However, to the best of my knowledge, there is no research paper that employs ensemble
machine learning methods and compares them with each other to forecast Tiirkiye’s
energy demand.
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Table 1. A summary of the literature on Tiirkiye’s energy demand.

Author(s) Year Method Used Dataset Input Parameters Performance Metric Forecasting for
. e . 1979-2005 GDP, Population, Import, The Amount of Error,
Aslan [47] 2023 Archimedes Optimization Algorithm 1979-2011 pExport p Relative Error (%) Energy
Passenger-km, Freight-km, AE. APE. Std AE
Bezier Search Differential Evolution . Carbon dioxide emissions, ’ P2 A2 ;
Korkmaz [48] 2022 Black Widow Optimization (BWO) 2000-2017 GDP, Infrastructure Std_APE, R*, Adj R, Transportation Energy
Investment MAE, MAPE, and RMSE
s Improved Arithmetic Optimization GDP, Population, Import, The Amount of Error,
Aslan and Begkirli [49] 2022 Algorithm 1979-2011 Export Relative Error (%) Energy
Deep Learning (DL) . . 2
Agbulut [50] 2022 Support Vector Machine (SVM) 1970-2016 GDP, Popula\t{l;lrll‘, Vehicle-km, R '%\l\/fssg' M(‘?I;/FAII\S%BE’ Transportation Energy
Artificial Neural Network (ANN) r , an
. . . AE, APE, Std_AE,
Ozdemir et al. [51] 2022 %Oilrfilti‘in““ﬁ“al Bee Colony 1979-2005 GDF, Population, Import, Std_APE, R2, MAE, Energy
8 P MAPE, and RMSE
Ozkis [52] 2020 Vortex Search Algorithm (VS) }g;g:%g?? GDP, Popéli;t(i);)tn , Import, The Amount of Error Energy
Hybrid Gravitational Search, Teachin, Population, Gross Generation,
Tefek et al. [53] 2019 L yorL Based Optimization Meth. (‘;;’ 19802014 Net Consumption, GDP, R?, RMSE, MAPE Energy
earning-Based Optimization Metho Installed Power
- . GDP, Population, I t, The A t of Error,
Beskirli et al. [54] 2018 Artificial Algae Algorithm (AAA) 1979-2005 OPEX;:);’? mpor Ri lag‘v‘;ugrrg . (Or/j)or Energy
Cayir Ervural and Grey Prediction Model Based on GA = Previous Annual Electricity Electricity Energy
Ervural [55] 2018 Grey Prediction Model Based on PSO 1996-2016 Consumption Data RMSE, MAPE consumption
Gravity Search Algorithm (GSA), .
Kog et al. [56] 2018 Invasive Weed Optimization Algorithm 1979-2011 GDE, Population, Import, The Amount of Eor ror, Energy
(TWO) Export Relative Error (%)
Oztiirk and Oztiirk [57] 2018 ARIMA 1970-2015 Cgiﬁl(;:l}ftiﬁ%a AIC Energy
GDP. Population. Import Mean Absolute Relative
Beskirli et al. [58] 2017 Differential Evolution Algorithm (DE) 1979-2011 ’ pEx ort port, Error, Relative Error (%), Energy
p Magnitude of Error
. . Absolute Relative Error,
Das [59] 2017 Neural Network Based on Particle 1979-2005 GDP, Population, Import, Relative Error (%), R2, Energy

Swarm Optimization

Export

RMSE, MAPE, and MAD
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Table 1. Cont.
Author(s) Year Method Used Dataset Input Parameters Performance Metric Forecasting for
N GDP, Population, Import, Average Relative Error, ..
Kankal and Uzlu [60] 2017 ANN 1980-2012 Export RMSE, and MAE Electricity Energy
Artificial Bee Colony with Variable GDP, Population, Import, The Amount of Error,
Uguz etal. [61] 2015 Search Strategies (ABCVSS) 1979-2005 Export Relative Error (%) Energy
Import, Export, Gross 2 .
Tutun et al. [62] 2015 Regression and ANN 1975-2010 generatic;rrll,e"lljg;nsmitted R%, Rllt/[/[%'al\r/lldAgéE}é MSE, Elecgﬁlsﬁzﬁ?g;gy
Hybrid Meta-Heuristic (Particle Swarm . -
Kiran et al. [63] 2012 Optimization, Ant Colony 1979-2005 GDP, Popéli;t(l);)trl , Import, Relative Error (%), R? Eleccozlsﬂz}i?g;gy
Optimization)
. . . GDP, Population, Import, Relative Error (%), R and
Kankal et al. [64] 2011 Regression Analysis/ANN 1980-2007 Export, Employment MSE Energy
.. . o GDP, Population, I t, The A t of Error,
Unler [17] 2008 Particle Swarm Optimization 1979-2005 OP};(;S?{I mpor Ree laglloeugrr(c))r ((}Z)O g Energy
Autoregressive Integrated Moving Previous Energy
Ediger and Akar [65] 2007 Average (ARIMA) and seasonal 1950-2005 Consumption MSE and MAED Energy
ARIMA (SARIMA) Data
Toksar1 [66] 2007 Ant Colony Optimization 1970-2005 Population, GDF, Import, R? Ener
y+p Export 8y
Population, Gross Generation,
Sozen et al. [67] 2005 ANN 1975-2003 Installed Capacity, Import, R2, RMSE, and MAPE Energy
Export
Canyurt et al. [68] 2004 Genetic Algorithm 1970-2001 GDP, Pop}gli;t(i)?s, Import, Relative Error (%) Energy
_ . . GDP, Population, Import, Relative Error (%), MSE,
Ceylan and Oztiirk [69] 2004 Genetic Algorithm 1970-2001 Export and R Energy
. Energy and exergy
Ceylan et al. [70] 2004 Genetic Algorithm 1990-2001 GDP, Population, Import, Average Relative Error production and

Export

consumption
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3. Materials and Methods

In this section, the proposed methodology is introduced in detail. Ensemble meth-
ods refer to algorithms that combine multiple machine learning models into a unified
framework. These methods have gained significant attention and recognition in the ma-
chine learning community due to their ability to enhance prediction accuracy and robust-
ness [40,41]. By combining the predictions of multiple models, ensemble methods can
mitigate the limitations of individual models and provide more accurate and reliable re-
sults. Several types of ensemble methods commonly used in machine learning are bagging,
boosting, blending, Random Forest, and stacking [28,31-33]. This paper proposes and
analyzes different ensemble combination models that can be achieved by using diverse
base models, varying model architectures, or training on different subsets of the data.

3.1. ML Algorithms

In the context of forecasting Tiirkiye’s energy demand, a selection of 19 ML algorithms
was automatically generated through the use of AutoML'’s capabilities. The choice of these
19 ML algorithms was guided by the necessity to thoroughly explore, compare, and evaluate
various modeling approaches for energy demand forecasting, all while considering the
specific requirements and characteristics of the Ttirkiye dataset.

Given the complex and dynamic patterns inherent in energy demand data, the ob-
jective was to identify models that are robust and effective in capturing intricate patterns
under varying conditions. AutoML streamlined this process, providing a systematic
and efficient means to evaluate multiple algorithms without manual intervention. The
resulting set of 19 ML algorithms encompasses a diverse range of machine learning tech-
niques, including linear and non-linear models, tree-based methods, neural networks, and
ensemble methods.

These algorithms are briefly described below.

e Light Gradient Boosting Machine (LightGBM) [71]

LightGBM is a popular machine learning algorithm used for both regression and
classification tasks. It is designed to efficiently handle large-scale datasets with high-
dimensional features. LightGBM is known for its speed, accuracy, and ability to handle
complex problems. LightGBM is based on the gradient boosting framework, similar to
other boosting algorithms.

e  XGBoost [72]

XGBoost Regressor is a powerful machine learning algorithm used for regression tasks.
XGBoost Regressor is known for its efficiency, accuracy, and ability to handle complex
datasets. The algorithm minimizes a loss function by iteratively adding decision trees to the
ensemble. Each tree is trained to predict the residuals (the differences between the actual
and predicted values) of the previous ensemble. The process continues until a specified
number of trees is reached or the desired level of performance is achieved.

e  Extra Trees Regression [73]

Extra Trees Regression is a machine learning algorithm used for regression tasks. It
belongs to the ensemble learning family and is an extension of the popular Random Forest
algorithm. Extra Trees Regression combines multiple decision trees to make predictions by
aggregating their outputs. The algorithm builds a user-defined number of decision trees
using random subsets of the training data and random subsets of features.

e DPassive Aggressive Regressor (PAR) [74]

PAR is a machine learning algorithm used for regression tasks. In PAR, the algorithm
updates the regression model incrementally, making predictions on new instances as they
arrive. It adapts to new data points by adjusting the model’s parameters without revisiting
the entire training set. This property makes it suitable for handling large-scale datasets or
scenarios where data arrives in a streaming fashion.
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e  Elastic Net [75]

Elastic Net is a regression method that combines the Lasso and Ridge regression
techniques. It is used for feature selection and regularization in linear models, providing
a balance between the two methods. In Elastic Net, the algorithm aims to minimize the
sum of squared residuals between the predicted and actual values, similar to ordinary
least-squares (OLS) regression.

e  Least Angle Regression (LARS) [76]

LARS is a regression method used for feature selection and model building. LARS
starts with an empty set of selected features and gradually adds features in a way that
balances their correlations and coefficients. The algorithm continues this process until it
reaches the desired number of selected features or the maximum number of available features.

e Lasso Least Angle Regression [76]

Lasso Least Angle Regression is a regression method that combines the features of
the Lasso regularization and the Least Angle Regression algorithm. It is used for feature
selection and regularization in linear regression tasks. Lasso Least Angle Regression aims
to estimate the coefficients of a linear regression model while simultaneously performing
feature selection by encouraging sparsity in the solution.

e  Orthogonal Matching Pursuit (OMP) [77]

OMP is an algorithm used for sparse signal recovery and feature selection tasks. It
aims to find the most relevant features or components of a signal by iteratively select-
ing and reconstructing the signal based on a small subset of measurements or features.
OMP leverages the orthogonality property to efficiently select features and estimate the
signal. At each iteration, the algorithm ensures that the selected features are orthogonal
or nearly orthogonal to each other, which helps in accurate signal reconstruction and
efficient convergence.

e Random Forest Regressor [78]

Random Forest Regressor is a popular machine learning algorithm used for regression
tasks. It belongs to the ensemble learning family and is built upon the concept of decision
trees. In Random Forest Regressor, a user-defined number of decision trees are constructed.
Each tree is built using a random subset of the training data and a random subset of
features. The process of constructing each tree involves recursively splitting the data based
on different features and their respective splitting points. The splitting is done in a way
that minimizes the variance of the target variable within each resulting subset.

e  Gradient Boosting Regressor [32]

Gradient Boosting Regressor is a powerful machine learning algorithm used for
regression tasks. It belongs to the boosting family of algorithms and is designed to create a
strong learner by iteratively combining weak learners. Gradient Boosting Regressor works
by minimizing a loss function through an additive approach, where each new model is
built to correct the errors made by the previous models.

e  AdaBoost Regressor [79]

AdaBoost Regressor, short for Adaptive Boosting Regressor, is a machine learning
algorithm used for regression tasks. The algorithm iteratively trains a series of weak
regressors, each focusing on the instances that were wrongly predicted by the previous
regressors, to improve the overall prediction accuracy. In AdaBoost Regressor, each weak
regressor is trained on a subset of the training data. During training, the algorithm assigns
weights to each instance, with initially equal weights for all instances.

e  Linear Regression [80]

Linear regression is a statistical method that models the relationship between a depen-
dent variable (y) and one or more independent variables (x). It can be used to estimate how
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the dependent variable changes as the independent variables change, and to test hypothe-
ses about the strength and direction of the relationship. There are different types of linear
regression, such as simple linear regression, multiple linear regression, and multivariate
linear regression.

e  Lasso Regression [81]

Lasso Regression (LASSO) is a method of regression analysis that performs both
variable selection and regularization. It aims to improve the prediction accuracy and
interpretability of the regression model by shrinking the coefficients of some predictor
variables to zero and reducing the magnitude of others.

e  K-Neighbors Regressor [82]

K-Neighbors Regressor is a machine learning algorithm used for regression tasks. It is
a non-parametric method that predicts the target value of an instance by considering the
average or weighted average of the target values of its k nearest neighbors in the training
data. In K-Neighbors Regressor, the algorithm identifies the k nearest neighbors of a given
instance based on a distance metric, such as Euclidean distance. The target values of these
neighbors are then used to calculate the predicted value for the instance.

e Bayesian Ridge Regression [83]

Bayesian Ridge Regression is a regression method that incorporates Bayesian princi-
ples into the linear regression framework. In Bayesian Ridge Regression, the algorithm
places a prior distribution on the regression coefficients, typically assuming a Gaussian
distribution. This prior distribution represents the initial belief about the likely values of
the coefficients before observing the data.

e  Decision Tree Regressor [84]

Decision Tree Regressor is a machine learning algorithm used for regression tasks. It
is based on the concept of a decision tree, which partitions the input space into regions and
predicts the target value based on the average or majority value of the training instances
within each region. In Decision Tree Regressor, the algorithm recursively splits the data
based on different features and their respective splitting points to create a tree-like structure.

e  Ridge Regression [85]

Ridge Regression is a linear regression method used for modeling and prediction tasks.
It is an extension of ordinary least-squares (OLS) regression that introduces a regularization
term to handle multicollinearity and prevent overfitting. In Ridge Regression, the algorithm
seeks to minimize the sum of squared residuals between the predicted and actual values,
similar to OLS regression. However, Ridge Regression adds a penalty term, known as the
Ridge or L2 penalty, to the cost function.

e  Huber Regressor [86]

Huber Regressor is a robust regression method that combines the benefits of both
the least-squares regression and robust regression techniques. Huber Regressor addresses
these issues by introducing a hybrid loss function that behaves like least squares for small
residuals and like a scaled absolute loss for large residuals.

e  Dummy Regressor

Dummy Regressor is a simple baseline model used for regression tasks. It provides a
straightforward way to establish a baseline performance against which other regression
models can be compared. Dummy Regressor makes predictions based on simple rules or
heuristics rather than learning patterns from the data.

3.2. Structure of the Proposed Methods

This section presents the structure and abstract overview of the study, with a basic
conceptual flow shown in Figure 1. The methodology consists of several key steps to
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improve the accuracy of the models. The first step entails data preparation, encompassing
data preprocessing, normalization, and transformation to ensure the dataset is primed
for analysis. Following this, the performance of 19 different ML algorithms has been
assessed. This evaluation forms the basis for creating various ensemble combinations that
leverage the strengths of individual models. In the third step, four different ensemble
techniques like bagging, boosting, blending, and stacking models have been used to create
powerful ensemble models that can capture complex patterns and relationships in the data.
Finally, this study concludes with the fourth step, where it has carefully evaluated and
compared these ensemble models, gaining insights into their strengths and weaknesses.
This comprehensive evaluation process has informed my final prediction, guiding us
towards data-driven decisions that hold the potential to advance the field of artificial
intelligence and machine learning.

Input Dataset

Data Preprocessing | | Data Normalization | | Data Transformation

A4

Evaluation of Each 19 ML Algorithm Performance

[ Er || ®F [[Rider || 1R [LasSO LAR | LLAR [ oM |

| Huber || aDA |[ GBR || DT | XGBOOST || KNN || EN |

| BR | LIGHTGBM || DUMMY || PAR |

Step 1
for building predictors

v

Selection of Best Algorithm

h

Hyperparameter Tuning
______________________ fr-mmmemeeccceccaaa.
Ensemble Methods
E
§ \ 4 4  § 4
K%
2 Bagging Boosting Blending Stacking
a3
g3 i )
“d
2
3 ’
g Model Evaluation and Comparisons
3
“~

4

Final Prediction

Figure 1. A basic conceptual flow of this study.

3.2.1. k-Fold Cross-Validation

The next step in the processing block involves selecting machine learning algorithms
that exhibit superior performance and diverse learning capabilities when applied to the
energy dataset. k-fold cross-validation is a technique used in machine learning algorithms
to evaluate the performance of a model by dividing the available data into k equally sized
subsets or “folds”. The process entails iteratively training the model on k — 1 folds and
then evaluating it on the remaining fold. This cycle is repeated k times, with each fold
being used as the test set exactly once. The final evaluation is obtained by averaging the
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performance results from each iteration. The value of k is usually chosen as k = 5 or k = 10.
A 5-fold cross-validation was used to obtain groups of performance measures in this study.

3.2.2. Model Hyperparameters Tuning

Hyperparameter tuning is the process of finding the optimal values for the hyperpa-
rameters of a machine learning algorithm. Hyperparameters are parameters that are set
before the learning process begins and determine how the algorithm learns and generalizes
from the training data [87].

In this study, hyperparameter tuning was employed to improve model performance
and prevent overfitting before proceeding to the next stage of the framework. The com-
monly used approaches for hyperparameter tuning are Grid Search, Random Search, and
Bayesian Optimization. The choice of the technique ultimately depends on the specific
problem, available computational resources, and the characteristics of the hyperparameter
search space. In this work, the Grid Search approach has been used.

3.2.3. Performance Metrics

The performance of ML algorithms in the energy demand problem was estimated
using powerful validation techniques. Five validation methods, Mean Square Error (MSE),
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and R-squared (R?), were employed to evaluate the models [10].

The standard predictive performance metrics are represented by Equations (1)—(5):

n ¥ . 2
MSE = Z M (1)
i=1 n
n (5, - 0y
RMSE = |} ~—— )
i=1 n
n \7 J— .
MAE = w 3)
m |y .
MAPE = Ly [Ji= & @)
M3l Y
e A2
R2—1_ Y (yi %) (5)
Yi(0i —Oj)

Here, (O;) represents the magnitude of the actual values, (¥,) is the model’s predicted
value, (O;) stands for the real data, and (n) indicates the number of observed data points.

3.3. Data Collection

The dataset used in this paper includes independent variables such as population (in
millions), gross domestic product (GDP), import, and export, which were selected based
on a comprehensive literature review. This dataset spans the years 1979-2021 and was
sourced from various government agencies, including the Turkish Statistical Institute [88],
the Turkish Ministry of Energy and Natural Resources (MENR) [89], the World Bank [1]
and European Commission [2]. Additionally, the energy consumption data (measured in
million tons of oil equivalents, MTOE) was obtained from the MENR. The details of the
variables are given in Table 2.
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Table 2. Input parameter-use rationales.

Variable The Influencing Factors for Using This Variable

There exists a strong correlation between GDP and energy consumption, as
the level of economic activity directly impacts the demand for energy.
When the GDP of a country increases, it generally indicates a growth in

GDP industrial and commercial activities, leading to higher energy consumption.
Considering the substantial impact of GDP on energy demand, GDP is
often chosen as an independent variable in studies analyzing energy
consumption patterns.

Population growth directly affects the demand for energy in a country or
region. As the population increases, there is a greater need for energy to
meet the demands of the growing population, including residential,
commercial, industrial, and transportation sectors. Understanding and
considering population values as an independent variable is crucial for
analyzing and planning energy resources.

Population

The relationship between imports and energy consumption is significant,
as the availability and reliance on imported energy resources can directly

Import impact a country’s energy demand. The import values of energy resources
are chosen as independent variables in this study due to their influence on
the overall energy consumption patterns.

The relationship between exports and energy consumption is an important
aspect of understanding a country’s energy demand. The export values of
energy resources are chosen as independent variables in this study due to
their potential impact on a country’s overall energy consumption patterns.

Export

The predictors mentioned above have been commonly utilized in numerous energy
forecasting studies, as seen in Table 1. Considering the data collection period from 1979 to
2021, the population grew from 43.19 million to 84.78 million, while GDP increased from
USD 82 billion to USD 819.04 billion, indicating a roughly 2 times and 10 times increase,
respectively, by 2021. Import and export volumes also saw significant growth, rising from
5.07 and 2.26 to 271.42 and 225.29, respectively, marking approximately a 55 times and
100 times increases by 2021. Furthermore, the demand for transportation energy surged
nearly fivefold, from 26.37 Mtoe in 1979 to 123.86 Mtoe in 2021. Detailed historical data for
these parameters from 1979 to 2021 can be found in Table 3.

Table 3. Observed historical data related to the energy demand in Tiirkiye.

Years  Population (10°) (UsG]]JD fo9) (5?5339) (I}ESx]l;olr;g) Fﬁig
1979 4319 82.00 5.07 226 26.37
1980 44.09 68.82 791 291 2751
1981 44.98 71.04 8.93 470 27.60
1982 45.95 64.55 8.84 5.75 29.59
1983 47.03 61.68 9.24 5.73 30.25
1984 4811 59.99 10.76 7.13 31.75
1985 49.18 67.23 11.34 7.96 32.73
1986 50.22 75.73 11.10 7.46 34.59
1987 51.25 87.17 14.16 10.20 38.70
1988 52.28 90.85 14.34 11.66 39.73
1989 53.31 107.14 15.80 11.62 40.40

1990 54.32 150.68 22.30 12.96 4224
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Table 3. Cont.

Years  Population (10°) (U;;]])) 509) (LIJIsn]I))(;rot% (LFSx]golr(:g) ](El\ljlizge})’
1991 55.32 150.03 21.05 13.59 43.09
1992 56.30 158.46 2287 14.71 44.70
1993 57.30 180.17 2943 15.35 4826
1994 58.31 130.69 2327 18.11 4577
1995 59.31 169.49 35.71 21.64 50.53
1996 60.29 181.48 4363 2322 54.85
1997 61.08 189.83 48.56 26.26 57.99
1998 62.24 275.97 45.92 26.97 57.12
1999 63.19 256.39 40.67 26.59 55.22
2000 6411 27430 54.50 2777 61.60
2001 65.07 201.75 41.40 31.33 55.60
2002 65.99 240.25 51.55 36.06 59.49
2003 66.87 314.59 69.34 47.25 64.59
2004 67.79 408.88 97.54 63.17 68.24
2005 68.70 506.31 116.77 73.48 70.33
2006 69.60 557.06 139.58 85.53 74.82
2007 70.47 681.34 170.06 107.27 79.79
2008 71.32 770.46 201.96 132.03 77.76
2009 72.23 649.27 140.93 102.14 78.36
2010 73.20 776.99 185.54 113.88 79.84
2011 74.17 838.76 240.84 134.91 84.91
2012 75.28 880.56 236.55 152.46 88.84
2013 76,58 957.78 260.82 161.48 88.07
2014 78.11 938.95 251.14 166.50 89.25
2015 79.65 864.32 213.62 150.98 99.47
2016 81.02 869.69 202.19 149.25 104.57
2017 82.09 859.00 238.72 164.50 111.65
2018 8281 77847 231.15 177.17 109.44
2019 83.48 759.94 210.35 180.83 110.65
2020 84.14 720.30 21952 169.64 113.70
2021 8478 819.04 27142 22529 123.86

The dataset used for the predicting of energy is divided into training and test subsets,
comprising approximately 75% and 25% of the total observations, respectively. The training
set consists of 32 observations, while the test set has 11 samples.

4. Results and Discussion
4.1. Implementation Setup

A detailed overview of the implementation setup is given in this section. Python, a
popular and general-purpose programming language that allows users to work quickly
and integrate systems more effectively, was used. Python has become a popular choice
for data science and ML. Its high-level, specially developed ML libraries allow users to
quickly start building models and experiment with different configurations. PyCaret, a



Energies 2024, 17, 74

15 of 25

Python-based open-source machine learning library, provides automated machine learning
capabilities. Its default behavior involves automating several steps of the ML process,
including data preprocessing, feature engineering, and model selection. In this study, Py-
Caret was utilized to automate machine learning workflows, streamlining the process and
enhancing efficiency. PyCaret’s robust automation tools played a significant role in quickly
initiating the construction of the models mentioned in Section 3.1 and experimenting with
various setups after the dataset was provided. This exhaustive approach enabled us to
conduct a comprehensive evaluation of various models across different categories (linear,
non-linear, tree-based, etc.) to identify algorithms most suitable for capturing potential
hidden patterns that might be missed by a smaller set of models. Python version 3.11.0
and PyCaret version 3.0.4 were used, which were the latest versions as of October 2022
and July 2023, respectively. All codes were implemented in Google Colab, a cloud-based
platform that provides free access to GPUs and TPUs for running machine learning experi-
ments. All experiments were conducted on a system equipped with an Intel i7 3.40 GHz
processor and 8 GB of memory.

4.2. Feature Selection

In machine learning, a correlation matrix is a table that shows how different features
in a dataset are related to each other and how they affect the outcome of a model. Figure 2
presents the correlation matrix of the dataset, which includes the target variable as one of
the features.
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Figure 2. Correlation matrix of all variables including the target variable.

The values within the matrix describe both the intensity and direction of the correlation
between pairs of features. Each element represents the correlation between two specific
features. In Figure 2, the maximum correlation value is 1, while the minimum is 0.92,
observed between the ‘import-population” and ‘population-GDP”’ features. A positive
correlation between two features implies that, as one property’s value increases, the other
feature’s value also tends to increase. It is worth noting that all features exhibit correlations
with each other. Additionally, population exhibits the strongest correlation with the target
variable ‘Energy’, while GDP shows the weakest correlation.

The selection and combination of features is important in machine learning because
it can affect the performance and complexity of the model. Different features may have
different levels of relevance, redundancy, and noise for a given problem and a given
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algorithm. By selecting and combining the most appropriate features, the dimensionality of
the data, the computational cost, and the risk of overfitting can reduce. All combinations of
predictor variables (i.e., population, GDP, import, and export) are outlined within Table 4.
For instance, Model 1 (M) comprises two independent variables, i.e., GDP and Population,
while Model 7 (My7) comprises GDP, Population, and Import. The ML performance results
with 5-fold cross-validation on the training set, using the created models that include
different combinations of features, are given in Table 4. To test the models, 19 ML algorithms
were run, and the best three results, sorted by the highest R-square, are provided in Table 5.
The Extra Tree Regressor performed well based on the provided metrics using Model 11
(M11). The lowest MAE (2296.86), MSE (8,756,864.57), and RMSE (2932.96) values indicate
that the model is making accurate predictions. Additionally, the highest R-squared value of
0.9788 suggests a good fit to the data. The low MAPE of 0.0464 indicates that the model’s
percentage errors are relatively small.

Table 4. The combinations of features.

Model Input
M; GDP, Population
M, GDP, Import
M3 GDP, Export
My Population, Import
Ms Population, Export
Mg Import, Export
My GDP, Population, Import
Mg GDP, Population, Export
Mg Population, Import, Export
Mg GDP, Import, Export
My, * GDP, Population, Import, Export

* All features.

Table 5. Top three results of ML algorithms based on the training set using models” combinations.

Models ML Algorithm MAE MSE RMSE R? MAPE
Extra Trees Regressor 2743.27 14,435,527.00 3622.18 0.9751 0.0546

M; Huber Regressor 3419.46 20,734,897.00 4395.82 0.9642 0.0749
Extreme Gradient Boosting 3725.91 22,807,495.50 4551.60 0.9625 0.0655
K-Neighbors Regressor 6881.86 84,149,616.80 8596.44 0.8710 0.1104

M, Random Forest Regressor 6809.08 114,145,888.80 9963.98 0.8252 0.1167
Extra Trees Regressor 6452.43 123,658,755.00 9929.56 0.8117 0.1178

Extra Trees Regressor 3977.99 44,054,367.30 5730.78 0.9299 0.0695

M; Random Forest Regressor 4631.80 55,354,193.10 6583.28 0.9162 0.0797
Gradient Boosting Regressor 5351.58 64,199,913.90 7220.71 0.9031 0.0901

Extra Trees Regressor 3042.48 17,937,995.55 3844.90 0.9733 0.0591

My Random Forest Regressor 3666.07 22,957,290.18 4448.29 0.9716 0.0685
Gradient Boosting Regressor 4156.41 26,308,872.75 4930.11 0.9652 0.0742

Huber Regressor 3864.21 36,775,418.87 5527.85 0.9541 0.0601

M5 Lasso Regression 4003.55 36,200,997.00 5456.62 0.9530 0.0678

Least Angle Regression 4003.72 36,196,280.60 5456.35 0.9530 0.0678
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Models ML Algorithm MAE MSE RMSE R? MAPE
K-Neighbors Regressor 5707.22 80,792,845.60 7992.88 0.8962 0.1035
Mg Random Forest Regressor 5455.21 77,021,388.80 8193.73 0.8644 0.0930
Extra Trees Regressor 5511.29 82,472,925.80 8300.80 0.8540 0.0950
Extra Trees Regressor 2308.94 12,339,053.90 3277.79 0.9754 0.0488
M, Random Forest Regressor 2972.75 17,408,515.60 3854.32 0.9608 0.0576
AdaBoost Regressor 3400.27 18,546,026.70 4014.45 0.9538 0.0640
Extra Trees Regressor 3189.81 17,110,325.38 3874.79 0.9716 0.0537
Mg AdaBoost Regressor 4293.89 29,715,232.81 5282.08 0.9475 0.0728
Random Forest Regressor 4287.09 35,730,037.10 5185.02 0.9460 0.0700
Extra Trees Regressor 3018.13 30,503,239.40 4394.13 0.9477 0.0407
My Random Forest Regressor 3583.32 45,575,422 .90 5273.91 0.9304 0.0473
AdaBoost Regressor 4069.59 37,580,683.81 5358.08 0.9285 0.0609
K-Neighbors Regressor 5670.51 74,121,506.00 7652.91 0.9017 0.1003
Mg Random Forest Regressor 5372.22 75,187,291.90 7930.92 0.8896 0.0942
Ridge Regression 7009.35 69,191,604.80 8277.45 0.8621 0.1643
Extra Trees Regressor 2296.86 8,756,864.57 2932.96 0.9788 0.0464
My Random Forest Regressor 3186.05 14,777,499.11 3817.37 0.9684 0.0658
Ridge Regression 3676.12 21,641,675.00 4466.13 0.9655 0.0736
During the model-building process, all possible combinations were explored, and
finally, the configuration with four inputs, displaying the highest R-squared and lowest
error terms, was chosen for application in the next part of the study.
4.3. Performance Evaluation
Firstly, the performance of 19 ML individual algorithms were compared using five
different metrics with all features (GDP, Population, Import, Export). Table 6 presents the
performance results achieved by training 19 ML algorithms using 5-fold cross-validation.
The first column in Table 6 lists the base ML algorithms. The subsequent columns, num-
bered second through to sixth, display the best values for various training-phase metrics,
including MAE, MSE, RMSE, R2, and MAPE. The ML algorithms’ results are organized in
descending order of R-squared values, from the highest to the lowest. The Extra Tree Re-
gressor yields the best results among the others during the training phase, as demonstrated
in Table 6. The prediction performance of the selected Extra Tree model in the test set is
presented in Table 7. The R-squared value in Table 7 is slightly higher than the value from
the training set and indicates the absence of overfitting.
Table 6. Results of ML algorithms based on train set.
ML Algorithm MAE MSE RMSE R? MAPE
Extra Trees Regressor 2296.86 8,756,864.57 2932.96 0.9788 0.0464
Random Forest Regressor 3186.05 14,777,499.11 3817.37 0.9684 0.0658
Ridge Regression 3676.12 21,641,675.00 4466.14 0.9655 0.0736
Linear Regression 3780.00 23,739,669.80 4668.86 0.9635 0.0825
Lasso Regression 3779.85 23,736,214.80 4668.54 0.9635 0.0825
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Table 6. Cont.
ML Algorithm MAE MSE RMSE R? MAPE
Least Angle Regression 3780.00 23,739,655.90 4668.86 0.9635 0.0825
Lasso Least Angle Regression 3779.85 23,736,205.30 4668.54 0.9635 0.0825
Orthogonal Matching Pursuit 3780.00 23,739,655.90 4668.86 0.9635 0.0825
Huber Regressor 3828.58 22,823,167.86 4595.40 0.9634 0.0785
AdaBoost Regressor 3575.50 15,583,915.43 3934.88 0.9611 0.0691
Gradient Boosting Regressor 3772.78 16,872,570.61 4096.12 0.9556 0.0707
Decision Tree Regressor 3768.74 16,856,622.84 4094.38 0.9554 0.0707
Extreme Gradient Boosting 3768.71 16,856,282.40 4094.34 0.9554 0.0706
K-Neighbors Regressor 3987.62 29,417,635.00 5274.57 0.9493 0.0848
Elastic Net 7402.15 81,150,325.20 8721.88 0.8666 0.1248
Bayesian Ridge 22,303.79 705,872,003.20 25,684.29 —0.0970 0.4306
Light Gradient Boosting Machine 22,303.79 705,872,041.79 25,684.29 —0.0970 0.4306
Dummy Regressor 22,303.79 705,872,041.60 25,684.29 —0.0970 0.4306
Passive Aggressive Regressor 40,863.75 2,361,836,689.9 48,178.33 —3.9041 0.5635
Table 7. Results of the Extra Trees Regressor algorithm based on the test set.
ML Algorithm MAE MSE RMSE R2 MAPE
Extra Trees Regressor 2989.27 17,145,375.48 4140.6975 0.9811 0.0406

The hyperparameters were tuned via grid searches because it is a critical step in the
machine learning model development process. When ML performance degraded, this
step was skipped, and the model was applied to the successive stages without tuning the
hyperparameters. After this stage, ensemble methods were suggested and applied for
predicting Tiirkiye’s energy demand. The prediction performance of the ensemble methods
(bagging, boosting, blending, and stacking) in both training and test sets are shown in
Table 8. Compared to the preliminary results of data from the training of 19 ML algorithms
shown in Table 6, the mean R-squared values are as follows: 0.9801 with bagging, 0.9809
with boosting, 0.9874 with blending, and 0.9882 with stacking methods. Among these,
the stacking ensemble model yielded the highest R-squared value, indicating its superior
performance. Additionally, when considering other evaluation metrics such as MAE,
MSE, RMSE, and MAPE, the stacking ensemble model consistently outperforms the others,
further confirming its superiority in predictive accuracy.

Bagging and boosting techniques were used to improve the accuracy and robustness
of the individual machine learning model. The Extra Tree Regressor (ET) algorithm was
trained on different subsets (which were created through a process called bootstrapping) of
the training data by the bagging ensemble method. In boosting, the focus is on correcting
the errors made by previous models. The base model ET was trained until a certain level of
accuracy was achieved.

In the blending approach, I harnessed the predictive power of three distinct machine
learning algorithms: Extra Trees Regressor (ET), Random Forest Regressor (RF), and Ridge
Regression (Ridge). To execute blending, each of these algorithms was initially trained
separately on a portion of thetraining dataset, generating individual predictions for the
target variable. Subsequently, I combined the predictions from ET, RF, and Ridge using a
straightforward averaging technique. By averaging these predictions, I effectively created
an ensemble prediction that capitalizes on the strengths of each algorithm.
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Table 8. Performance of the ensemble models in both the training and test dataset.
Training Test
Ensemble Fold Base Meta MAE MSE RMSE R2 MAPE MAE MSE RMSE R2 MAPE
Methods Learners Learner

0 2384.30 10,532,299.28  3245.35 0.9855 0.0425
1 2428.40 10,139,704.39  3184.29 0.9870 0.0583
2 1320.12 4,588,805.18 214215 0.9606 0.0211

Bagging 3 ET 2943.76 18,949,550.99  4353.11 0.9814 0.0811 3247.76 20,526,807.39  4530.65 0.9773 0.0476
4 2833.04 10,421,373.56  3228.22 0.9859 0.0642
Mean 2381.92 10,926,346.68  3230.62 0.9801 0.0534
Std 574.24 4,594,895.36 699.59 0.0099 0.0204
0 2324.68 10,142,168.21 3184.68 0.9861 0.0401
1 2292.10 7,616,694.33 2759.84 0.9902 0.0526
2 1591.23 6,141,944.75 2478.29 0.9473 0.0249

Boosting 3 ET 2450.57 10,639,983.49  3261.90 0.9895 0.0582 2791.95 16,986,253.22  4121.44 0.9811 0.0367
4 2256.76 6,211,550.01 2492.30 0.9916 0.0484
Mean 2183.07 8,150,468.16  2835.41 0.9809 0.0448
Std 303.05 1,910,132.98 333.12 0.0169 0.0116
0 2621.68 13,996,026.78 3741.13 0.9808 0.0456
1 2115.51 6,368,872.54  2523.66 0.9918 0.0388
2 ET 1227.95 2,599,808.47 1612.39 0.9777 0.0213

Blending 3 RF 2266.80 7,245,254.56  2691.70 0.9929 0.0348 3138.73 20,627,053.08 4541.70 0.9772 0.0430
4 Ridge 1783.21 4,566,049.47  2136.83 0.9938 0.0311
Mean 2003.03 6,955,202.36  2541.14 0.9874 0.0343
Std 472.02 3,864,676.67 705.55 0.0068 0.0081
0 2332.41 10,667,480.27  3266.11 0.9853 0.0383
1 2359.09 6,559,821.14  2561.21 0.9916 0.0470
2 ET 1133.61 2,887,446.54 1699.25 0.9752 0.0187

Stacking 3 RF Ridge 2110.38 6,221,784.33  2494.35 0.9939 0.0343 2704.34 15,710,000.99  3963.58 0.9826 0.0359
4 Ridge 1520.56 3,762,509.98 1939.72 0.9949 0.0294
Mean 1891.21 6,019,808.45 2392.13 0.9882 0.0335
Std 484.35 2,714,418.86 545.46 0.0073 0.0094
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Unlike traditional ensemble methods like bagging and boosting, stacking takes a
more sophisticated approach by using the predictions of base models as input features
to train a higher-level model that makes the final predictions. The 14 ML algorithms
with R-squared values higher than 0.90 in Table 6 were separately combined to select a
set of diverse base models. After trying many combined base models and conducting
trial-and-error experiments, I leveraged the capabilities of three diverse base machine
learning algorithms: ET, RF, and Ridge. To implement stacking, each of these base models
was initially trained separately on a portion of the training dataset, obtaining individual
predictions for the target variable. Next, a new dataset was created where each data
point consisted of these base model predictions. This dataset served as the input for the
meta-learner. Based on the empirical investigation, it was determined that employing
a linear regression algorithm as the meta-learner for the second level of the stacking
regressor was optimal, as it consistently demonstrated superior performance in terms of
R-squared compared to alternative machine learning algorithms. Ridge Regression, as the
meta-learner on the second level of the stacking ensemble, was selected and trained to
learn how to best combine the predictions from ET, RF, and Ridge. To prevent overfitting
during the training phase, 5-fold cross-validation is employed. The utilization of the Ridge
model within the stacking ensemble model demonstrated notable advantages within the
context of energy-related problems. Ridge Regression, known for its ability to mitigate
multicollinearity and overfitting, proved effective in enhancing the robustness of my model
when dealing with energy demand forecasting.

Stacking’s flexibility in utilizing both weak and strong learners makes it a powerful
technique for enhancing predictive performance in various machine learning tasks. In
practice, researchers often employ a mixture of weak and strong learners to construct a
versatile ensemble that performs effectively across diverse datasets and problem domains.
The choice of whether the base models are weak or strong is flexible and depends on
the problem and the effectiveness of the ensemble. In recent years, it can also be seen
that researchers have started to utilize AutoML approaches, which automatically select
the best-performing models for ensembles [90-92]. In this study, different combinations
of both weak and strong base models to create a diverse ensemble were experimented
with. The aim was to enhance interpretability and transparency by the manual creation of
ensemble models. It was observed that the combinations composed of strong base learners
consistently delivered superior results in forecasting Tiirkiye’s energy demand.

The results also show that the stacking ensemble model yielded the best accuracy rates
when applied to a small dataset. The robustness of the evaluation is emphasized through
metrics such as R-squared, which reached an impressive accuracy rate of 0.9882 with the
stacking model. This rigorous evaluation process provides confidence in the reliability of
the results despite the dataset’s size. This aligns with Dietterich’s [28] assertion that, when
the available data is limited, ensemble learning can assist in finding a good approximation
and enhancing prediction accuracy by averaging the outputs of individual models.

In order to evaluate the efficacy of the developed ensemble methods, the prediction
performance on the test set is presented in Table 8. Notably, the stacking model achieved
a remarkable R-squared value of 0.9826. When compared with the findings in Table 7
and other ensemble models, the stacking model’s metrics consistently reveal a significant
enhancement. These observations lead us to assert, in accordance with the scientific paper,
that my proposed stacking ensemble model does not exhibit signs of either overfitting or
underfitting. The utilization of features (Population, GDP, Import, Export) enhances the
model’s accessibility and interpretability, facilitating its utility for generating accurate and
reliable forecasts of Tiirkiye’s energy demand, as detailed in the paper.

Table 9 provides detailed descriptions of the model’s predicted outcomes in the ‘Predic-
tion” column, alongside the corresponding ground truth values for ‘Energy’. It presents the
prediction performance of the stacking ensemble model for each of the five folds, utilizing
all dataset features and evaluating it using five different metrics.
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Table 9. Comparison of the actual values “Energy’ and predicted values using the proposed stacking
ensemble model.

Observed Predicted

Years Energy Demand Energy Demand An];(:::)r;z of Relati(‘iz)Errors
(Mtoe) (Mtoe)

1980 27.51 26.96 0.55 1.99
1983 30.25 28.97 1.28 4.23
1984 31.75 30.42 1.33 418
1988 39.73 38.69 1.04 2.62
1989 40.40 40.53 —0.13 —0.32
2002 59.49 62.74 —-3.25 —5.46
2007 79.79 76.95 2.84 3.56
2010 79.84 81.93 —2.09 —2.62
2013 88.07 91.51 —3.44 —-3.91
2014 89.25 96.05 —6.80 —7.62
2021 123.86 113.73 10.13 8.18

Three scenarios have been used to predict Tiirkiye’s energy demand between 2024,
2025, and 2030:

Scenario 1: It is assumed that the average growth rate of GDP is 4%, population growth
rate is 0.5%, and the average imports and exports growth rate is 2%.

Scenario 2: It is assumed that the average growth rate of GDP is 5%, population growth
rate is 0.6%, the average import growth is 3.5%, and export growth rate is 2%.

Scenario 3: It is assumed that the average growth rate of GDP is 6%, population growth
rate is 1.5%, and the average imports and exports growth rate is 5%.

The comparison of the results from these three different scenarios is illustrated in
Figure 3. Considering economic advancements and the rising number of electric vehicles,
all scenarios indicate higher values than in previous years. Scenario 1 estimates a lower
energy consumption compared to the other scenarios, while Scenario 3 predicts a higher
energy consumption. Ultimately, the three scenarios demonstrate that Ttiirkiye’s predicted
energy consumption in 2030 would range between 144.56, 147.25, and 154.93 Mtoe.

-Scenario 1 Scenario 2 ====Scenario 3
160
155
150
145

140

(MILLION TOE)

135

ENERGY CONSUMPTION

130 ——

125
2024 2025 2030

Figure 3. Estimation of total energy demand according to Scenarios 1-3.
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5. Conclusions

This paper has presented a comprehensive methodology for applying ensemble tech-
niques and machine learning algorithms to the crucial task of forecasting Tiirkiye’s energy
demand. The primary objectives of this methodology were threefold: Firstly, to enhance the
accuracy of energy demand predictions in Ttirkiye. Secondly, to provide authorities and in-
stitutions with an interpretable model that facilitates informed decision-making and policy
development. Lastly, this study aligns closely with the United Nations” SDGs, contributing
to the broader aims of sustainable development by addressing global challenges.

Accordingly, the following key findings can be derived based on the current research.

e The GDP, population, import, export, and energy data taken between 1979 and 2021
were used and it is observed that there is a strong correlation among them.

e  Five statistical metrics are discussed to evaluate the performance of the algorithms in
the forecast.

e A total of 19 machine learning algorithms were constructed and analyzed to select
models for diverse ensemble combinations.

o Considering all metrics collectively, the stacking ensemble model utilizing Ridge
Regressor as a meta-learner outperforms single ML algorithms as well as other bagging,
boosting, and blending models.

o  The predicted values reveal that the stacking ensemble model has delivered highly
satisfactory outcomes in comparison to the actual energy demand outputs.

e  These ensemble models can readily be adapted and recommended for future energy de-
mand forecasts in other countries. Notably, the stacking ensemble model demonstrates
statistically superior results compared to other models, making it a more suitable
choice for accurate forecasting.

It is anticipated that the outcomes of this study will make a significant contribution
to the field of energy forecasting, laying the groundwork for Ttirkiye’s sustainable energy
future. Furthermore, this research represents a meaningful step toward a more equitable,
prosperous, and sustainable world for all. As future research, further improvements can be
explored through the use of different hybrid techniques for optimizing hyperparameter
tuning, feature selection, and more.
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