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Abstract: This paper presents a study on the magnetic and thermal behaviors of a planar toroidal
transformer, comprising two planar toroidal coils. In our configuration, the primary coil consists of
twenty turns, while the secondary coil consists of ten turns. This design combines the advantages
of both toroidal and planar transformers: it employs flat coils, akin to those utilized in planar trans-
formers, while retaining a toroidal shape for its magnetic core. This combination enables leveraging
the distinctive characteristics of both transformer types. This study delves into electromagnetic and
thermal behaviors. Electromagnetic behavior is elucidated through Maxwell’s equations, offering
insights into the distribution of magnetic fields, potentials, and electric current densities. Fluid flow
is modeled via the Navier–Stokes equations. By coupling these equation sets, a more comprehensive
and accurate portrayal of the thermal phenomena surrounding electrical equipment is attained. Such
research is invaluable in the design and optimization of electrical systems, empowering engineers
to forecast and manage thermal effects more efficiently. Consequently, this aids in enhancing the
reliability, durability, and performance optimization of electrical equipment. The mathematical model
was solved using the finite element method integrated into the COMSOL Multiphysics software
v. 6.0. The COMSOL Multiphysics simulation showed correct behavior of potential, electric field,
current density, and uniformly distributed temperature. In addition, this planar toroidal coil trans-
former model offers many advantages, such as small dimensions, high resonance frequency, and high
operating reliability. This study made it possible to identify the range of its optimal functioning.

Keywords: fly-back converter; integration; planar transformer; dimensioning; CFD; inductive elements

1. Introduction

In recent years, research into power electronics has largely focused on integration,
with a view to improving the performance of converters in terms of efficiency, compactness,
and reliability [1–4]. At the same time, the fields of application for power electronics
have continued to diversify, making their use indispensable across a wide power range
from a few watts to several hundred kilowatts [5–7]. Despite regular advances in power
integration, the state of the art in the various integrated functions shows that it is still
not possible to design conversion chains even at relatively low powers of around one
watt [8,9]. The integration of passive components has always been the biggest stumbling
block. Inductive components such as coils and transformers are key elements in power
electronics. These components are well known and mastered in their discrete form, but their
integration is still at the study stage and is still a long way from industrialization [10–15].
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Because of the limited surface area and volume, two criteria guide the design of planar
toroidal coils: the first is the geometric shape or topology of the structure, and the second is
linked to the nature of the materials used to manufacture the various parts of the component.
These two criteria will affect the value of the inductance, the stored energy, the losses in the
core (in the case of a coil with a core) and in the conductor, the volume of the coil, and the
disturbances generated by the component. Whatever the type of coil, it remains the central
element in a transformer.

In this framework, to overcome the gap in the literature, the present paper focuses
on the design of a new type of transformer with planar toroidal coils on the primary and
secondary windings, which have been designed to withstand high power, so that their
turns are wide enough to reduce the electrical current density and thus Joule losses [16–18].

This new type of coil has been attracting a great deal of attention in recent years, and
it is currently being researched to determine its performance and usefulness. Several stages
led to the design of this type of transformer. The first step is to carry out a geometric
and electrical dimensioning of the two primary and secondary coils in order to arrive
at an electrical model [4–6], which will enable us to carry out a series of simulations on
their magnetothermal behavior and also on the operation of the converter into which this
transformer will be inserted. A good assessment of the electrical and thermal behavior
of electronic circuits and components enables us to estimate the local temperature more
accurately [19–25]. Because of the sensitivity of thermal phenomena around miniaturized
equipment, particularly around and in these coils, many researchers have presented various
studies aimed at determining the thermal map on the one hand and highlighting the
operating zones of the various items of equipment that make up electronic circuits on
the other.

This study provides a more realistic view of thermal phenomena around electrical
equipment of all kinds, based on the mathematical coupling between Maxwell’s electro-
magnetism equations and the Navier–Stokes momentum equations [26].

2. Materials and Methods

The specifications of the converter into which we want to insert our planar transformer
are the starting point for designing the transformer. We chose a fly-back converter, sketched
in Figure 1, consisting of a planar transformer and a few passive components. This disposal
operates in discontinuous conduction when the current demanded by the load is low and
in continuous conduction for higher currents. The starting point for realizing such a device
is a conventional transformer winding. To implement this function, it is necessary to have
a magnetic core around which the primary and secondary windings are placed. Because of
magnetic coupling, this transformer inherently induces leakage effects, primarily stemming
from the placement of windings. We have opted for the converter’s specifications, which
are the starting point for sizing the transformer. Input voltage Vin = 100 Output voltage
Vout = 50 V; output power’s = 100 W; operating frequency f = 1 MHz’s
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Figure 1. Electrical scheme of the fly-back converter containing the planar transformer.

Planar transformers come in a variety of forms, depending on the research require-
ments. The most common forms are as follows: with modified and partially inclined
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deformed planar windings or with purely planar windings that take the form of part of a
sector, the transformer’s primary and secondary. Generally, planar toroidal coils are con-
structed from two thin coaxial cylinders arranged in parallel. Each cylinder is segmented
into n unconnected sectors, leading to gaps between the turns, as shown in Figure 2 [27,28].
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Figure 2. Example of a transformer with planar toroidal coils: general view (a), primary coil with
20 turns (b), and secondary coil with 10 turns (c).

The coils chosen for the transformer’s primary and secondary are identical and have
the following characteristics: number of primary turns nt = 20; number of secondary turns
nb = 10; inner diameter din = 37 mm; outer diameter dout = 63 mm; outer diameter of
magnetic ferrite material dexNiFe = 60 mm; inner diameter of magnetic ferrite material
dinNiFe = 40 mm; outer diameter of PCB material dPCB = 68 mm; turn thickness t = 0.07 mm;
and PCB thickness ePCB = 0.3 mm. The electrical characteristics of the toroidal coil, substrate,
and insulator are given in Table 1. As is well known, FR4 is a type of fiberglass-reinforced
epoxy laminate. It is here used as an insulator.

Table 1. Characteristics of inductance, substrate, and insulation.

Material Cu NiFe FR4

Permeability µ 1 900 1
Resistivity σ (Ω m) 1.75 × 10−8 20 × 10−8

Permittivity ε 1 11.8 4.5

Taking into account certain electrical and magnetic characteristics of the planar trans-
former, the volume of the magnetic core and the surface area on which the transformer’s
electrical circuit will be placed are evaluated. On this basis, the dimensions of the magnetic
core can be evaluated while remaining in line with the converter’s specifications in terms
of magnetic energy storage and material losses [28,29].

Our transformer is described geometrically by the following several parameters: the
width, the conductor thickness t, the winding spacing s, and the number of turns n, as well
as the inside diameter din, the outside diameter dout, and the total conductor length lT, [30].
The din and dout must be chosen to optimize the ratio between the coil and the surface area
occupied on the circuit. This surface is made up of copper conductors laid on three stacked
layers, two layers of FR4 and the PCB, between the two layers, and a ferromagnetic layer of
NiFe, all laid on a ground plane, as sketched in Figure 3.
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The following equations can be used to calculate the various geometric parameters:

lt =
V2

inα2

2 f Pout
, lb = m2lt, m =

α Vout

(α − 1)Vin
(1)

w =
1
2

(
lti2e

)
=

1
2

lbi2s (2)

v =
w

wmax
, wmax =

B2
max

2µ0µr max
(3)

In Equations (1)–(3), m is the transformation ratio, w is the energy stored in the
core, v theenergy density by volume, α represents the duty cycle, Pout is the power at the
transformer output, Vin is the input voltage of the transformer, Vout is the voltage at the
transformer output, is is the electric current at the output of the transformer, and ie is the
electric current at the input of the transformer. The values of the frequency f and the input
voltage Vin allow us to calculate the value of the inductances of the primary and secondary
coils lt and lb of our transformer. The sizing of the magnetic core is determined by the
core volume needed to store the energy, which is calculated using the energy density (as
expressed in Equation (3)) and the energy stored in the windings [28,29]. The volumetric
energy that can be stored in the magnetic core wmax is a function both of the maximum
induction Bmax that the material can withstand and of its relative permeability µr.

eNiFe =
ν

dout
2 (4)

eNiFe is the thickness of the NiFe. Dout is the outside diameter. We opted for a core
section equal to the following:

An =
π

4

[
(dexNiFe)

2 − (dinNiFe)
2
]

(5)

S =
[
(RexNiFe)

2 − (RinNiFe)
2
]
π = 500π (6)

In conclusion, we found a volume of 314 mm3 of NiFe necessary to store 12.5 µJ of
energy. Note that the higher the relative magnetic permeability, the greater the volume of
the magnetic circuit will be for a given maximum induction.

The equations below are used to calculate the average width of a single conductor;
since its width is not the same, one is greater than the other.

ωint =
dint ·π

nt
− st, ωinb = dinb ·π

nb
− sb

ω = dext

nt , ωexb
dexb ·π

nb sext

ωmoy = ωintext

2, ωmoyb
ωexb+ωinb

2

(7)

The lengths of the primary and secondary coil conductors can be calculated as follows:

lTt = 2 ntl f Tt; lTb = 2 nbl f Tb (8)
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l f tT = l f Tb = dout − din (9)

All the parameters involved in the design of the micro-transformer are summarized in
Table 2.

Table 2. Values of transformer’s Geometrical parameter and electrical parameters.

Geometrical Parameter Value Electrical Parameter Value

External diameter: dout 63 mm Primary inductance lt 12.5 µH

Internal diameter din 37 mm Secondary inductance lb 3.125 µH

Core thickness: eNiFe 0.4 mm Primary serial resistance Rst 66.64 mΩ

Skin thickness: δ 82.24 µm Secondary serial resistance Rsb 18.54 mΩ

Number of primary turns: nt 20 Primary oxide capacitance Coxt 44.14 mF

Number of secondary turns: nb 10 Secondary oxide capacitance Coxb 39.66 mF

Width of the primary conductor: ωmoyt 5.66 mm Primary magnetic resistance: Rmagt 27.18 × 10−9 Ω

Width of the secondary conductor: ωmoyb 10.17 mm Secondary magnetic resistance: Rmagb 30.25 × 10−9 Ω

Thickness of the primary conductor: tt 70 µm Primary capacitance of du substrate Cst 44.14 mF

Thickness of the secondary conductor: tb 70 µm Secondary capacitance of substrate Csb 39.66 mF

Primary spacing: St 2.19 mm Capacitance inter-spacing of primary Covt 0.0047 pF

Secondary spacing: Sb 5.53 mm Capacitance inter-spacing of secondary Covb 0.111 pF

Primary total length: lTt 1040 mm Coupling capacitance between the primary
and secondary coils Cov1,2 74.79 mF

Secondary total length: lTb 520 mm Coupling capacitance between the secondary
and primary coils Cov2 14.81 mF

Figure 4 depicts the equivalent electrical model derived from the diagram in Figure 2.
This model is utilized to simulate the electrical behavior of the transformer [28,29], as
illustrated in Figure 4. From the three-dimensional cross-section of the transformer, we can
deduce the equivalent electrical circuit, as shown in Figure 5.
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Figure 5. Model of the equivalent electrical circuit of transformer.

The equivalent electrical model of the transformer is similar to the spiral inductor
model, as evident in Figure 5. In fact, the transformer is simply a pair of magnetically
coupled spiral inductors. This model includes the series inductances of the primary and
secondary coils (lt, lb), the series resistances of the second primary coil (Rst, Rsb), the
coupling capacitances between the turns (Cov1,2), the capacitances between the secondary
and primary coils and the substrate (Coxt, Coxb), and the substrate capacitance of the primary
and secondary coils (Cst, Csb).

Let us now present the analytical expressions for the various elements of the electrical
circuit: Rst, Rsb primary and secondary coil substrate resistances; Coxt, Coxb, parasitic
capacitance, and oxide capacitors; Cpn2 parasitic capacitance between the part of the core
above the last foil at the bottom and the 1st foil at the top (Cpn2 is above Cpn1); Rn2 core
resistance; Covt coupling capacitance between turns; and Cst, Csb primary and secondary
coil substrate capacitance.
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2ePCB
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2ρPCB ePCB
lTbωmoyt

,

Rss =
2ρPCBePCB
lTbωmoyb

.

(10)

3. Simulating the Magnetic Behavior

Figure 6 shows the influence of the frequency on the inductances of the primary lt and
secondary lb. These inductances are extracted from the imaginary part of the impedances
and are expressed by Equation (1).
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Figure 8 reports the appearance of the converter output voltage and current. As ex-
pected, these results show that the dimensioning of the transformer was carried out cor-
rectly. Indeed, simulation results display input and output voltages of the micro trans-

Figure 6. (a) Influence of the operating frequency on the inductanceprimary (a,b) Influence of the
operating frequency on the inductance secondary lb.

Figure 7 shows the influence of the frequency on the series resistors of primary Rst and
secondary Rsb. The obtained results are very satisfactory: in fact, the results show that the
resistance values increase as the frequency increases and the inductances decrease. Figure 7
shows that the resistances Rst and Rsb increase as a function of frequency (skin effect) and
similarly for the impedance (proximity effect). The resistance values are therefore very
sensitive to changes in frequency due to the skin and proximity effects. On the other hand,
Figure 6 shows that inductance values also vary significantly as a function of frequency. As
the frequency increases, skin and proximity phenomena increase. The current density then
becomes increasingly inhomogeneous in the conductor, with a concentration on the surface
in the skin thickness.
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To visualize the converter output voltage and the output current, we employed PSIM
6.0, a simulation software package for electrical engineering and power electronics; the
software allows us to draw the pattern of the mounting from the elements of the library.
The expression of fly-back converter load resistance, fly-back converter capacitance and
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inductance, output power, input power, output power, efficiency, losses Joule, and iron
losses are, respectively, given by the following expressions:

Rs =
Vs
is , Cs =

α2mVe
(1−α)∆VsRs f , lm = n2

t
µNi f edout

2

2e , η =
ps−pj−p f

ps
, Ps = Vs·Is,

Pj = Rseq·Is
2, Pf =

V2
e

Rsub

(11)

Figure 8 reports the appearance of the converter output voltage and current. As
expected, these results show that the dimensioning of the transformer was carried out
correctly. Indeed, simulation results display input and output voltages of the micro trans-
former equal to 100 V and 50 V, respectively, with a current Iout = 2 A. These results are in
excellent agreement with the specifications.
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Figure 8. Output voltage of the integrated transformer (a); output current of the integrated trans-
former (b).

The specifications are the starting point for sizing the planar transformer. As already
discussed, the transformer consists of two planar toroidal coils deposited on a magnetic
material and separated by a dielectric, which also provides the magnetic coupling, as
sketched in Figure 9.
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The electromagnetic phenomenon is governed by Maxwell’s equations:

∇×
→
H =

→
J ,

→
E = −∇V − jω

→
A,

→
D = ε0εr

→
E ,

→
J = σ

→
E + jω

→
D ∇×

→
J = 0,

→
B = µ0µr

→
H (12)

The numerical resolution of the physical problem for the study of the magnetother-
mal behavior of the transformer was carried out using the finite element method based
on Galerkin discretization under the software package COMSOL Multiphysics 6.0. The
solution of Equation (12) will allow us to visualize the magnetic behavior of the planar
coil [12,13]. Figure 10 illustrates the mesh grid adapted to the device object of the present



Energies 2024, 17, 2454 9 of 17

analysis.It is a tetrahedral grid refined in the vicinity of the walls of the study area, in-
cluding the transformer boundaries. In order to ensure the reliability and accuracy of the
numerical results, a test of the independence of the results with respect to the type of mesh
and the number of elements was carried out. For this purpose, we opted for a number of
elements of 1,235,802, beyond which the simulation results remain unchanged.
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To provide a more detailed analysis, two cases have been studied: a coil with a
magnetic core and without a magnetic core. In this framework, Figure 11 shows the
distribution of the electrical potential across the turns of the toroidal coils in both cases. In
both cases, it can be seen that the potential is greater in the primary winding than in the
secondary winding. This is because this type of transformer is a step-down transformer.
On the other hand, through the primary and secondary windings, the electrical potential
gradually decreases between the inputs and outputs of the coils. Moreover, the electrical
potential is almost identical between the two cases. In addition, the input current decreases
along the turns of the transformer due to the resistance of the conductor.
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Figure 12 shows the magnetic flux density produced by the transformer in the two
cases studied. We can see that the magnetic flux density generated by the transformer with
the magnetic core is the greatest.
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For a more detailed analysis, Figure 13 shows the magnetic flux density distribution
along the vertical line running through the middle of the transformer’s two coils. It can
also be seen that the magnetic density generated by the transformer is greater when a
magnetic core is present. This confines the magnetic field lines, leading to a peak at the
magnetic core.
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Figure 13. Distribution of the magnetic flux density distribution in the transformer along the vertical
central line: without NiFe (a); with NiFe (b).

By solving Maxwell’s equations, we can also visualize the electrical current density
distribution in the planar toroidal transformer in 3D. Figure 14 shows the current density
distribution in the planar transformer. It is minimal inside the transformer because of the
conductor resistance. Moreover, it is not uniform in the planar transformer; it is greater at
the corners, which induces non-homogeneous resistance in the conductors [6]. It should
be noted that the skin effect and the proximity effect are present and occur, in particular,
between adjacent conductors. Figure 15 shows the distribution of the electric current
density in the two toroidal coils making up our transformer in the two cases: absence and
presence of a magnetic material (a magnetic core). By virtue of the homogeneity of the coil
material, the current density in both cases is the same. On the other hand, in both cases, the
current density is high at the links connecting the upper and lower turns. This is due to the
small cross-section of the links.
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As shown in Figure 16, indeed, across a horizontal line that passes longitudinally
through two primary windings facing each other in the two cases studied, the current den-
sity curves are almost identical. On the other hand, along the measurement line, the current
density increases as the turn shrinks (from the outside diameter to the inside diameter).

Let us now investigate the electric field. Figure 16 shows the distribution of the electric
field lines in the vicinity of the coil in both cases. As is recognized in the literature, the
electric field has a divergent pattern perpendicular to the surface of the coils. On the other
hand, by comparing the two cases studied, we can see that the electric field intensity is
lower in the presence of a magnetic core, as evident in Figure 17.
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4. Thermal Behavior of the Planar Transformer 
A complete sizing of the transformer requires a study of its thermal behavior. In 

most cases, an increase in temperature can lead to severe degradation of the equipment, 
reducing its lifespan or even putting it out of service. In this section, we will present a 
study of the thermal behavior of the toroidal winding transformer using a mathematical 
model that is a coupling between Maxwell’s equations and the heat equation in the fol-
lowing two cases: windings with and without a magnetic core. 

Equation (13) is used to determine the temperature distribution in a given area, 
taking into account the different transmission modes [15–20]. 𝜌𝐶𝑝 ൬𝜕𝑇𝜕𝑡 + 𝑉ሬ⃗ 𝛻𝑇൰ = 𝛻(𝜆𝛻𝑇) + 𝑝 (13)

In Equation (13), p represents the source term due to an internal heat generation 
[W/m3], and the subscript i corresponds to the nature of the material: copper, PCB, or air. 
Moreover, T is the temperature [K], 𝑉 ሬሬሬ⃗  is the speed of the air if it is in motion (convection) 
[m/s], t is time [s], 𝜌 is the density of the material [Kg/m3], Cp is the heat capacity of the 
material [J/(Kg K)], and λ is the thermal conductivity of the material [W/(m K)].  

Our thermal study is performed in 3D, which allows us to transcribe Equation (14) 
in general writing. By posing 𝑉ሬ⃗ = (𝑢, 𝑣, 𝑤) and  𝜆 = (𝜆௫, 𝜆௬, 𝜆௭)𝐼, one obtains the fol-
lowing: 𝜌𝐶𝑝 ൬𝜕𝑇𝜕𝑡 + 𝑢 𝜕𝑇𝜕𝑥 + 𝑣 𝜕𝑇𝜕𝑦 + 𝑤 𝜕𝑇𝜕𝑧൰ = 𝜕𝜕𝑥 ൬𝜆௫ 𝜕𝑇𝜕𝑥൰ + 𝜕𝜕𝑦 ൬𝜆௬ 𝜕𝑇𝜕𝑦൰ + 𝜕𝜕𝑧 ൬𝜆௭ 𝜕𝑇𝜕𝑧൰ + 𝑝 

(14)

Moreover, in the hypothesis of negligible convection, 𝑢 = 𝑣 = 𝑤 = 0. Indeed, 𝜌𝐶𝑝 𝜕𝑇𝜕𝑡 = 𝜕𝜕𝑥 ൬𝜆௫ 𝜕𝑇𝜕𝑥൰ + 𝜕𝜕𝑦 ൬𝜆௬ 𝜕𝑇𝜕𝑦൰ + 𝜕𝜕𝑧 ൬𝜆௭ 𝜕𝑇𝜕𝑧൰ + 𝑝 (15)

Moreover, let us assume material homogeneity, i.e.,  𝜆௫ = 𝜆௬ = 𝜆௭  (constants). 
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Figure 17. Electric field distribution along a direction passing through the expanded primary and
secondary turns: without NiFe (a); with NiFe (b).

4. Thermal Behavior of the Planar Transformer

A complete sizing of the transformer requires a study of its thermal behavior. In most
cases, an increase in temperature can lead to severe degradation of the equipment, reducing
its lifespan or even putting it out of service. In this section, we will present a study of the
thermal behavior of the toroidal winding transformer using a mathematical model that is a
coupling between Maxwell’s equations and the heat equation in the following two cases:
windings with and without a magnetic core.

Equation (13) is used to determine the temperature distribution in a given area, taking
into account the different transmission modes [15–20].

ρiCpi

(
∂T
∂t

+
→
V∇T

)
= ∇(λi∇T) + p (13)

In Equation (13), p represents the source term due to an internal heat generation
[W/m3], and the subscript i corresponds to the nature of the material: copper, PCB, or air.

Moreover, T is the temperature [K],
→
V is the speed of the air if it is in motion (convection)

[m/s], t is time [s], ρ is the density of the material [Kg/m3], Cp is the heat capacity of the
material [J/(Kg K)], and λ is the thermal conductivity of the material [W/(m K)].
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Our thermal study is performed in 3D, which allows us to transcribe Equation (14) in

general writing. By posing
→
V = (u, v, w) and λi =

(
λix, λiy, λiz

)
I, one obtains the following:

ρiCpi

(
∂T
∂t + u ∂T

∂x + v ∂T
∂y + w ∂T

∂z

)
=

∂
∂x

(
λix

∂T
∂x

)
+ ∂

∂y

(
λiy

∂T
∂y

)
+ ∂

∂z

(
λiz

∂T
∂z

)
+ p

(14)

Moreover, in the hypothesis of negligible convection, u = v = w = 0. Indeed,

ρiCpi
∂T
∂t

=
∂

∂x

(
λix

∂T
∂x

)
+

∂

∂y

(
λiy

∂T
∂y

)
+

∂

∂z

(
λiz

∂T
∂z

)
+ p (15)

Moreover, let us assume material homogeneity, i.e., λix = λiy = λiz (constants). Then,

ρiCpi
∂T
∂t

= λi

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
+ p (16)

In the steady case, one has

λi

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
+ p = 0 (17)

where the source term p corresponds to the heat flux released by the conductor by the
Joule effect:

P = RI2 (18)

By substituting the resistance expression, one has the following:

P = ρ0
L

Smoy
I2 = ρ0 J2 = ρ0

(
J2
x + J2

y + J2
z

)
(19)

Indeed, the equation to be solved is

λi

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
+ ρ0

(
J2
x + J2

y + J2
z

)
= 0 (20)

The general conditions of the simulation are as follows: The isotropy of the differ-
ent materials in the study domain, the thermal conductivity coefficient, depends on the
temperature, and the thermal convection is introduced as a condition at the boundaries
of the planar substrate–coil assembly. The micro-coil is a heat source, and its term is well
introduced in Equation (15). At time t = 0, the temperature of the coil, substrate, and
air is considered to be at room temperature, 20 ◦C. At the boundaries of the air box, the
convective flux is given by the following:(

−λair
∂T
∂n

)
the frontier of air

= h0(T − T∞) (21)

In Equation (15), λair is the air conductivity [W/mK)], n is the direction normal to the
border [m], h0 is the air convection coefficient [W/(m2 K)], and T∞ is the ambient temperature.

5. The Thermal Behavior

In this section, we present a comparison between the thermal behavior of our devices
in the presence and absence of a magnetic core. Figures 18 and 19 illustrate the temperature
distribution within the study area. We can see that the highest temperature is at the
secondary coil turns in both cases. On the other hand, the greatest amount of heat was
generated by the transformer, which does not have a magnetic core. At the turns of the
two transformers, the temperature rises as the electric current moves away from the outlets
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and inlets. On the other hand, the temperature peak is located at the cylindrical links
connecting the upper and lower turns. The small diameter of these links results in a high
current density, leading to an increase in temperature.

Energies 2024, 17, x FOR PEER REVIEW 13 of 16 

considered to be at room temperature, 20°C. At the boundaries of the air box, the con-
vective flux is given by the following: 

(−𝜆 డ்డቁthe frontier of air = ℎ(𝑇 − 𝑇∞) (21)

In Equation (15), 𝜆airis the air conductivity [W/mK)], 𝑛 is the direction normal to the 
border [m], ℎis the air convection coefficient [W/(m2 K)], and𝑇∞ is the ambient temperature. 

5. The Thermal Behavior
In this section, we present a comparison between the thermal behavior of our devices in 

the presence and absence of a magnetic core. Figure 18 illustrates the temperature distribu-
tion within the study area. We can see that the highest temperature is at the secondary coil 
turns in both cases. On the other hand, the greatest amount of heat was generated by the 
transformer, which does not have a magnetic core. At the turns of the two transformers, the 
temperature rises as the electric current moves away from the outlets and inlets. On the other 
hand, the temperature peak is located at the cylindrical links connecting the upper and lower 
turns. 

(a) (b) 

Figure 18. Temperature distribution in the global simulation domain: without NiFe(a); with NiFe (b). 

Figure 19 shows the temperature distribution along the vertical median line crossing 
the study area in the presence and absence of a magnetic core. The thermal behavior of 
the system changes radically with the introduction of this core. Without the core, the 
temperature is higher, particularly in the vicinity of the coils. With the introduction of the 
magnetic core, the temperature becomes lower by changing its distribution structure. The 
lower temperature is due to the higher thermal conductivity of the ferrite, which dissi-
pates more heat. 

In order to ensure the reliability of our numerical results, we first compared one of 
our results with that available in the literature [19], by putting us in the same conditions 
of simulation. Figure 20 displays the temperature distribution in the study area. It ap-
pears clearly that there is a great agreement between our results, which validates our 
model. 

(a) (b) 

Figure 18. Temperature distribution in the global simulation domain: without NiFe (a); with NiFe (b).

Energies 2024, 17, x FOR PEER REVIEW 14 of 16 
 

 

magnetic core, the temperature becomes lower by changing its distribution structure. The 
lower temperature is due to the higher thermal conductivity of the ferrite, which dissi-
pates more heat. 

In order to ensure the reliability of our numerical results, we first compared one of 
our results with that available in the literature [19], by putting us in the same conditions 
of simulation. Figure 20 displays the temperature distribution in the study area. It ap-
pears clearly that there is a great agreement between our results, which validates our 
model. 

  
(a) (b) 

  
(c) (d) 

Figure 19. Temperature distribution in the primary coils: Distribution of the electric field in the 
study area from different perspectives: without NiFe (a); with NiFe (b), and in the secondary coils: 
without NiFe (c); with NiFe (d). 

  
(a) (b) 

Figure 20. Validation: thermal distribution along the vertical center line with and without magnetic 
core (a); temperature distribution in the core and comparison with the literature (b). 

6. Conclusions 
The present analysis concerns the study of the magnetothermal behavior of a toroi-

dal transformer intended to be inserted into a fly-back converter. Indeed, the latter is in-
creasingly used in low- and very-low-power electronic devices because it presents major 
interests in terms of size, efficiency, and manufacturing. The paper deals with optimizing 
the operation of this transformer by studying the two phenomena to which it is subject: 

Z

Te
m
pe
ra
tu
re

(°
C
)

0 0.01 0.02 0.03 0.04 0.05
40

42

44

46

48

50

52

54

56

58 With NiFe
Without NiFe

Figure 19. Temperature distribution in the primary coils: Distribution of the electric field in the study
area from different perspectives: without NiFe (a); with NiFe (b), and in the secondary coils: without
NiFe (c); with NiFe (d).

Figure 20 shows the temperature distribution along the vertical median line crossing
the study area in the presence and absence of a magnetic core. The thermal behavior of
the system changes radically with the introduction of this core. Without the core, the
temperature is higher, particularly in the vicinity of the coils. With the introduction of the
magnetic core, the temperature becomes lower by changing its distribution structure. The
lower temperature is due to the higher thermal conductivity of the ferrite, which dissipates
more heat.
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In order to ensure the reliability of our numerical results, we first compared one of
our results with that available in the literature [19], by putting us in the same conditions of
simulation. Figure 20 displays the temperature distribution in the study area. It appears
clearly that there is a great agreement between our results, which validates our model.

6. Conclusions

The present analysis concerns the study of the magnetothermal behavior of a toroidal
transformer intended to be inserted into a fly-back converter. Indeed, the latter is in-
creasingly used in low- and very-low-power electronic devices because it presents major
interests in terms of size, efficiency, and manufacturing. The paper deals with optimizing
the operation of this transformer by studying the two phenomena to which it is subject: its
magnetic and thermal behavior. To carry out this study, we first had to carry out a sizing,
which allowed us to determine the different geometric and electrical parameters character-
izing this transformer. The study of magnetothermal behavior using mathematical models
describing these phenomena and the resolution of the governing equations has shown
the distribution of currents and voltages, the magnetic field, as well as the distribution
of temperature in the different layers. of materials making up this transformer. All these
results made it possible to identify the optimal operation of this transformer.
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