Detection of Inter-Turn Short Circuits in Induction Motors Using the Current Space Vector and Machine Learning Classifiers
Abstract
:1. Introduction
- Statistical indicators based on the magnitude of the spatial phasor current are proposed for detecting inter-turn short circuits in induction motors, including faulty phase identification.
- The performance of the proposed indicators is evaluated using various classification algorithms to assess their performance in each case.
- The performance of the proposed indicators is compared with results obtained by applying the discrete wavelet transform.
2. Theoretical Framework
2.1. Induction Motor Inter-Turn Short-Circuit Model
2.2. Supervised Machine Learning
2.2.1. Random Forest
2.2.2. k-Nearest Neighbors
2.2.3. Neural Networks
3. Feature Extraction
3.1. Statistical Signal Analysis
- ▪
- The shape factor: the root mean square (RMS) divided by the mean of the absolute value of the signal.
- ▪
- The impulse factor compares the peak of the absolute value () to the signal’s mean level.
- ▪
- The clearance factor: The peak value divided by the squared mean value of the square roots of the absolute amplitudes.
- ▪
- The crest factor: The peak value divided by the RMS.
3.2. Discrete Wavelet Transform
4. Experimental Results and Discussion
4.1. Experimental Setup
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nandi, S.; Toliyat, H.A.; Member, S.; Li, X.; Member, S. Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review. IEEE Trans. Energy Convers. 2005, 20, 719–729. [Google Scholar] [CrossRef]
- Zhang, P.; Du, Y.; Member, S.; Habetler, T.G.; Lu, B.; Member, S. A Survey of Condition Monitoring and Protection Methods for Medium-Voltage Induction Motors. IEEE Trans. Ind. Appl. 2011, 47, 34–46. [Google Scholar] [CrossRef]
- Awadallah, M.A.; Morcos, M.M. Application of AI Tools in Fault Diagnosis of Electrical Machines and Drives—An Overview. IEEE Trans. Energy Convers. 2003, 18, 245–251. [Google Scholar] [CrossRef]
- Das, S.; Purkait, P.; Dey, D.; Chakravorti, S. Monitoring of Inter-Turn Insulation Failure in Induction Motor Using Advanced Signal and Data Processing Tools. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1599–1608. [Google Scholar] [CrossRef]
- Bonnett, A.H.; Soukup, G.C. Cause and Analysis of Stator and Rotor Failures in Three-Phase Squirrel-Cage Induction Motors. IEEE Trans. Ind. Appl. 1992, 28, 921–936. [Google Scholar] [CrossRef]
- Siddique, A.; Yadava, G.S.; Singh, B. A Review of Stator Fault Monitoring Techniques of Induction Motors. IEEE Trans. Energy Convers. 2005, 20, 106–114. [Google Scholar] [CrossRef]
- Kliman, G.B.; Premerlani, W.J.; Koegl, R.A.; Hoeweler, D. New Approach to On-Line Turn Fault Detection in AC Motors. Conf. Rec. IAS Annu. Meet. (IEEE Ind. Appl. Soc.) 1996, 1, 687–693. [Google Scholar] [CrossRef]
- Cruz, J.d.S.; Fruett, F.; Lopes, R.d.R.; Cruz, J.; Fruett, F.; Lopes, R.; Takaki, F.L.; Tambascia, C.d.A.; Lima, E.R.d.; Giesbrecht, M. Partial Discharges Monitoring for Electric Machines Diagnosis: A Review. Energies 2022, 15, 7966. [Google Scholar] [CrossRef]
- Sheikh, M.A.; Bakhsh, S.T.; Irfan, M.; Nor, N.b.M.; Nowakowski, G. A Review to Diagnose Faults Related to Three-Phase Industrial Induction Motors. J. Fail. Anal. Prev. 2022, 22, 1546–1557. [Google Scholar] [CrossRef]
- Cao, W.; Huang, R.; Wang, H.; Lu, S.; Hu, Y.; Hu, C.; Huang, X. Analysis of Inter-Turn Short-Circuit Faults in Brushless DC Motors Based on Magnetic Leakage Flux and Back Propagation Neural Network. IEEE Trans. Energy Convers. 2023, 38, 2273–2281. [Google Scholar] [CrossRef]
- Park, J.K.; Hur, J. Detection of Inter-Turn and Dynamic Eccentricity Faults Using Stator Current Frequency Pattern in IPM-Type BLDC Motors. IEEE Trans. Ind. Electron. 2016, 63, 1771–1780. [Google Scholar] [CrossRef]
- Allal, A.; Khechekhouche, A. Diagnosis of Induction Motor Faults Using the Motor Current Normalized Residual Harmonic Analysis Method. Int. J. Electr. Power Energy Syst. 2022, 141, 108219. [Google Scholar] [CrossRef]
- Ghanbari, T.; Mehraban, A.; Farjah, E. Inter-Turn Fault Detection of Induction Motors Using a Method Based on Spectrogram of Motor Currents. Measurement 2022, 205, 112180. [Google Scholar] [CrossRef]
- Drif, M.; Drif, M.; Estima, J.O.; Cardoso, A.J.M. The Use of the Stator Instantaneous Complex Apparent Impedance Signature Analysis for Discriminating Stator Winding Faults and Supply Voltage Unbalance in Three-Phase Induction Motors. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, Denver, CO, USA, 15–19 September 2013; pp. 4403–4411. [Google Scholar] [CrossRef]
- Liu, J.; Tan, H.; Shi, Y.; Ai, Y.; Chen, S.; Zhang, C. Research on Diagnosis and Prediction Method of Stator Interturn Short-Circuit Fault of Traction Motor. Energies 2022, 15, 3759. [Google Scholar] [CrossRef]
- Mathew, S.K.; Zhang, Y. Acoustic-Based Engine Fault Diagnosis Using WPT, PCA and Bayesian Optimization. Appl. Sci. 2020, 10, 6890. [Google Scholar] [CrossRef]
- Lucas, G.B.; De Castro, B.A.; Ardila-Rey, J.A.; Glowacz, A.; Leao, J.V.F.; Andreoli, A.L. A Novel Approach Applied to Transient Short-Circuit Diagnosis in TIMs by Piezoelectric Sensors, PCA, and Wavelet Transform. IEEE Sens. J. 2023, 23, 8899–8908. [Google Scholar] [CrossRef]
- Namdar, A.; Samet, H.; Allahbakhshi, M.; Tajdinian, M.; Ghanbari, T. A Robust Stator Inter-Turn Fault Detection in Induction Motor Utilizing Kalman Filter-Based Algorithm. Measurement 2022, 187, 110181. [Google Scholar] [CrossRef]
- Sarkar, S.; Purkait, P.; Das, S. NI CompactRIO-Based Methodology for Online Detection of Stator Winding Inter-Turn Insulation Faults in 3-Phase Induction Motors. Measurement 2021, 182, 109682. [Google Scholar] [CrossRef]
- Cardenas-Cornejo, J.J.; Ibarra-Manzano, M.A.; González-Parada, A.; Castro-Sanchez, R.; Almanza-Ojeda, D.L. Classification of Inter-Turn Short-Circuit Faults in Induction Motors Based on Quaternion Analysis. Measurement 2023, 222, 113680. [Google Scholar] [CrossRef]
- Lu, X.; Lin, P.; Cheng, S.; Fang, G.; He, X.; Chen, Z.; Wu, L. Fault Diagnosis Model for Photovoltaic Array Using a Dual-Channels Convolutional Neural Network with a Feature Selection Structure. Energy Convers. Manag. 2021, 248, 114777. [Google Scholar] [CrossRef]
- Shi, M.; Ding, C.; Wang, R.; Shen, C.; Huang, W.; Zhu, Z. Graph Embedding Deep Broad Learning System for Data Imbalance Fault Diagnosis of Rotating Machinery. Reliab. Eng. Syst. Saf. 2023, 240, 109601. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Li, H.; Yang, Y.; Huang, C.-G.; Yazdi, M.; Kang, S. A Hybrid Prognosis Scheme for Rolling Bearings Based on a Novel Health Indicator and Nonlinear Wiener Process. Reliab. Eng. Syst. Saf. 2024, 245, 110014. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Y.; Li, H.; Dai, L.; Huang, B. A Parallel Deep Neural Network for Intelligent Fault Diagnosis of Drilling Pumps. Eng. Appl. Artif. Intell. 2024, 133, 108071. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: London, UK, 2017; pp. 1–358. [Google Scholar] [CrossRef]
- Sain, S.R. The Nature of Statistical Learning Theory. Technometrics 1996, 38, 409. [Google Scholar] [CrossRef]
- Fan, R.-E.; Chen, P.-H.; Lin, C.-J. Working Set Selection Using Second Order Information for Training Support Vector Machines. J. Mach. Learn. Res. 2005, 6, 1889–1918. [Google Scholar]
- Ben, M.; Bouzid, K.; Champenois, G.; Bellaaj, N.M.; Signac, L.; Jelassi, K. An Effective Neural Approach for the Automatic Location of Stator Interturn Faults in Induction Motor. IEEE Trans. Ind. Electron. 2008, 55, 4277–4289. [Google Scholar] [CrossRef]
- Liu, X.; Bo, L.; Luo, H. Bearing Faults Diagnostics Based on Hybrid LS-SVM and EMD Method. Measurement 2015, 59, 145–166. [Google Scholar] [CrossRef]
- Deng, W.; Yao, R.; Zhao, H.; Yang, X.; Li, G. A Novel Intelligent Diagnosis Method Using Optimal LS-SVM with Improved PSO Algorithm. Soft Comput. 2019, 23, 2445–2462. [Google Scholar] [CrossRef]
- Yao, B.; Zhen, P.; Wu, L.; Guan, Y. Rolling Element Bearing Fault Diagnosis Using Improved Manifold Learning. IEEE Access 2017, 5, 6027–6035. [Google Scholar] [CrossRef]
- Singh, M.; Shaik, A.G. Faulty Bearing Detection, Classification and Location in a Three-Phase Induction Motor Based on Stockwell Transform and Support Vector Machine. Measurement 2019, 131, 524–533. [Google Scholar] [CrossRef]
- Maraaba, L.S.; Al-Hamouz, Z.M.; Milhem, A.S.; Abido, M.A. Neural Network-Based Diagnostic Tool for Detecting Stator Inter-Turn Faults in Line Start Permanent Magnet Synchronous Motors. IEEE Access 2019, 7, 89014–89025. [Google Scholar] [CrossRef]
- Cherif, H.; Benakcha, A.; Laib, I.; Chehaidia, S.E.; Menacer, A.; Soudan, B.; Olabi, A.G. Early Detection and Localization of Stator Inter-Turn Faults Based on Discrete Wavelet Energy Ratio and Neural Networks in Induction Motor. Energy 2020, 212, 118684. [Google Scholar] [CrossRef]
- Shih, K.J.; Hsieh, M.F.; Chen, B.J.; Huang, S.F. Machine Learning for Inter-Turn Short-Circuit Fault Diagnosis in Permanent Magnet Synchronous Motors. IEEE Trans. Magn. 2022, 58, 1–7. [Google Scholar] [CrossRef]
- Kumar, P.; Hati, A.S. Review on Machine Learning Algorithm Based Fault Detection in Induction Motors. Arch. Comput. Methods Eng. 2021, 28, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Lang, W.; Hu, Y.; Gong, C.; Zhang, X.; Xu, H.; Deng, J. Artificial Intelligence-Based Technique for Fault Detection and Diagnosis of EV Motors: A Review. IEEE Trans. Transp. Electrif. 2022, 8, 384–406. [Google Scholar] [CrossRef]
- Cruz, S.M.A.; Marques Cardoso, A.J. Stator Winding Fault Diagnosis in Three-Phase Synchronous and Asynchronous Motors, by the Extended Park’s Vector Approach. IEEE Trans. Ind. Appl. 2001, 37, 1227–1233. [Google Scholar] [CrossRef]
- Sarkar, S.; Das, S.; Purkait, P. Wavelet and SFAM Based Classification of Induction Motor Stator Winding Short Circuit Faults and Incipient Insulation Failures. In Proceedings of the 2013 IEEE 1st International Conference on Condition Assessment Techniques in Electrical Systems, IEEE CATCON 2013—Proceedings; IEEE Computer Society, Kolkata, India, 6–8 December 2013; pp. 237–242. [Google Scholar]
- Zhao, Y.; Chen, Y.; Wang, L.; Ur Rehman, A.; Cheng, Y.; Zhao, Y.; Han, B.; Tanaka, T. Experimental Research and Feature Extraction on Stator Inter-Turn Short Circuit Fault in DFIG. In Proceedings of the 2016 IEEE International Conference on Dielectrics, ICD 2016, Montpellier, France, 3–7 July 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway Township, NJ, USA, 2016; Volume 1, pp. 510–513. [Google Scholar]
- Wei, S.; Zhang, X.; Xu, Y.; Fu, Y.; Ren, Z.; Li, F. Extended Park’s Vector Method in Early Inter-Turn Short Circuit Fault Detection for the Stator Windings of Offshore Wind Doubly-Fed Induction Generators. IET Gener. Transm. Distrib. 2020, 14, 3905–3912. [Google Scholar] [CrossRef]
- Tallam, R.M.; Habetler, T.G.; Harley, R.G. Transient Model for Induction Machines with Stator Winding Turn Faults. IEEE Trans. Ind. Appl. 2002, 38, 632–637. [Google Scholar] [CrossRef]
- Berzoy, A.; Mohammed, O.A.; Restrepo, J. Analysis of the Impact of Stator Interturn Short-Circuit Faults on Induction Machines Driven by Direct Torque Control. IEEE Trans. Energy Convers. 2018, 33, 1463–1474. [Google Scholar] [CrossRef]
- Berzoy, A.; Mohamed, A.A.S.; Mohammed, O.A. Stator Winding Inter-Turn Fault in Induction Machines: Complex-Vector Transient and Steady-State Modelling. In Proceedings of the 2017 IEEE International Electric Machines and Drives Conference, IEMDC 2017, Miami, FL, USA, 21–24 May 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway Township, NJ, USA, 2017. [Google Scholar]
- Cover, T.M.; Hart, P.E. Approximate Formulas for the Information Transmitted Bv a Discrete Communication Channel. IEEE Trans. Inf. Theory 1952, 24, 335–342. [Google Scholar]
- Abraham, A. Artificial Neural Networks. In Handbook of Measuring System Design; Sydenham, P.H., Thorn, R., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; ISBN 0470021438. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.; Farge, M. Wavelets: Mathematical Theory. Encyclopedia of Mathematical Physics: Five-Volume Set; Academic Press: Cambridge, MA, USA, 2006; pp. 426–438. [Google Scholar] [CrossRef]
- He, Z. The Fundamental Theory of Wavelet Transform. Wavelet Analysis and Transient Signal Processing Applications for Power Systems; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 21–44. [Google Scholar] [CrossRef]
- Konar, P.; Chattopadhyay, P. Multi-Class Fault Diagnosis of Induction Motor Using Hilbert and Wavelet Transform. Appl. Soft Comput. 2015, 30, 341–352. [Google Scholar] [CrossRef]
- Bouzida, A.; Touhami, O.; Ibtiouen, R.; Belouchrani, A.; Fadel, M.; Rezzoug, A. Fault Diagnosis in Industrial Induction Machines through Discrete Wavelet Transform. IEEE Trans. Ind. Electron. 2011, 58, 4385–4395. [Google Scholar] [CrossRef]
- Mathuranathan, V. Digital Modulations Using Matlab: Build Simulation Models from Scratch, 1st ed.; Independently Published: Chicago, IL, USA, 2020; ISBN 9781521493885. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learn-Ing in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Li, L.; Jamieson, K.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. J. Mach. Learn. Res. 2018, 18, 1–52. [Google Scholar]
- O’Malley, T.; Bursztein, E.; Long, J.; Chollet, F.; Jin, H.; Invernizzi, L. Others KerasTuner. 2019. Available online: https://github.com/keras-team/keras-tuner (accessed on 5 November 2023).
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
() | (mH) | () | (mH) | (mH) | (kg m2) | |
---|---|---|---|---|---|---|
2.9 | 5.98 | 0.97 | 25.30 | 264.02 | 0.0026 | 3 |
IM Feature | Detail |
---|---|
Axial length | 62.4 mm |
Number of stator slots | 36 |
Stator inner diameter | 79.8 mm |
Stator outer diameter | 142.6 mm |
Rotor outer diameter | 79 mm |
Turns per slot | 32 |
Total winding turns | 192 |
Number of pole pairs | 3 |
Level | Frequency Bandwidth (Hz) |
---|---|
1 | 3840–7680 |
2 | 1920–3840 |
3 | 960–1920 |
4 | 480–960 |
5 | 240–480 |
6 | 120–240 |
7 | 60–120 |
8 | 30–60 |
9 | 15–30 |
10 | 7.5–15 |
Classification Method | Hyperparameters | Metrics |
---|---|---|
RF | Number of estimators and minimum number of samples per leaf | Accuracy |
SVM | Kernel: linear, polynomial, and radial basis function, regularization parameter C, grade of influence of high-order elements in comparison with low-order (coef0) elements and degrees | Accuracy |
kNN | Number of neighbors, weights, metric, algorithm, and leaf size | Accuracy |
FNN | Activation function, number of layers, number of neurons, and learning rates | Accuracy, false negatives and false positives |
ENN | Activation function, number of layers, number of neurons, and learning rates | Accuracy, false negatives and false positives |
Classification Method | A | B | C | |||
---|---|---|---|---|---|---|
Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | |
RF | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
SVM | 0.89 | 0.99 | 0.93 | 0.88 | 0.96 | 1.0 |
kNN | 1.0 | 1.0 | 0.8 | 0.91 | 0.96 | 1.0 |
FNN | 0.96 | 1.0 | 0.88 | 0.93 | 1.0 | 1.0 |
ENN | 0.96 | 0.94 | 0.92 | 0.90 | 0.96 | 0.99 |
Dataset | Output | Accuracy | ||||
---|---|---|---|---|---|---|
RF | SVM | kNN | FNN | ENN | ||
A | Healthy | 0.93 | 0.92 | 0.87 | 0.94 | 1.0 |
Phase a | 1.0 | 1.0 | 0.86 | 1.0 | 1.0 | |
Phase b | 1.0 | 1.0 | 1.0 | 0.83 | 0.86 | |
Phase c | 0.5 | 0.5 | 1.0 | 0.86 | 1.0 | |
B | Healthy | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Phase a | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
Phase b | 0.67 | 1.0 | 0.86 | 0.83 | 0.88 | |
Phase c | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
C | Healthy | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Phase a | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
Phase b | 1.0 | 1.0 | 1.0 | 1.0 | 0.80 | |
Phase c | 1.0 | 0.67 | 0.33 | 0.67 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rengifo, J.; Moreira, J.; Vaca-Urbano, F.; Alvarez-Alvarado, M.S. Detection of Inter-Turn Short Circuits in Induction Motors Using the Current Space Vector and Machine Learning Classifiers. Energies 2024, 17, 2241. https://doi.org/10.3390/en17102241
Rengifo J, Moreira J, Vaca-Urbano F, Alvarez-Alvarado MS. Detection of Inter-Turn Short Circuits in Induction Motors Using the Current Space Vector and Machine Learning Classifiers. Energies. 2024; 17(10):2241. https://doi.org/10.3390/en17102241
Chicago/Turabian StyleRengifo, Johnny, Jordan Moreira, Fernando Vaca-Urbano, and Manuel S. Alvarez-Alvarado. 2024. "Detection of Inter-Turn Short Circuits in Induction Motors Using the Current Space Vector and Machine Learning Classifiers" Energies 17, no. 10: 2241. https://doi.org/10.3390/en17102241
APA StyleRengifo, J., Moreira, J., Vaca-Urbano, F., & Alvarez-Alvarado, M. S. (2024). Detection of Inter-Turn Short Circuits in Induction Motors Using the Current Space Vector and Machine Learning Classifiers. Energies, 17(10), 2241. https://doi.org/10.3390/en17102241