Technical and Economic Aspects of Environmentally Sustainable Investment in Terms of the EU Taxonomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Landfill Gas Measurements
2.2. Methods for Testing Activated Carbon
2.3. Environmentally Sustainable Projects—LFG Purification
2.4. Description of Analytical Methods
- Sample 1
- Sample 2
- Sample 3
3. Results
3.1. Landfill Gas Testing
3.2. Testing of Activated Carbon Sample 1
3.3. Testing of Spent Activated Carbon Sample 2
3.4. Examination of Spent Activated Carbon Sample 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di Giacomo, G.; Romano, P. Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification. Energies 2022, 15, 5633. [Google Scholar] [CrossRef]
- Sobiecka, E.; Cedzynska, K.; Smolinska, B. Vitrification of medical waste as an alternative method of wastes stabilization. Fresenius Environ. Bull. 2010, 19, 3045–3048. [Google Scholar]
- Wysowska, E.; Kicińska, A. Assessment of health risks with water consumption in terms of content of selected organic xenobiotics. Desalination Water Treat. 2021, 234, 1–14. [Google Scholar] [CrossRef]
- Gaska, K.; Generowicz, A.; Lobur, M.; Jaworski, N.; Ciuła, J.; Vovk, M. Advanced algorithmic model for poly-optimization of biomass fuel production from separate combustible fractions of municipal wastes as a progress in improving energy efficiency of waste utilization. E3S Web Conf. 2019, 122, 01004. [Google Scholar] [CrossRef]
- Wysowska, E.; Wiewiórska, I.; Kicińska, A. Minerals in tap water and bottled waters and their impact on human health. Desalination Water Treatm. 2022, 259, 133–151. [Google Scholar] [CrossRef]
- Smol, M.; Włodarczyk-Makuła, M. Effectiveness in the Removal of Organic Compounds from Municipal Landfill Leachate in Integrated Membrane Systems: Coagulation—NF/RO. Polycycl. Aromat. Compd. 2017, 37, 456–474. [Google Scholar] [CrossRef]
- Generowicz, A.; Gronba-Chyła, A.; Kulczycka, J.; Harazin, P.; Gaska, K.; Ciuła, J.; Ocłoń, P. Life Cycle Assessment for the environmental impact assessment of a city’ cleaning system. The case of Cracow (Poland). J. Clean. Prod. 2023, 382, 135184. [Google Scholar] [CrossRef]
- Park, J.W.; Shin, H.C. Surface emission of landfill gas from solid waste landfill. Atmos. Environ. 2001, 35, 3445–3451. [Google Scholar] [CrossRef]
- The Act of February 20, 2015 on Renewable Energy Sources (In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000478/U/D20150478Lj.pdf (accessed on 6 October 2023).
- Mukawa, J.; Pająk, T.; Rzepecki, T.; Banaś, M. Energy Potential of Biogas from Sewage Sludge after Thermal Hydrolysis and Digestion. Energies 2022, 15, 5255. [Google Scholar] [CrossRef]
- Grosser, A.; Neczaj, E. Enhancement of biogas production from sewage sludge by addition of grease trap sludge. Energy Convers. Manag. 2016, 125, 301–308. [Google Scholar] [CrossRef]
- Ciuła, J.; Kowalski, S.; Wiewiórska, I. Pollution Indicator of a Megawatt Hour Produced in Cogeneration—The Efficiency of Biogas Purification Process as an Energy Source for Wastewater Treatment Plants. J. Ecol. Eng. 2023, 24, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Ishchenko, V.; Pohrebennyk, V.; Kochanek, A.; Przydatek, G. Comparative Environmental Analysis of Waste Processing Methods in Paper Recycling. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference SGEM, Vienna, Austria, 27–29 November 2017; Volume 17, pp. 227–234. Available online: https://www.researchgate.net/publication/319670927_Comparative_environmental_analysis_of_waste_processing_methods_in_paper_recycling (accessed on 1 May 2024).
- Ajhar, M.; Travesset, M.; Yüce, S.; Melin, T. Siloxane removal from landfill and digester gas—A technology overview. Bioresour. Technol. 2010, 101, 2913–2923. [Google Scholar] [CrossRef] [PubMed]
- Przydatek, G. Using advanced statistical tools to assess the impact of a small landfill site on the aquatic environment. Environ. Monit. Assess 2021, 193, 71. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wang, Y.; Liu, S. Biogas production via anaerobic digestion. In Gas Biofuels from Waste Biomass: Principles ang Advances; Liu, Z., Ed.; Nova Science Publishers: New York, NY, USA, 2014. [Google Scholar]
- Tappen, S.J.; Aschmann, V.; Effenberger, M. Lifetime development and load response of the electrical efficiency of biogas-driven cogeneration units. Renew. Energy 2017, 114, 857–865. [Google Scholar] [CrossRef]
- Generowicz, N. Overview of Selected Natural Gas Drying Methods. Archit. Civ. Eng. Environ. 2020, 13, 73–83. [Google Scholar] [CrossRef]
- Manasaki, V.; Palogos, I.; Chourdakis, I.; Tsafantakis, K.; Gikas, P. Techno-economic assessment of landfill gas (LFG) to electric energy: Selection of the optimal technology through field-study and model simulation. Chemosphere 2021, 269, 128688. [Google Scholar] [CrossRef] [PubMed]
- Dyachok, V.; Venhe, L.; Huhlych, S. The Biomethanization Gas Purification of Using Chlorophyll-Synthesizing Microalgae. J. Ecol. Eng. 2022, 23, 259–264. [Google Scholar] [CrossRef]
- Álvarez-Flórez, J.; Egusquiza, E. Analysis of damage caused by siloxanes in stationary reciprocating internal combustion engines operating with landfill gas. Eng. Fail. Anal. 2015, 50, 9–38. [Google Scholar] [CrossRef]
- Rasi, S.; Läntelä, J.; Rintala, J. Trace compounds affecting biogas energy utilisation-A review. Energy Convers. Manag. 2012, 52, 3369–3375. [Google Scholar] [CrossRef]
- Kowalski, Z.; Kulczycka, J.; Verhé, R.; Desender, L.; De Clercq, G.; Makara, A.; Generowicz, N.; Harazin, P. Second-generation biofuel production from the organic fraction of municipal solid waste. Front. Energy Res. 2022, 10, 919415. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, W.; Chang, M.; Wen, S.; Liu, D.; Hang, G. Advances in depressants for flotation separation of Cu-Fe sulfide minerals at low alkalinity: A critical review. Int. J. Miner Metall Mater. 2024, 31, 1–17. [Google Scholar] [CrossRef]
- Papurello, D.; Tomasi, L.; Silvestri, S.; Santarelli, M. Evaluation of the Wheeler-Jonas parameters for biogas trace compounds removal with activated carbons. Fuel Process. Technol. 2016, 152, 93–101. [Google Scholar] [CrossRef]
- Khoiyangbam, R.; Gupta, N.; Kumar, S. Biogas Technology: Towards sustainable development. In The Energy and Resources Institute; TERI: 2011; pp. 1–18. Available online: https://www.researchgate.net/publication/261136066_Biogas_Technology_towards_sustainable_development (accessed on 7 March 2024).
- Li, L.; Changda, C.; Yongming, S. Anaerobic processes and biogas technology. In Bioenergy: Principles and Technologies; Yuan, Z., Wu, C., Ma, L., Eds.; Boston: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Xu, J.; Tian, O.; Li, Y. Toward the truth of condensing-water membrane for efficient biogas purification: Experimental and modeling analyses. J. Membr. Sci. 2022, 662, 120967. [Google Scholar] [CrossRef]
- Cinar, S.; Cinar, S.O.; Wieczorek, N.; Sohoo, I.; Kuchta, K. Integration of Artificial Intelligence into Biogas Plant Operation. Processes 2021, 9, 85. [Google Scholar] [CrossRef]
- Amaraibi, R.J.; Joseph, B.; Kuhn, J. Techno-economic and sustainability analysis of siloxane removal from landfill gas used for electricity generation. J. Environ. Manag. 2022, 314, 115070. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.; Opoka, K.; Ciuła, J. Analysis of the end-of-life the front suspension beam of a vehicle. Eksploat. I Niezawodn.–Maint. Reliab. 2022, 24, 446–454. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, R.; Zheng, Y.; Zhang, B.; Jiang, Y.; An, Z.; Bai, J. Carbon emission reduction analysis of CHP system driven by biogas based on emission factors. Energy Build. Environ. 2022, 9, 576–588. [Google Scholar] [CrossRef]
- Stanuch, I.; Biegańska, J. Siloxane in the biogas. Arch. Waste Manag. Environ. Prot. 2014, 16, 1–8. [Google Scholar]
- Malinowski, M.; Famielec, S. Impact of Biochar Addition and Air-Flow Rate on Ammonia and Carbon Dioxide Concentration in the Emitted Gases from Aerobic Biostabilization of Waste. Materials 2022, 15, 1771. [Google Scholar] [CrossRef]
- Stoeckli, H.F. Microporous carbons and their characterization: The present state of the art. Carbon 1990, 28, 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P. Role of graphitic carbon in g-C3N4 nanoarchitectonics towards efficient photocatalytic reaction kinetics: A review. Carbon 2023, 216, 118584. [Google Scholar] [CrossRef]
- Zhang, Y.; Kawasaki, Y.; Oshita, K.; Takaoka, M.; Minami, D.; Inoue, G.; Tanaka, T. Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas. Renew. Energy 2021, 168, 119–130. [Google Scholar] [CrossRef]
- Malinowski, M. Impact of Air-Flow Rate and Biochar Addition on the Oxygen Concentration in Waste and Emitted Gases During Biostabilization of Undersized Fraction from Municipal Solid Waste. J. Ecol. Eng. 2021, 22, 136–144. [Google Scholar] [CrossRef]
- Shin, H.C.; Park, J.W.; Park, K.; Song, H.C. Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environ. Pollut. 2002, 119, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.; Martinho, G. Waste hierarchy index for circular economy in waste management. Waste Manag. 2019, 95, 298–305. [Google Scholar] [CrossRef]
- Alazzani, A.; Wan-Hussin, W.N. Global Reporting Initiative’s environmental reporting: A study of oil and gas companies. Ecol. Indic. 2013, 32, 19–24. [Google Scholar] [CrossRef]
- Regulation of the Minister of Climate of January 2, 2020 on the Waste Catalog. (In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20200000010/O/D20200010.pdf (accessed on 2 March 2024).
- Leong, K.-Y.; Loo, S.-L.; Bashir, M.J.K.; Oh, W.D.; Rao, P.W.; Lim, J.W. Bioregeneration of spent activated carbon: Review of key factors and recent mathematical models of kinetics. Chin. J. Chem. Eng. 2018, 26, 893–902. [Google Scholar] [CrossRef]
- Tran, V.T.L.; Gélin, P.; Ferronato, C.; Chovelon, J.M.; Fine, L.; Postole, G. Adsorption of linear and cyclic siloxanes on activated carbons for biogas purification: Sorbents regenerability. Chem. Eng. J. 2019, 378, 122152. [Google Scholar] [CrossRef]
- Baskar, A.V.; Bolan, N.; Hoang, S.A.; Sooriyakumar, P.; Kumar, M.; Singh, L.; Jasemizad, T.; Padhye, L.P.; Singh, G.; Vinu, A.; et al. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Sci. Total Environ. 2022, 822, 153555. [Google Scholar] [CrossRef]
- Molino, G.; Gandiglio, M.; Fiorilli, S.; Lanzini, A.; Drago, D.; Papurello, D. Design and Performance of an Adsorption Bed with Activated Carbons for Biogas Purification. Molecules 2022, 27, 7882. [Google Scholar] [CrossRef]
- Mohammad-pajooh, E.; Turcios, A.E.; Cuff, G.; Weichgrebe, D.; Rosenwinkel, K.-H.; Vedenyapina, M.D.; Sharifullina, L.R. Removal of inert COD and trace metals from stabilized landfill leachate by granular activated carbon (GAC) adsorption. J. Environ. Manag. 2018, 228, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Din, M.I.; Ashraf, S.; Intisar, A. Comparative study of different activation treatments for the preparation of activated carbon: A mini-review. Sci. Prog. 2017, 100, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Reza, S.; Yun, C.S.; Afroze, S.; Radenahmad, N.; Abu Bakar, M.S.; Saidur, R.; Taweekun, J.; Azad, A.K. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab. J. Basic Appl. Sci. 2020, 27, 208–238. [Google Scholar] [CrossRef]
- Le-Minh, N.; Sivret, E.C.; Shammay, A.; Stuetz, R.M. Factors affecting the adsorption of gaseous environmental odors by activated carbon: A critical review. Crit. Rev. Environ. Sci. Technol. 2018, 48, 341–375. [Google Scholar] [CrossRef]
- Chaukura, N.; Gwenzi, W.; Tavengwa, N.; Manyuchi, M.M. Biosorbents for the removal of synthetic organics and emerging pollutants: Opportunities and challenges for developing countries. Environ. Dev. 2016, 19, 84–89. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Z.; Gong, H.; Wang, X. Copper oxide modified activated carbon for enhanced adsorption performance of siloxane: An experimental and DFT study. Appl. Surf. Sci. 2022, 601, 154200. [Google Scholar] [CrossRef]
- Nath, K.; Bhakhar, M.S. Microbial regeneration of spent activated carbon dispersed with organic contaminants: Mechanism, efficiency, and kinetic models. Environ. Sci. Pollut. Res. 2011, 18, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.Y.; Lee, G.B.; Kim, J.H.; Hong, B.U.; Park, J.E. Pre-Treatment Methods for Regeneration of Spent Activated Carbon. Molecules 2020, 25, 4561. [Google Scholar] [CrossRef] [PubMed]
- Ania, C.O.; Parra, J.B.; Menéndez, J.A.; Pis, J.J. Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals. Water Res. 2007, 41, 3299–3306. [Google Scholar] [CrossRef]
- Liu, C.; Li, C.; Shan, Y.; Sun, Z.; Chen, W. Comparison of two typical regeneration methods to the spent biological activated carbon in drinking water. Environ. Sci. Pollut. Res. 2020, 27, 16404–16414. [Google Scholar] [CrossRef]
- Xin-hui, D.; Srinivasakannan, C.; Qu, W.-W.; Xin, W.; Jin-hui, P.; Li-bo, Z. Regeneration of microwave assisted spent activated carbon: Process optimization, adsorption isotherms and kinetics. Chem. Eng. Process. Process Intensif. 2012, 53, 53–62. [Google Scholar] [CrossRef]
- Nunes, K.G.P.; Sfreddo, L.W.; Rosset, M.; Féris, L.A. Efficiency evaluation of thermal, ultrasound and solvent techniques in activated carbon regeneration. Environ. Technol. 2021, 42, 4189–4200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Peng, J.; Qu, W.; Zhang, L.; Zhang, Z.; Li, W.; Wan, C.R. Regeneration of high-performance activated carbon from spent catalyst: Optimization using response surface methodology. J. Taiwan Inst. Chem. Eng. 2009, 40, 541–548. [Google Scholar] [CrossRef]
- Park, J.E.; Lee, G.B.; Hong, B.U.; Hwang, S.Y. Regeneration of Activated Carbons Spent by Waste Water Treatment Using KOH Chemical Activation. Appl. Sci. 2019, 9, 5132. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Lee, G.B.; Park, J.E.; Kim, J.H.; Kim, S.; Hong, B. Removal and recycling of volatile organic compounds (VOCs) adsorbed on activated carbons using in situ vacuum systems. Int. J. Environ. Sci. Technol. 2019, 16, 7827–7836. [Google Scholar] [CrossRef]
- Trellu, C.; Oturan, N.; Keita, F.K.; Fourdrin, C.; Pechaud, Y.; Oturan, M.A. Regeneration of Activated Carbon Fiber by the Electro-Fenton Process. Environ. Sci. Technol. 2018, 52, 7450–7457. [Google Scholar] [CrossRef] [PubMed]
- Çalişkan, E.; Bermúdez, J.M.; Parra, J.B.; Menéndez, J.A.; Mahramanlioĝlu, M.; Ania, C.O. Low temperature regeneration of activated carbons using microwaves: Revising conventional wisdom. J. Environ. Manag. 2012, 102, 134–140. [Google Scholar] [CrossRef]
- Liu, S.; Jie, J.; Guo, A.; Yue, S.; Li, T. A comprehensive investigation on microstructure and magnetic properties of immiscible Cu-Fe alloys with variation of Fe content. Mater. Chem. Phys. 2019, 238, 121909. [Google Scholar] [CrossRef]
- Regulation (EU) 2020/852 of the European Parliament and of the Council of 18 June 2020 on the Establishment of a Framework to Facilitate Sustainable Investment, and Amending Regulation (EU) 2019/2088 (Dz.U. L 198 z 22.6.2020, s. 13). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0852&from=EN (accessed on 18 March 2024).
- Lenarczyk, A.; Jaskólski, M.; Bućko, P. The Application of a Multi-Criteria Decision-Making for Indication of Directions of the Development of Renewable Energy Sources in the Context of Energy Policy. Energies 2022, 15, 9629. [Google Scholar] [CrossRef]
- O’Reilly, S.; Gorman, L.; Bhaird, C.M.A.; Brennan, N.M. Implementing the European Union Green Taxonomy: Implications for small—And medium-sized enterprises. Account. Forum 2023, 1, 1–26. [Google Scholar] [CrossRef]
- Och, M. Sustainable Finance and the EU Taxonomy Regulation—Hype or Hope? Jan Ronse Inst. Co. Financ. Law Work. Pap. 2021, 5, 1–19. [Google Scholar] [CrossRef]
- Schutze, F.; Stede, J. The EU sustainable finance taxonomy and its contribution to climate neutrality. J. Sustain. Financ. Invest. 2021, 14, 128–160. [Google Scholar] [CrossRef]
- Sikora, A. European Green Deal—Legal and financial challenges of the climate change. ERA Forum 2020, 21, 681–697. [Google Scholar] [CrossRef]
- Pacces, A.M. Will the EU Taxonomy Regulation Foster Sustainable Corporate Governance? Sustainability 2021, 13, 12316. [Google Scholar] [CrossRef]
- Lucarelli, C.; Mazzoli, C.; Rancan, M.; Severini, S. Classification of Sustainable Activities: EU Taxonomy and Scientific Literature. Sustainability 2020, 12, 6460. [Google Scholar] [CrossRef]
- Dusíka, J.; Bond, A. Environmental assessments and sustainable finance frameworks: Will the EU Taxonomy change the mindset over the contribution of EIA to sustainable development? Impact Assess. Proj. Apprais. 2022, 40, 90–98. [Google Scholar] [CrossRef]
- Hysa, E.; Kruja, A.; Rehman, N.U.; Laurenti, R. Circular Economy Innovation and Environmental Sustainability Impact on Economic Growth: An Integrated Model for Sustainable Development. Sustainability 2020, 12, 4831. [Google Scholar] [CrossRef]
- Hoepner, A.G.F.; Schneider, F.I. EU Green Taxonomy Data—A First Vendor Survey. Econ. Voice 2022, 19, 229–242. [Google Scholar] [CrossRef]
- Kirby, D.; Thompson, S.; Macmahon, C. Shifting the EU Taxonomy from Theory to Practice: A Review of the Literature highlighting Potential Academic Contributions to its Adoption, Implementation, and Impact. Presented at the 1 st Annual Academy of Sustainable Finance. Account. Account. Gov. 2021, 1, 1–38. Available online: https://www.researchgate.net/publication/364051088_Shifting_the_EU_Taxonomy_from_Theory_to_Practice_A_Review_of_the_Literature_highlighting_Potential_Academic_Contributions_to_its_Adoption_Implementation_and_Impact (accessed on 4 March 2024).
- Dumrose, M.; Rink, S.; Eckert, J. Disaggregating confusion? The EU Taxonomy and its relation to ESG rating. Financ. Res. Lett. 2022, 48, 102928. [Google Scholar] [CrossRef]
- Ingre, G.; Passburf, C.V. The Impact of the EU Taxonomy. Stockholm: KTH Royal Institute of Technology School of Industrial Engineering and Management. 2020. Available online: https://www.diva-portal.org/smash/get/diva2:1456396/FULLTEXT01.pdf (accessed on 19 March 2024).
- Papari, C.A.; Toxopeus, H.; Polzin, F.; Bulkeley, H.; Menguzzo, E.V. Can the EU taxonomy for sustainable activities help upscale investments into urban nature-based solutions? Environ. Sci. Policy 2024, 151, 103598. [Google Scholar] [CrossRef]
- Andersen, J.; Seppanen, M.; Lahteenmaki, I. EU Taxonomy Market Study. Tampere: Tampereen Yliopisto Tampere University. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4369700 (accessed on 21 March 2024).
- Bogeanu-Popa, M.M.; Man, M. The European Union Taxonomy—The Revolution of Sustainable Activities. Analele Univ. Ovidius Constanta 2022, 22, 818–826. Available online: https://www.researchgate.net/publication/375952350_The_European_Union_Taxonomy_-The_Revolution_of_Sustainable_Activities (accessed on 22 March 2024). [CrossRef]
- Commission Delegated Regulation (EU) 2023/2485 of 27 June 2023 Amending Delegated Regulation (EU) 2021/2139 Establishing Additional Technical Screening Criteria for Determining the Conditions under Which Certain Economic Activities Qualify as Contributing Substantially to Climate Change Mitigation or Climate Change Adaptation and for Determining Whether Those Activities Cause no Significant Harm to any of the Other Environmental Objective. Available online: https://eur-lex.europa.eu/eli/reg_del/2023/2485 (accessed on 20 March 2024).
- Recommendations for the Road Map for the Development of Sustainable Finance in Poland Regarding the Application of the EU Taxonomy (In Polish). Available online: https://www.gov.pl/attachment/fcc19949-dab2-485c-9524-c11d30a0354d (accessed on 22 March 2024).
- Banks’ Report in Accordance with Art. 8 Taxonomies: Requirements and Challenges. (In Polish). Available online: https://assets.ey.com/content/dam/ey-sites/ey-com/pl_pl/article/taksonomia-ujawnienia-za-rok-2023-wymogi-i-wyzwania.pdf (accessed on 2 March 2024).
- PN-C-97554:1990; Formulated Activated Carbons. Sklep PKN: Warsaw, Poland, 1990.
- PN-C-97555-03:1982; Activated Carbons. Test Methods. Sklep PKN: Warsaw, Poland, 1982.
- PN-EN 12902:2005; Products for the Treatment of Water Intended for Consumption. Inorganic Carrier and Filtration Materials. Test Methods. Sklep PKN: Warsaw, Poland, 2005.
- PN-88/C-97555/01:1988; Activated Carbons. Test Methods. Sieve Analysis. Sklep PKN: Warsaw, Poland, 1988.
- Statistica, version 14.1.0.4; TIBCOI Software Inc.: Santa Clara, CA, USA, 2023.
- Sarquah, K.; Narra, S.; Beck, G.; Bassey, U.; Antwi, E.; Hartmann, M.; Derkyi, N.S.A.; Awafo, E.A.; Nelles, M. Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization. Energies 2023, 16, 200. [Google Scholar] [CrossRef]
- Przydatek, G.; Kochanek, A.; Basta, M. Analysis of changes in municipal waste management at the county level. J. Ecol. Eng. 2017, 18, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, S.; Chen, Z.; Chen, L. Effect of volatile organic compounds on carbon dioxide adsorption performance via pressure swing adsorption for landfill gas upgrading. Renew. Energy 2019, 135, 811–818. [Google Scholar] [CrossRef]
- Sevimoğlu, O.; Tansel, B. Composition and source identification of deposits forming in landfill gas (LFG) engines and effect of activated carbon treatment on deposit composition. J. Environ. Manag. 2013, 128, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Dernbach, H.; Henning, K.D. Purification steps for landfill gas utilization in cogeneration modules. Resour. Conserv. 1987, 14, 273–282. [Google Scholar] [CrossRef]
- Márquez, P.; Benítez, A.; Chica, A.F.; Martín, M.A.; Caballero, A. Evaluating the thermal regeneration pro-cess of massively generated granular activated carbons for their reuse in wastewater treatments plants. J. Clean. Prod. 2022, 366, 132685. [Google Scholar] [CrossRef]
- Santadkha, T.; Skolpap, W. Economic comparative evaluation of combination of activated carbon generation and spent activated carbon regeneration plants. J. Eng. Sci. Technol. 2017, 12, 3329–3343. [Google Scholar]
- Dąbek, L. Regeneration of Used Active Carbons; Wydawnictwo Politechniki Świętokrzyskiej: Kielce, Poland, 2007. (In Polish) [Google Scholar]
- Kwon, Y.; Lee, S.; Bae, J.; Park, S.; Moon, H.; Lee, T.; Kim, K.; Kang, J.; Jeon, T. Evaluation of Incinerator Per-formance and Policy Framework for Effective Waste Management and Energy Recovery: A Case Study of South Korea. Sustainability 2024, 16, 448. [Google Scholar] [CrossRef]
- Gronba-Chyła, A.; Generowicz, A.; Alwaeli, M.; Mannheim, V.; Grąz, K.; Kwaśnicki, P.; Kramek, A. Municipal waste utilization as a substitute for natural aggregate in the light of the circular economy. J. Clean. Prod. 2024, 440, 140907. [Google Scholar] [CrossRef]
- Ziolo, M.; Bak, I.; Cheba, K. The role of sustainable finance in achieving sustainable development goals: Does it work? Technol. Econ. Dev. Econ. 2021, 27, 45–70. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Yoshino, N. Sustainable Solutions for Green Financing and Investment in Renewable Energy Projects. Energies 2020, 13, 788. [Google Scholar] [CrossRef]
- Ji, X.; Chen, X.; Mirza, N.; Umar, M. Sustainable energy goals and investment premium: Evidence from renewable and conventional equity mutual funds in the Euro zone. Resour. Policy 2021, 74, 102387. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0301420721003962 (accessed on 20 March 2024). [CrossRef]
- Lagoarde-Segot, T. Financing the Sustainable Development Goals. Sustainability 2020, 12, 2775. [Google Scholar] [CrossRef]
- Mesonnier, J.S.; Nguyen, B. Showing off Cleaner Hands: Mandatory Climate-Related Disclosure by Financial Institutions and the Financing of Fossil Energy. Available SSRN 2021, 1, 1–38. [Google Scholar] [CrossRef]
- Laktionova, O.; Kovalenko, Y.; Myhovych, T.; Zharikova, O. Transforming Financial Outsourcing Services for Sustainable Business Development: A Review on Green Finance. Econ. Ecol. Socium 2022, 6, 37–50. [Google Scholar] [CrossRef]
- Tryhuba, A.; Hutsol, T.; Kuboń, M.; Tryhuba, I.; Komarnitskyi, S.; Tabor, S.; Kwaśniewski, D.; Mudryk, K.; Faichuk, O.; Hohol, T.; et al. Taxonomy and Stakeholder Risk Management in Integrated Projects of the European Green Deal. Energies 2022, 15, 2015. [Google Scholar] [CrossRef]
- Koval, V.; Fostolovych, V.; Kubai, O.; Tkachyk, F.; Prystupa, L.; Laktionova, O. Financial Outsourcing in the Analysis of Environmental Fiscal Revenue Management. Financ. Credit Act. Probl. Theory Pract. 2023, 6, 112–127. [Google Scholar] [CrossRef]
- Reis, I.F.G.; Gonçalves, I.; Lopes, M.A.R.; Antunes, C.H. Business models for energy communities: A review of key issues and trends. Renew. Sustain. Energy Rev. 2021, 144, 111013. [Google Scholar] [CrossRef]
- Koval, V.; Olczak, P.; Hakova, M.; Bilyi, M.; Kretov, D.; Laktionova, O. Analysis of Financial Outsourcing Management in Regional Environmental Systems. Sustainability 2023, 15, 11966. [Google Scholar] [CrossRef]
- Hwang, H.; Kweon, T.; Kang, H.; Hwang, Y. Resource and Greenhouse Gas Reduction Effects through Recycling of Platinum-Containing Waste. Sustainability 2024, 16, 80. [Google Scholar] [CrossRef]
- Stupnytskyi, V.; Filipishyna, L.; Chumak, O.; Gonchar, V.; Komandrovska, V.; Iefimova, G. Environmental Compliance and Business Strategies Practices of Entrepreneurial Ventures. E3S Web Conf. 2023, 408, 01025. [Google Scholar] [CrossRef]
- Kowalski, Z.; Kulczycka, J.; Makara, A.; Verhé, R.; De Clercq, G. Assessment of Energy Recovery from Municipal Waste Management Systems Using Circular Economy Quality Indicators. Energies 2022, 15, 8625. [Google Scholar] [CrossRef]
- Sechi, S.; Giarola, S.; Leone, P. Taxonomy for Industrial Cluster Decarbonization: An Analysis for the Italian Hard-to-Abate Industry. Energies 2022, 15, 8586. [Google Scholar] [CrossRef]
Parameters | Unit | Before Replacing the Carbon Cartridge | After Replacing the Carbon Cartridge | ||
---|---|---|---|---|---|
Gas not purified | Gas purified | Gas not purified | Gas purified | ||
CH4 | % | 51.7 | 50.2 | 50.8 | 50.3 |
CO2 | % | 39.2 | 38.5 | 40.1 | 40.9 |
O2 | % | 0.4 | 0.3 | 0.3 | 0.2 |
H2S | ppm | 402.6 | 304.1 | 386.7 | 7.5 |
Other parameters | % | 8.66 | 10.97 | 8.76 | 8.60 |
Parameters | Unit | Fresh Activated Carbon | Activated Carbon Spent in the LFG Treatment Plant |
---|---|---|---|
volatile matter | % | 1.75 | 42.37 |
ash content | % | 5.0 | 8.05 |
bulk density | kg∙m−3 | 520 | 931 |
iodine number | mg∙g−1 | 1000 | 38 |
mechanical resistance | % | 96.0 | 99.9 |
3.5 mm grain size | % | 93.0 | 98.4 |
2.75 mm grain size | % | 7.0 | 1.4 |
average particle diameter of granules | mm | 4.0 | 3.79 |
Parameter | Unit | Results |
---|---|---|
Physical parameters | ||
dry mass in 105 °C | % | 97.4 |
analytical water content | % | N/A |
gross water content | % | 2.65 |
total water content | % | 2.65 |
Non-metal inorganic parameters | ||
SiO2 | % dry mass | 1.6 |
Si | % dry mass | 0.75 |
F total in dry mass | % dry mass | <0.1 |
S total in sample | % | 49.7 |
S total in dry mass | % dry mass | 51 |
F total in sample | % | <0.01 |
NH4 | mg·dm−3 | 12.8 |
N-NH4 | mg·dm−3 | 9.93 |
Extractable metals/mostly cations | ||
Bi | mg·kg−1 s.m. | <0.50 |
Cr | mg·kg−1 s.m. | 8.44 |
Zn | mg·kg−1 s.m. | 6.29 |
Cd | mg·kg−1 s.m. | <0.40 |
Cu | mg·kg−1 s.m. | 3.64 |
Ni | mg·kg−1 s.m. | 3.25 |
Pb | mg·kg−1 s.m. | 15.8 |
Hg | mg·kg−1 s.m. | <0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciuła, J.; Generowicz, A.; Oleksy-Gębczyk, A.; Gronba-Chyła, A.; Wiewiórska, I.; Kwaśnicki, P.; Herbut, P.; Koval, V. Technical and Economic Aspects of Environmentally Sustainable Investment in Terms of the EU Taxonomy. Energies 2024, 17, 2239. https://doi.org/10.3390/en17102239
Ciuła J, Generowicz A, Oleksy-Gębczyk A, Gronba-Chyła A, Wiewiórska I, Kwaśnicki P, Herbut P, Koval V. Technical and Economic Aspects of Environmentally Sustainable Investment in Terms of the EU Taxonomy. Energies. 2024; 17(10):2239. https://doi.org/10.3390/en17102239
Chicago/Turabian StyleCiuła, Józef, Agnieszka Generowicz, Aneta Oleksy-Gębczyk, Anna Gronba-Chyła, Iwona Wiewiórska, Paweł Kwaśnicki, Piotr Herbut, and Viktor Koval. 2024. "Technical and Economic Aspects of Environmentally Sustainable Investment in Terms of the EU Taxonomy" Energies 17, no. 10: 2239. https://doi.org/10.3390/en17102239
APA StyleCiuła, J., Generowicz, A., Oleksy-Gębczyk, A., Gronba-Chyła, A., Wiewiórska, I., Kwaśnicki, P., Herbut, P., & Koval, V. (2024). Technical and Economic Aspects of Environmentally Sustainable Investment in Terms of the EU Taxonomy. Energies, 17(10), 2239. https://doi.org/10.3390/en17102239