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Abstract: Low carbon operation of power systems is a key way to achieve the goal of energy power
carbon peaking and carbon neutrality. In order to promote the low carbon transition of energy and
power and the coordinated and optimized operation of distributed energy sources in virtual power
plants (VPP), this paper proposes a framework for collaborative utilization of pumped storage–carbon
capture–power-to-gas (P2G) technologies. It also constructs a multi-time scale low carbon economic
dispatch model for VPP to minimize the internal resource operation cost of VPP in each time period.
During the intraday scheduling stage, the day-ahead scheduling results as the planned output and
the energy flow is then dynamically corrected at a short-term resolution in the framework. This
allows for the exploration of the low-carbon potential of each aggregation unit within the virtual
power plant. The results of the simulation indicate that the strategy and model proposed in this paper
can effectively encourage the consumption of renewable energy sources, promote the low-carbon
operation of power system power, and serve as a valuable reference for the low-carbon economic
operation of the power system.

Keywords: virtual power plant; pumped storage; carbon capture; multi-timescale optimization

1. Introduction

According to the State Council of China, it is crucial to focus on the implementation
of the key work division outlined in the ‘Government Work Report’. Specifically, there
is a need to prioritize the work of carbon peaking and carbon neutralization in many
application areas such as industrial and transportation fields [1,2] To achieve this, an action
plan for carbon emission peaking should be formulated before 2030. Currently, fossil fuels
remain the primary source of power globally. However, there is a growing consensus to
promote low-carbon electricity and increase the use of renewable clean energy sources to
create a more sustainable energy network in Ref. [3]. Distributed renewable energy sources
are geographically dispersed and operate independently, which can result in inefficient
resource allocation due to a lack of coordination and unity. However, the virtual power
plant also presents an opportunity for innovative solutions to address these challenges in
Ref. [4].

The transition from fossil fuel power generation to cleaner and low-carbon power
generation requires a significant amount of time. As a result, the carbon emissions produced
by fossil fuel power generation have become the primary obstacle in achieving the ‘dual
carbon’ goal. According to ‘China’s Carbon Neutrality Research Report Before 2060’, the
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development of new energy sources and carbon capture and storage (CCS) technology
is the key to achieving carbon neutrality in Ref. [5]. The utilization of CCS technology
in fossil fuel power plants can significantly reduce their carbon emissions and improve
their flexibility in operation, thus facilitating the consumption of wind power in Refs. [6,7].
However, the storage cost associated with carbon dioxide is high and there is a risk of
leakage. To effectively mitigate these issues, reusing the captured CO2 is the most effective
method in Ref. [8]. P2G technology provides a promising solution for the reuse of CO2,
while also enabling energy conversion and load time-space translation. The stored natural
gas can be utilized to consume renewable clean energy and manage peak-shaving and
valley-filling of electric load.

Currently, research on carbon emission reduction often focuses on two independent
methods: CCS and P2G in Refs. [9–12]. Studies on carbon capture units typically examine
capital gains, operation decisions, and optimal control in Refs. [13–15]. The recent litera-
ture has analyzed the advantages of carbon capture power plants participating in peak
regulation and suggests that these plants can serve as an ideal supporting power source for
wind power in Refs. [16,17]. Additionally, wind and photovoltaic power generation can
also power the CO2 capture system, ultimately reducing the cost of generating electricity
for carbon capture plants. In the previous literature, carbon capture units were introduced
as a means of reducing carbon emissions. A multi-regional VPP optimal scheduling model
under the energy market was proposed in Ref. [18]. Ref. [19] presented a low-carbon
economic dispatch model for electric–gas systems that included carbon capture systems
and wind power. This model also factored in the emission cost based on carbon tax into
the objective function. Both of these studies confirm that carbon capture units are a more
environmentally friendly and flexible alternative to traditional coal-fired power plants.

P2G devices have been extensively researched as coupling elements between power
grids and gas networks, as well as controllable energy-consuming response devices. The
working principle and performance of P2G, along with its economic evaluation, have been
introduced in Refs. [20,21]. Additionally, Refs. [22,23] have constructed a carbon capture
power plant and P2G system framework, which use CO2 captured by the carbon capture
power plant as a raw material for the production of natural gas to reuse CO2. The fast
response of P2G energy conversion and transmission also enhances the flexibility of the
system. It has been suggested in Ref. [24] that P2G can be used to transfer power from peak
hours to off-peak hours, thereby easing the pressure on the power supply. These studies
confirm that P2G plays a positive role in clean energy consumption, relief of environmental
pressure, and economic improvement.

As the penetration of renewable energy generation in VPP increases, it also provides a
new direction for solving the problem of energy consumption in the operation of carbon
capture-P2G systems. However, the variability in wind and photovoltaic power generation
can affect the reliability of the VPP power supply and reduce the low-carbon economic ben-
efits of the carbon capture-P2G system in Refs. [25–27]. Currently, there are two solutions
to this problem. The first approach is to implement a multi-time scale rolling optimization
strategy to compensate for forecast errors and increase the consumption of renewable
energy generation. The second solution involves using fast adjustment devices like energy
storage power plants and carbon capture power plants to manage fluctuations in renewable
energy. Since the prediction accuracy of renewable energy generation and load improves
with shorter time scales in Ref. [28], it is relevant to study multi-timescale dispatching
strategies in order to correct the deviation of dispatching plans with long time scales from
more accurate prediction conditions. In addition, pumped storage (PS) units are becoming
increasingly important for peak regulation in power systems due to their rapid output
response, flexible adjustment methods, and environmental benefits. Current research fo-
cuses on the joint operation mode of wind power and pumped storage in Refs. [29–31];
there is a need to consider the coordinated operation of pumped storage units and carbon
capture-power-to-gas systems on multiple time scales.
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In summary, based on existing research, this paper proposes a framework for collabo-
rative utilization of pumped storage—carbon capture—P2G technologies. It also constructs
a multi-time scale low carbon economic dispatch model for VPP to minimize the internal
resource operation cost of VPP in each time period. During the intraday scheduling stage,
the day-ahead scheduling results as the planned output and the energy flow is then dynam-
ically corrected at a short-term resolution in the framework. This allows for the exploration
of the low-carbon potential of each aggregation unit within the virtual power plant. Finally,
the validity of the proposed method is verified by example analysis.

2. Pumped Storage—Carbon Capture—P2G VPP Multi-Timescale Low Carbon
Operation Framework
2.1. VPP System Architecture

The carbon capture-to-gas synergistic operation framework extends the flexibility
of the carbon capture plant by regulating the energy consumption of the carbon capture
system and by supplying the captured CO2 to the P2G plant for methane production.
However, the ability of this mechanism to generate greater benefits is limited by the level
of load demand at the current moment. It is difficult to support the increasing load peak-to-
valley difference from year to year and the regulation demand caused by the anti-peaking
characteristic of scaled renewable energy. On this basis, this paper introduces pumped
storage units with the characteristics of flexible conversion of operating conditions and
fast adjustment of output, with the starting point of improving the flexible adjustment
capability of VPP. This paper proposes a pumped storage-carbon capture-electricity-to-gas
synergistic utilization framework, as shown in Figure 1.
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Figure 1. VPP system architecture.

In the emission layer, the only source of carbon emissions from the VPP system is
the carbon capture plant. A portion of the CO2 is captured by the carbon capture system
and another portion of the CO2 is emitted into the atmosphere. The captured CO2 can be
used as a feedstock for the production of methane in the P2G plant and the excess can be
disposed of by carbon sequestration. Where QG is the amount of CO2 directly generated
by the carbon capture unit for power generation. QN is the amount of CO2 emitted directly
into the atmosphere. QCC is the amount of CO2 captured by the carbon capture system.



Energies 2024, 17, 2348 4 of 22

QCCS is the amount of CO2 sequestered. QP2G is the amount of CO2 consumed by the P2G
unit. VP2G is the volume of methane produced by the P2G unit.

At the equipment level, wind power, photovoltaic power generation, and pumped
storage units can provide energy consumption for carbon capture systems and P2G equip-
ment. Pumped storage units, as auxiliary regulation resources, can take advantage of the
spatial and temporal complementarity of different energy resources in terms of power and
energy consumption.

At the dispatch level, the VPP aggregation energy is supplied by wind power, photo-
voltaic power, pumped storage unit power, and carbon capture plant output. When the
pumped storage unit is in pumping mode, the energy consumption is supplied by the
VPP aggregation energy. Where PW,N and PPV,N are the feed-in power for wind and PV,
respectively; PW,P2G and PPV,P2G are the energy consumption provided by wind and PV
for P2G, respectively; PW,CCS, PPV,CCS, and PG,CCS are the energy consumption provided
by wind power, photovoltaic power, and carbon capture plant for the carbon capture sys-
tem, respectively; PPS,G,P2G, PPS,G,CCS, and PPS,G,N are the energy consumption and feed-in
power provided by the pumped storage units to the P2G and carbon capture system. PPS,P
is the pumping power of the pumped storage unit as an energy consuming device.

The energy flow based on the framework of synergistic utilization is more flexible
to match the change in renewable energy output, the energy consumption of the carbon
capture system, and the energy consumption of the P2G equipment, so as to improve the
carbon emission reduction and renewable energy consumption level of the VPP.

2.2. VPP Multi-Timescale Coordinated Optimization Strategy

The conventional day-ahead dispatching method can scarcely fulfill the system safety
and economic criteria owing to the unpredictability brought by the grid connection of
large-scale renewable energy. The multi-timescale rolling optimization theory relies on
the principle that the prediction accuracy of renewable energy output and load demand
increases as the timescale is shortened and rolling correction of controllable power output
in a short timescale to match the fluctuation in renewable energy output, so as to meet the
safety and economic requirements of the system. The multi-timescale rolling optimization
strategy is shown in Figure 2.
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This paper proposes a multi-timescale rolling optimization strategy for virtual power
plants considering a framework for collaborative utilization of pumped storage—carbon
capture—P2G technologies based on the multi-timescale optimization theory to modify the
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energy flow under the framework for collaborative utilization on short timescales to further
exploit the fine-grained scheduling advantages of the framework for collaborative utilization.

The prediction and control domains in the day-ahead scheduling are both 24 h with a
time resolution of 1 h. The prediction domain in the day-ahead scheduling is the ultra-short-
term prediction time scale for uncertain resources, i.e., 4 h with a time resolution of 15 min
and the control domain is 15 min. The day-ahead scheduling plan with a time resolution of
1 h is expanded to 96 time periods with a resolution of 15 min. The intraday scheduling
time window is rolled back every 15 min, each time rolling to solve the intraday scheduling
plan for the 4 h in the prediction domain and execute the 15-min intraday scheduling
plan in the control domain. The process is repeated until the intraday scheduling plan
is completed.

3. VPP Multi-Time Scale Low Carbon Economic Dispatch Model

Based on the above multi-timescale rolling optimization strategy for virtual power
plants considering the pumped storage—carbon capture—P2G synergistic utilization frame-
work, optimal scheduling models are developed for the day-ahead and intraday scheduling
phases based on the predicted power of wind power, photovoltaic power, and load at
different timescales, respectively.

3.1. Source and Load Uncertainty Treatment

At present, the prediction models for wind power, photovoltaic power generation,
and load have been studied in depth, including the historical data method and probabilistic
model method and the predicted power of each unit is obtained based on the Monte
Carlo simulation method and deep learning algorithm. The focus of this paper is on the
optimal scheduling of VPP. So, we assume that the prediction errors of wind and PV
power generation and load are inscribed by a normal distribution with zero mean and
independent of each other [32], as shown in the following equation:

δW
t ∼ N(0, σ2

W,t)

δPV
t ∼ N(0, σ2

PV,t)

δEL
t ∼ N(0, σ2

EL,t)

(1)

where δW
t , δPV

t , and δEL
t are the forecast variances for wind power, PV power, and load at

time t, respectively. σ2
W,t, σ2

PV,t, and σ2
EL,t are the variances of the forecast deviations at time

t for wind power, PV power, and load, respectively.

3.2. Day-Ahead Scheduling Model

In the day-ahead dispatching phase, the VPP day-ahead 24 h dispatching plan is
formulated based on the short-term predicted power of wind power, PV power, and load
with a time resolution of 1 h and one day cycle.

3.2.1. Objective Function

The day-ahead scheduling model takes the total operating cost of VPP in the schedul-
ing cycle as the objective function to minimize.

min f1 =
24

∑
t=1

(CG
t + CP2G

t + CPS
t + CCO2

t −CGre
t + CW

t + CPV
t + CPun

t + CGrid
t ) (2)

where CG
t is the fuel cost of the carbon capture plant at time t. CP2G

t is the operating cost of
the P2G device at time t. CPS

t is the cost of switching the operating conditions of the pumped
storage unit at moment t. CCO2

t is the CO2-related cost of the VPP at time t. CGre
t is the gain

from VPP’s participation in the green certificate transaction at time t. CW
t and CPV

t are the
operation and maintenance costs of wind power and photovoltaic power generation at time
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t, respectively. CPun
t is the penalty costs for wind power abandonment and photovoltaic

power abandonment at time t. CGrid
t is the cost of electricity purchased from the grid by

VPP at time t.

(1) Carbon capture plant fuel costs.

CG
t = a(PG

t )
2
+ bPG

t + c (3)

where a, b, and c are the operating cost factors of the carbon capture unit, respectively.
PG

t is the equivalent output of the carbon capture unit at time t.

(2) P2G equipment operating costs.

CP2G
t = kBuyQBuy

t + kP2GPP2G
t − kCH4 VP2G

t (4)

where kBuy is the purchase price of CO2 for the production of methane for the P2G
equipment, CNY/t, (CNY: China Yuan). kP2G is the operating cost factor for P2G
equipment, CNY/(MW·h). PP2G

t is the energy consumption of the P2G equipment
at time t, MW. QBuy

t is the amount of CO2 to be purchased at time t when the P2G
equipment consumes more energy and the amount of CO2 captured is less, t. kCH4 is
the fixed price per unit volume of methane in the methane market, CNY/m3. VP2G

t is
the volume of methane generated by the P2G device at time t, m3.

(3) Pumped storage unit operating conditions switching costs.

CPS
t = kPS,GδPS,G

t (δPS,G
t − δPS,G

t−1 ) + kPS,PδPS,P
t (δPS,P

t − δPS,P
t−1 ) (5)

where kPS,G is the cost of a single start-up of a pumped storage unit under power
generation condition, CNY. kPS,P is the cost of a single start-up of a pumped storage
unit under power pumping condition, CNY. δPS,G

t and δPS,P
t are the Boolean variables

for the state of the pumped storage unit generating and pumping water, respectively.

(4) CO2-related costs.

CO2-related costs include the cost of carbon sequestration and the cost of VPP partici-
pation in carbon trading.

CCO2
t = kCSQCS

t − kCO2(QN
t −QBuy

t −QQ
t ) (6)

QQ
t = γCPG

t (7)

where kCS is the fixed price for a unit mass of CO2 sequestered, CNY/t. kCO2 is the unit
carbon price in the carbon trading market, CNY/t. QCS

t is the amount of carbon sequestered
at time t, t. QN

t is the net carbon emission of VPP at time t, t. QQ
t is the carbon emission

allowance allocated to VPP in time period t, t. γC is the carbon emission benchmark credit
per unit of electricity, t/(MW·h).

(5) Green certificate trading revenue.

CGre
t = kGre(Pgre

t − Pre
t )∆t (8)

where kGre is the unit price of green certificate, CNY/book (green certificate power
conversion is 1 green certificate = 1 MW·h). Pgre

t is the amount of renewable energy
generation consumed by VPP in time period t, MW·h. Pre

t is the weight of renewable
energy consumption of VPP in time period t, MW·h. ∆t is the length of the period
when VPP is currently involved in green certificate trading.
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(6) Operation and maintenance costs of wind and photovoltaic power generation.

CW
t = kW(PW,C

t + PW,P2G
t + PW,N

t ) (9)

CPV
t = kPV(PPV,C

t + PPV,P2G
t + PPV,N

t ) (10)

where kW and kPV are the unit operation and maintenance cost coefficients for wind
power and photovoltaic power generation, respectively, CNY/(MW·h). PW,C

t and
PPV,C

t are the energy captured by wind power and photovoltaic power for the carbon
capture system, respectively, MW. PW,P2G

t and PPV,P2G
t are the energy consumption

provided by wind power and photovoltaic power for power-to-gas equipment, re-
spectively, MW. PW,N

t and PPV,N
t are the grid-connected power for wind power and

photovoltaic power, respectively, MW.

(7) Penalty cost for wind and photovoltaic power generation.

CPun
t = kW

Pun(PW,pre
t − PW

t ) + kPV
Pun(PPV,pre

t − PPV
t ) (11)

where kW
Pun and kPV

Pun are the penalty cost per unit of wind power abandonment and the
penalty cost per unit of photovoltaic power abandonment, respectively, CNY/(MW·h).
PW,pre

t and PPV,pre
t are the predicted power of wind power and photovoltaic power

generation at time t, respectively, MW. PW
t and PPV

t are the grid-connected power of
wind power and photovoltaic power respectively, MW.

(8) Cost of VPP to purchase electricity from the main network.

When power is in short supply, VPP can purchase power to meet internal power
load demand.

CGrid
t = kP

t PGrid
t (12)

where kP2G is the purchased electricity price for time period t, CNY/(MW·h). PGrid
t is the

amount of electricity purchased from the grid by VPP in time period t, MW·h.

3.2.2. Constraints

The key of the VPP optimal dispatch model is to optimize the output of each piece
of equipment within the permissible range under the premise of ensuring the balance
between the VPP aggregation energy and load demand with the goal of economy. The most
complicated part of the model is the operating constraints of the equipment.

(1) System power balance constraint.

First of all, it is necessary to ensure that the VPP aggregation energy is equal to the
load demand, i.e., the power is conserved.

PEL
t + PPS,P

t = PG,N
t + PW,N

t + PPV,N
t + PPS,G,N

t + PGrid
t (13)

where PEL
t is the load demand of VPP at time t, MW.

(2) Carbon capture unit operating constraint.

The operation of a carbon capture plant includes two parts of constraints: the carbon
capture unit and the carbon capture system. Among them, the operation constraints of the
carbon capture unit are the same as those of the conventional unit, including the output
range, the climb limit, and the internal power balance of the carbon capture plant. This is
shown in the following equation:

PG,min ≤ PG
t ≤ PG,max (14)

PG
t = PG,C

t + PG,N
t (15)
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∣∣∣PG
t − PG

t−1

∣∣∣ ≤ ∆PG (16)

where PG,min and PG,max are the lower and upper limits of carbon capture unit output,
respectively, MW. PG,C

t and PG,N
t are the energy consumption provided by the carbon

capture unit to the carbon capture system at time t and the net output of the carbon capture
unit at time t, respectively, MW.

The carbon capture unit is converted from a fuel unit so its operating upper and lower
limit constraints and climbing constraints are similar to those of the fuel unit. The difference
is that a carbon capture system is added to the fuel unit and the energy consumption
constraint and operation constraint of the carbon capture system need to be considered.

PCC
t = PA + POP

t (17)

PA ≤ PCC
t ≤ PCC,max

t (18)

PCC,max
t = kCCEGPG

t (19)

PCC
t = PG,C

t + PW,C
t + PPV,C

t + PPS,G,C
t (20)

∣∣∣PCC
t − PCC

t−1

∣∣∣ ≤ ∆PCC (21)

QCC
t = POP

t /kCC (22)

0 ≤ QCC
t ≤ EGPG

t (23)

where PG
t−1 is the equivalent output of the carbon capture unit at time t − 1, MW. ∆PG is

the climbing rate constraint of carbon capture unit output, MW. PA and POP
t are the fixed

and operational energy consumption of the carbon capture system, respectively, MW. PCC
t

is the total energy consumption of the carbon capture system at time t, MW. PCC,max
t is

the maximum energy consumption of the carbon capture system at time t, MW. kCC is
the energy required to capture a unit of CO2 by the carbon capture system, MW/t. EG is
the unit carbon emission intensity of the carbon capture unit, t/MW. PPS,G,C

t is the energy
consumption provided to the carbon capture system by the pumped storage unit in the
power generation condition at time t, MW. ∆PCC is the rate of climbing constraint on the
energy consumption of the carbon capture system, MW. QCC

t is the amount of CO2 captured
by the carbon capture system at time t, t.

(3) Power-to-gas equipment operating constraint.

CO2 captured by carbon capture systems can be avoided by carbon sequestration
technology but the sequestration technology not only bears the high cost of long-distance
transportation but also faces the risk of explosion and environmental hazards due to seques-
tration leakage. The use of P2G equipment to produce methane requires the consumption
of CO2, a low-carbon emission reduction method that not only reduces CO2 emissions but
also makes full use of renewable energy to provide energy for P2G equipment.

The relationship between the CO2 consumed by the P2G equipment to produce
methane at time t and its operational energy consumption is as follows:

QP2G
t = λCO2 ηP2GPP2G

t (24)

PP2G
t = PW,P2G

t + PPV,P2G
t + PPS,G,P2G

t (25)
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where QP2G
t is the amount of CO2 consumed by the P2G equipment at time t, t. λCO2 is the

amount of CO2 required to generate methane per unit power for the P2G equipment. ηP2G

is the conversion efficiency of P2G equipment. PP2G
t is the energy consumption of the P2G

equipment at time t, MW.
The volume of methane generated by the P2G plant at time t is as follows:

VP2G
t = 3.6ηP2GPP2G

t /Hg (26)

where Hg is the calorific value of natural gas, taken as 39 MJ/m3 [19].

(4) Wind and photovoltaic power generation operational constraint.

PW
t = PW,C

t + PW,P2G
t + PW,N

t (27)

PPV
t = PPV,C

t + PPV,P2G
t + PPV,N

t (28)

0 ≤ PW
t ≤ PW,pre

t (29)

0 ≤ PPV
t ≤ PPV,pre

t (30)

where PW,pre
t and PPV,pre

t are the predicted power of wind power and PV power at
time t, respectively, MW. PW

t and PPV
t are the grid-connected power of wind power

and photovoltaic power, respectively, MW. The grid-connected power is required
to develop an optimal grid-connected plan under the premise of ensuring energy
balance. Therefore, the grid-connected power of renewable energy sources at a given
moment is less than the predicted power.

(5) Operational constraints for pumped storage.

The power limitations of pumped storage units in power generation and pumping
conditions and the mutually exclusive relationship between the operating conditions of
pumped storage units are expressed as follows:

PPS
t = δPS,G

t PPS,G
t + δPS,P

t PPS,P
t (31)

PPS,G
t = PPS,G,C

t + PPS,G,P2G
t + PPS,G,N

t (32)

0 ≤ δPS,G
t + δPS,P

t ≤ 1 (33)

WPS
t = WPS

t−1(1− ηc) + ∆TηPPPS,P
t − ∆TηGPPS,G

t (34)

WPS
min ≤WPS

t ≤WPS
max (35)

WPS
t=0 = WPS

t=T (36)

where PPS
t is the equivalent output of the pumped storage unit at time t, MW. PPS,G

t and
PPS,P

t are the power generation and pumping power of pumped storage units at time
t, MW. Due to the abundant storage capacity of the lower water reservoir in pumped
storage power plant, this article only restricts the storage capacity of the upper reservoir.
WPS

t is the capacity of the upper reservoir for pumped storage power plant at time t, m3.
WPS

min and WPS
max are the lower and upper limits of the upper reservoir capacity of pumped

storage power plant, respectively. The initial storage capacity of the upper reservoir is
WPS

t=0 = (WPS
min + WPS

max)/2. ηc is the water loss rate. ηP and ηG are the average water
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volume and electricity conversion coefficient of pumped storage units under pumping and
power generation conditions, respectively. ∆T and T are the time interval and total number
of time periods within the operation cycle optimized for pumped storage unit, respectively.

3.3. Intraday Scheduling Model

The intraday scheduling model takes the day ahead scheduling plan as a reference.
Rolling correction of the output of carbon capture units, energy consumption of carbon
capture systems, pumping energy consumption and power generation of wind power,
photovoltaic power generation, and pumped storage based on the 15 min–4 h ultra-short
term prediction of wind power, photovoltaic power generation, and load, thus forming the
intraday scheduling plan.

3.3.1. Objective Function

The daily scheduling model ignores the switching cost of pumped storage units. Each
run solves a 4-h scheduling plan, with an execution time resolution of 15 min and a total
cycle of 96 time periods. The objective function is as follows:

min f2 =
96

∑
t=1

(CG′
t + CP2G′

t + CCO2′
t − CGre′

t +CW′
t + CPV′

t + CPun′
t + CGrid′

t ) (37)

where CG′
t is the fuel cost for carbon capture plants at time t. CP2G′

t is the operating cost of
the P2G device at time t. CCO2′

t is the CO2-related cost of the VPP at time t. CGre′
t is the gain

from VPP’s participation in the green certificate transaction at time t. CW′
t and CPV′

t are the
operation and maintenance costs of wind power and photovoltaic power generation at time
t, respectively. CPun′

t is the penalty costs for wind power abandonment and photovoltaic
power abandonment at time t. CGrid′

t is the cost of electricity purchased from the grid by
VPP at time t.

3.3.2. Constraints

The difference between the constraints of the intraday scheduling model and the day
ahead scheduling model is that the optimal time resolution is changed from 1 h to 15 min.
The constraints that need to be changed in the intraday scheduling model are as follows:

PEL′
t + PPS,P′

t = PG,N′
t + PW,N′

t + PPV,N′
t + PPS,G,N′

t + PGrid′
t (38)

PEL′
t = PEL

t + δEL
t (39)

PW′
t = PW

t + δW
t (40)

PPV′
t = PPV

t + δPV
t (41)

where PEL′
t , PW′

t , and PPV′
t , respectively, represent the load demand, predicted power of

wind, and photovoltaic power generation during the intraday scheduling phase during
time period t. The physical meaning of other variables is the same as that of the day ahead
scheduling phase.

In addition, due to the change in scheduling resolution from 1 h to 15 min during the
intraday phase, the output of the carbon capture plant, the energy consumption climbing
constraints of the carbon capture system, and the calculation method of the capacity of the
pumped storage upper reservoir also need to be adjusted accordingly.∣∣∣PG

t − PG
t−1

∣∣∣ ≤ ∆PG/4 (42)
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∣∣∣PCC
t − PCC

t−1

∣∣∣ ≤ ∆PCC/4 (43)

WPS
t = WPS

t−1(1− ηc) + ∆T′ηPPPS,P
t /4− ∆T′ηGPPS,G

t /4 (44)

WPS
t=0 = WPS

t=T′ (45)

In the formula, due to the different time resolutions between the day ahead and
intraday scheduling stages, the energy consumption ramp response ability of the carbon
capture unit and the carbon capture system cannot be significantly adjusted in a short
period of time. In addition, the upper reservoir capacity and capacity constraints of pumped
storage also need to be calculated at a time resolution of 15 min. Other constraints are the
same as those in the day ahead scheduling phase, so they will not be repeated here.

3.4. Solving Process

The solution process of the low-carbon economic dispatch model for virtual power
plants based on the collaborative utilization framework of pumped storage–carbon capture–
power-to-gas proposed in this article is shown in Figure 3. The model developed includes
a nonlinear objective function, real numbers, and Boolean solution variables, which belong
to the mixed-integer nonlinear programming problem that is linearized and optimized by
the Cplex solver (Version is 12.8).
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To analyze the collaborative utilization framework of the pumped storage–carbon
capture–power-to-gas proposal in this article and the impact of multi-time scale scheduling
strategies on the scheduling results of virtual power plants, the following four operating
schemes are set:

S1: A low-carbon economic scheduling model for a virtual power plant with carbon
capture and power-to-gas conversion, as the basic operating scenario;

S2: Introduce pumped storage units on the basis of S1 and establish a low-carbon
economic dispatch model for a virtual power plant that includes pumped storage, carbon
capture, and power-to-gas conversion, to study the impact of pumped storage on the
dispatch results of virtual power plants;
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S3: Low carbon economic dispatch of a virtual power plant based on the collabora-
tive operation framework of pumped storage–carbon capture–power-to-gas, to study the
linkage effect of various equipment under the collaborative operation strategy;

S4: Multi-time scale low-carbon economic scheduling of virtual power plant based
on the collaborative operation framework of pumped storage–carbon capture–power-to-
gas and the introduction of 50 MW·h energy storage power plant coordination in the
intraday stage to study the impact of multi-time scale rolling optimization strategies on the
short-term scheduling results of a virtual power plant.

4. Case Study

The virtual power plant constructed in this chapter includes a 500 MW carbon capture
plant, 150 MW P2G equipment, a 100 MW pumped storage power plant, a 350 MW wind
power plant, and a 200 MW photovoltaic power plant. The operating parameters of each
aggregation unit are shown in Table 1 and the electricity purchase price is shown in Table 2.
The daily and intraday predicted fluctuation variance in wind and photovoltaic power
generation output is 0.05 and the load-predicted fluctuation variance is 0.005 [32]. The
predicted curves of renewable energy generation and load in the day ahead and intraday
stages are shown in Figure 4 [33].

Table 1. Equipment operating parameters.

a (CNY/MW2) b (CNY/MW) c (CNY)
0.0033 111.78 6900

PG,min (MW) PG,max (MW) PA (MW)
150 500 15

∆PG (MW) ∆PCC (MW) kBuy (CNY/t)
50 65 835.39

kP2G (CNY/MW·h) kCH
4 (CNY/m3) kPS,G (CNY)

139.23 2.92 750

kPS,P (CNY) kCS (CNY/t) kCO2 (CNY/t)
1000 128 150

γC (MW·h) kW (CNY/t) kPV (CNY/t)
0.76 344.5 442

KCC (MW·h) EG (t/MW·h) λCO2 (t/MW·h)
0.269 0.9 0.2

ηP2G ηc ηP (m3/MW·h)
0.6 0.001 749

ηG (m3/MW·h) WPS,min (m3) WPS,max (m3)
998 145,582.13 767,366.49

Table 2. Time-sharing electricity purchase price.

Time Slot Electricity Price
(CNY/MW·h)

Valley period 1:00–4:00
43024:00–24:00

Peacetime period
5:00–6:00

65011:00–15:00
20:00

Peak period 7:00–10:00
79016:00–19:00
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4.1. Day Ahead Scheduling Plan
4.1.1. Comparison of Scheduling Plan

The scheduling plan of the virtual power plant under three day-ahead operation
schemes is shown in Figure 5 and the operating costs and benefits of the virtual power
plant are shown in Table 3.
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Table 3. Benefits and costs of a virtual power plant (104 CNY).

S1 S2 S3 S4

Net cost 373.53 369.83 360.90 358.31
Operation and maintenance cost 378.61 388.53 391.79 391.31

Carbon trading revenue 11.51 15.01 13.54 21.31
Green certificate trading revenue 28.81 30.03 31.63 31.68

Natural gas sales revenue 12.06 15.69 17.72 17.41
P2G operating cost 10.39 13.52 15.27 15.01

Switching cost of pumped storage conditions - 0.78 0.60 0.35
Carbon storage cost 19.48 18.21 16.13 22.04

Electricity purchasing cost 1.58 0 0 0
Penalty cost 15.85 9.53 0 0

According to the three scheduling schemes, the carbon capture system under S1, S2,
and S3 all play a flexible regulating role. The carbon capture plant under Scenario S1 serves
as the only regulating resource of the virtual power plant and flexibly adjusts the carbon
capture energy consumption and the net output of the carbon capture plant to meet the
load demand on the basis of consuming renewable energy as much as possible.

However, due to the constraints of the carbon capture plant output and the climbing
constraint of carbon capture energy consumption, VPP made a power purchase from
the main grid during the 12:00–13:00 h period and the cost of the power purchase was
15,800 CNY. With the low load demand during the 3:00–7:00 h period, even though the net
output of the carbon capture plant operates at a lower level, the abandoned power from
wind and PV reaches 567.46 MW·h, with a penalty cost of 158,500 CNY. This ultimately
results in a net operating cost of 3,735,300 CNY for the virtual plant under Scenario S1.

The introduction of pumped storage units in Scenario S2 increases the regulation capac-
ity of the virtual power plant, which can meet the system load without purchasing power
from the main grid. However, due to the high wind power output during the 4:00–6:00 h,
the load demand is at a low level during this period. Compared to Scenario S1, the amount
of wind and PV power abandonment under Scenario S2 is reduced to 320.45 MW·h and the
penalty cost for wind and PV power abandonment is 95,300 CNY. The net operating cost of
the virtual power plant under Scenario S2 is 3,698,300 CNY, which is 37,000 CNY lower
than that of Scenario S1.

Scenario 3, due to the introduction of the pumped storage–carbon capture–power-
to-gas synergistic utilization framework, can flexibly coordinate carbon capture energy
consumption with power-to gas energy consumption on the basis of meeting load demand.
The cost of power purchase and the penalty cost of wind and PV power abandonment
are not incurred under Scenario 3 and the final net operating cost of the virtual power
plant is 3.609 million CNY, which is 126,300 CNY and 89,300 CNY lower compared to
Scenarios S1 and S2, respectively.

In summary, the introduction of pumped storage units improves the flexibility of the
virtual power plant to a certain extent. Although it increases the operation and maintenance
cost, it reduces the cost of power purchase and the cost of wind and PV power abandonment
penalties and can fully compensate for the increased operation and maintenance cost due
to the introduction of pumped storage units. In addition, the flexible regulation of the
pumped storage–carbon capture–power-to-gas synergy framework further improves the
level of renewable energy consumption and reduces the operating costs of the virtual
power plant.

4.1.2. Consumption of Renewable Energy

The renewable energy consumption under the three scenarios is shown in Figures 6 and 7.
Due to the low load demand during the 2:00–7:00 h, wind power generation is higher during
this period. In Scenario S1 and Scenario S2, although the carbon capture plant and pumped
storage units play the role of flexible regulation resources, not all of the renewable energy
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generation is consumed. In Scenario S3, thanks to the flexible allocation effect of the
pumped storage–carbon capture–power-to-gas synergistic utilization framework, wind
power provides more energy consumption for P2G equipment during the 23:00–8:00 h,
thus relieving the pressure on energy consumption reserved for P2G equipment by the
virtual power plant.
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Wind power provides part of the energy consumption for the carbon capture system
during the 20:00–1:00 and 4:00–8:00 h and photovoltaic power from 9:00–19:00, relieving
the pressure on the carbon capture plant to provide energy for the carbon capture system
and allowing full consumption of wind power and photovoltaic power.

4.1.3. VPP Carbon Emissions

The energy consumption of the carbon capture system and the P2G plant under the
three operation scenarios are shown in Figure 8 and the carbon emissions of the virtual
plant are shown in Figure 9.
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Under Scenario S1, the carbon capture system needs to reduce energy consumption to
increase the net output of the carbon capture plant due to the lack of regulation resources
in the virtual power plant and the P2G equipment also reduces energy consumption to
relieve the pressure on the system power balance. The low levels of carbon capture energy
consumption and P2G energy consumption during the 22:00–1:00 h period resulted in a
total carbon capture of 1989.7 t and P2G consumption of 376.6 t of CO2 under Scenario S1.
This ultimately resulted in a net carbon emission of 5749.7 t from the VPP.

Under Scheme S2, the energy consumption of the carbon capture system increases at
10:00 and 22:00–23:00 h because the pumped storage unit relieves the regulation pressure
of the carbon capture plant. The total carbon capture amount reaches 2048.9 t, which is
59.2 t higher compared to that of Scenario S1. The energy consumption of P2G equipment
increases during the 3:00–4:00 h, 7:00, and 23:00–1:00 h, resulting in a 489.9 t of CO2
consumed by the P2G equipment, which is 113.3 t higher compared to the P2G consumption
of Scenario S1. The net carbon emissions of the virtual power plant under Scenario S2 are
5703.6 t, which is 46.1 t lower compared to Scenario S1.

Under Scenario S3, the energy consumption of the carbon capture system and the
energy consumption of the P2G equipment can both be provided by wind power, photo-
voltaic power, and pumped storage units, thus reducing the pressure on the carbon capture
plant to provide energy for the carbon capture system and the pressure on the energy
demand of the P2G equipment. The total carbon capture capacity under Scenario S3 is
2111.3 t, which is 121.6 t and 62.4 t higher than that of Scenarios S1 and S2, respectively.
The amount of CO2 consumed by P2G under Scenario S3 is 553.24 t, which is 176.64 t and
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63.34 t higher compared to the consumption of Scenario S1 and Scenario S2, respectively.
The net carbon emission of the virtual power plant under Scenario S3 is 5657.0 t, which is
92.7 t and 46.6 t lower compared to that of Scenarios S1 and S2, respectively.

In summary, although the introduction of pumped storage units meets the electric
energy balance demand of the virtual power plant to a certain extent, it fails to fully exploit
the flexible and low-carbon operating characteristics of pumped storage, carbon capture
plant, and P2G equipment. The pumped storage—carbon capture—P2G synergistic uti-
lization framework proposed in this paper can make full use of the spatial and temporal
complementarity of different power generation equipment to achieve the effective utiliza-
tion of resources within the virtual power plant and efficient optimization of the energy
structure. It can effectively exploit the carbon reduction potential of the virtual power plant
and improve the level of renewable energy consumption while ensuring the economic
operation of the virtual power plant.

4.2. Intraday Scheduling Plan

The use of only renewable energy output and load forecast data in the day-ahead
phase can result in deviations between the output plan declared by the virtual power
plant and the dispatch plan executed in the intraday phase, due to the uncertainty of
renewable energy output and load demand. This can result in virtual power plants bearing
the risk of supply and demand imbalance, as well as economic losses from wind and
light abandonment penalties. In order to improve the accuracy of the dispatching plan
of the virtual power plant under ultra-short-term forecast conditions, a multi-timescale
rolling optimization strategy based on scheme S3 from the day-ahead phase is introduced.
Additionally, a 50 MW·h energy storage plant is added to aid in the rolling revision process.
The intraday scheduling plan of the virtual power plant is shown in Figure 10.
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4.2.1. Intraday Scheduling Plan Analysis

In all three day-ahead dispatch plans, the flexible operating characteristic of the
cooperation between the carbon capture plant and the carbon capture system is evident.
Option S2 reduces the output of the carbon capture plant to some extent as pumped storage
units are introduced, while Option S3 benefits from the coordination of the synergistic
utilization framework, resulting in improved energy consumption of the carbon capture
system compared to the other two options. The intraday dispatch plan has lower net carbon
emissions by 282.1 t compared to the day-ahead dispatch plan. This results in an increase
of 77,700,000 RMB for the virtual power plant to participate in carbon trading. The total
renewable energy generation during the intraday phase is 7288.49 MW·h, while the day-
ahead phase has a total renewable energy generation of 7276.46 MW·h. Both the day-ahead
and intraday dispatch phases achieved full consumption of renewable energy, resulting
in a 0.05 million CNY increase in revenue for the virtual power plant’s participation in
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green certificate trading, ultimately resulting in a 0.0259 million CNY reduction in the net
operating cost of the virtual power plant.

4.2.2. Energy Consumption Correction Analysis of Carbon Capture System

The total energy consumption of the carbon capture system and the energy consump-
tion provided by the carbon capture plant, wind power, PV power, and pumped storage
unit for the carbon capture system in the intraday phase of the correction are shown in
Figure 11. The energy consumption of the carbon capture plant for the carbon capture sys-
tem was 309.64 MW·h and 404.73 MW·h in the day-ahead and intraday phases, respectively.
The energy consumption of wind power for the carbon capture system was 457.82 MW·h
and 397.47 MW·h in the day-ahead and intraday phases, respectively. The energy consump-
tion of photovoltaic power generation for carbon capture systems was 157.18 MW·h and
90.02 MW·h in the day-ahead and intraday phases, respectively. The energy consumption
of pumped storage units for the carbon capture system was 3.293 MW·h and 233.86 MW·h
in the day-ahead and intraday phases, respectively.
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Due to the reduced load demand in the 18:00–20:00 period, wind power output is
higher in this period. The carbon capture plant reduces the net output by increasing the
energy consumption of the carbon capture system to meet the load demand of the system
while keeping the equivalent output constant. The total energy consumption of the carbon
capture system in the day-ahead and intraday phases is 927.96 MW·h and 1078.98 MW·h,
respectively, which is 151.02 MW·h higher than the total energy consumption in the day-
ahead phase. The amount of CO2 captured by the carbon capture system was 2111.3 t and
2672.8 t, respectively, an increase of 561.5 t compared to the amount of CO2 captured in the
day-ahead phase.

4.2.3. Energy Consumption Correction Analysis of P2G Equipment

The total energy consumption of the P2G equipment and the energy consumption
provided by wind power, PV power, and pumped storage units for the P2G equipment
in the intraday phase are corrected as shown in Figure 12. The total energy consumption
of the P2G equipment in the day-ahead phase is 1106.48 MW·h and the amount of CO2
consumed is 553.24 t. The total energy consumption of the P2G plant in the intraday
phase is 1087.45 MW·h and the amount of CO2 consumed is 543.74 t. Compared with the
day-ahead phase, the intraday phase has fluctuations in the energy consumption provided
by wind power to the P2G equipment due to the large fluctuations in wind power during
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the period 23:00–4:00. As of the 2:00 h, the pumped storage units and wind power together
provide the maximum energy consumption of 150 MW for the P2G equipment. In this
period, each aggregation unit can coordinate with the wind power output to achieve the
full consumption of wind power.
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The energy consumption provided by wind power for P2G equipment during the
day-ahead and intraday phases is 950.0 MW·h and 1004.68 MW·h, respectively. The
energy consumption of photovoltaic power generation for P2G equipment in the day-ahead
and intraday phases is 0 MW·h and 21.19 MW·h, respectively. The energy consumption
provided by pumped storage units for P2G equipment in the day-ahead and intraday
phases is 156.48 MW·h and 78.96 MW·h, respectively. The total energy consumption
of the P2G plant and the amount of CO2 consumed by the P2G plant in the day-ahead
and intraday phases are not significantly different, while the amount of carbon capture
is increased by 561.5 t compared to the day-ahead phase. As a result, the net carbon
emissions of the virtual power plant decreased from 5657 t in the intraday phase to 5374.9 t,
a reduction of 282.1 t in net carbon emissions.

4.2.4. Energy Consumption and Power Generation Correction Analysis of Pumped Storage

The corrections of the pumped storage unit’s pumping energy consumption, gener-
ation power, and feed-in power in the intraday phase are shown in Figure 13. The total
pumping energy consumption of pumped storage units in the day-ahead and intraday
phases was 733.97 MW·h and 1008.65 MW·h, respectively, an increase of 274.68 MW·h in the
intraday phase compared to the day-ahead phase. The total power generation of pumped
storage units in the day-ahead and intraday phases is 545.6 MW·h and 735.98 MW·h, respec-
tively, with an increase of 190.38 MW·h in the intraday phase compared to the day-ahead
phase. The total feed-in tariff was 385.83 MW·h and 423.17 MW·h in the day-ahead and
intraday phases, respectively, an increase of 37.34 MW·h in the intraday phase compared to
the day-ahead phase. In summary, the multi-timescale rolling optimization strategy in the
intraday phase further exploits the flexible regulation potential of pumped storage and the
fine-grained regulation advantages of the pumped storage–carbon capture–power-to-gas
synergistic utilization framework compared to the day-ahead phase.
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In summary, the multi-timescale rolling optimization strategy can adjust the coop-
eration scheme of the aggregation unit within the virtual power plant according to the
fluctuation in renewable energy and load at the short time resolution, also at the short time
resolution. The modification of energy flow in the pumped storage–carbon capture–power-
to-gas co-operating framework can further exploit the refined scheduling advantages of
the co-operating framework.

5. Conclusions

In this paper, the pumped storage–carbon capture–power-to-gas synergistic operation
framework is proposed to address the lack of flexible regulation in the joint operation mode
of carbon capture plant and P2G equipment. Aiming at the volatility problem of uncertain
resources, a multi-timescale low-carbon economic dispatch model for virtual power plants
is established based on a multi-timescale rolling optimization strategy. The advantages
of the proposed strategy and model are verified through arithmetic simulation and the
following conclusions are drawn:

The pumped storage–carbon capture–power-to-gas synergistic operation framework
realizes the synergistic complementarity of different aggregation units and the low-carbon
economic operation of the VPP. Compared with the carbon capture-electricity-to-gas joint
operation mode, the net cost of the virtual power plant is reduced by 126,300 CNY, the
amount of renewable energy consumed is increased by 567.46 MW·h, and the net carbon
emission from the system is reduced by 92.7 t. It effectively improves the flexible regulation
capability of the virtual power plant and promotes the low-carbon economic operation of
the virtual power plant.

The multi-timescale rolling optimization strategy leverages the ability of CCS and P2G
equipment energy consumption to track fluctuations in renewable energy. Compared with
the day-ahead scheduling plan, the CO2 captured by the carbon capture system increased by
561.5 t and the net carbon emissions from the VPP decreased by 282.1 tons. In addition, the
regulation depth of the PS was also tapped. Compared with the previous day’s scheduling
plan, the total pumping energy consumption increases by 274.68 MW·h and the total power
generation increases by 190.38 MW·h. The multi-timescale rolling optimization strategy
is capable of correcting the energy flow in the framework of the synergistic operation of
pumped storage–carbon capture–power-to-gas with a shorter temporal resolution based
on renewable energy sources and the uncertainty of loads. The multi-timescale rolling
optimization strategy can further take advantage of the refined scheduling of the pumped
storage–carbon capture–power-to-gas synergistic operation framework.
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