Photovoltaic Manufacturing Factories and Industrial Site Environmental Impact Assessment
Abstract
:1. Introduction
1.1. Reference Processes
1.2. Silicone (A Multiproduct Silicone Factory Is Described in the Ecoinvent Database, Therefore We Do Not Use the Term Silicon in This Section) Plant Construction Scope
1.3. Wafer Factory Construction Scope
1.4. Photovoltaic Cell Factory Construction Scope
1.5. Photovoltaic Panel Factory Construction Scope
2. Materials and Methods
2.1. Functional Unit and System Boundaries
2.2. Life Cycle Inventory (LCI)
2.3. Life Cycle Assessment (LCA)
3. Proposed Production Factories and Facilities LCIs
3.1. Process and Facilities Equipment LCIs
3.2. Civil, Structural and Architectural LCIs
3.2.1. Industrial Site Location
3.2.2. Building Systems
3.2.3. Civil Design Basis
3.2.4. Structural Design Basis
3.2.5. Architectural Design Basis
3.2.6. Site Master Plan
3.3. LCI Model Organization
- material supply for massive and local earthworks as backfilling,
- concrete in situ supply for foundations and slab-on grades and reinforcing steel bars,
- structure manufacturing, structural steel, precast concrete and structural timber for building framing,
- siding and roofing solutions for enclosed halls, both metal-skin sandwich panels and plasterboard panel manufacturing,
- miscellaneous manufacturing department accountable for false ceilings, floor finishing, internal room dividers, doors, and windows,
- services supply, including drinking water network, sewage grid and reinforced concrete for electromechanical services support, and
- process equipment PE and facility equipment FE manufacture.
4. Results
4.1. Comparison of Proposed Models with Ecoinvent Ones—First Comparative LCA—
4.2. Industrial Site Setup Environmental Impacts per Building System—Second Comparative LCA—
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Facilities Equipment LCI
Facility | Main Equipment | Tools Quantity (Units) | Area (m2) | Weight (Metric Tons) | Source | ||
Electrical substation | 10-MVA containerized substations | 10 | 1444 | 441 | [37,38] | ||
Central Utility Building: | |||||||
Compressed dry air (CDA) production units (compressors and filters) | 9 units of 2700 m3/h compressors | 41 | 172 | 71 | [39,40] | ||
Exhaust systems (vacuum generators, filters and scrubbers) | 403 | 223 | 76.1 | [41,42] | |||
HVAC and cleanroom systems (ventilators, filters, chillers) | False ceiling area of production buildings | 2498 | [43] | ||||
Process-cooling water (PCW) (electrical chillers) | Industrial chillers with 43 kW of cooling capacity | 54 | 456 | 43 | [44] | ||
Ultrapure water (UPW) production units (pre-treatment, RO) | 20.5 m3/h containerized UPW system | 8 | 465 | 152 | [45] | ||
Wastewater treatment (collection tanks, UF/RO, F-precipitation and sedimentation, neutra) | 166 | 933 | 463 | [46,47,48,49] | |||
Facility Management and Control System (FMCS) (Servers, UPS) | 145 | 693 | 116 | [50] | |||
Cooling tower (PCW pullers)/adiabatic cooling | Adiabatic coolers with 397 tons of cooling capacity | 32 | 1311 | 174 | [51] | ||
Effluent Treatment Plant | 100 KLD sewage treatment plant (Packaged model/Civil model) | 71 | 4473 | 2219 | [52] | ||
Water tanks (tanks for 24 h storage, pumps) | 500 m3 tanks | 15 | 4066 | 218 | [49] | ||
Chemical storage (tanks for 30 days storage, pumps) | 20 m3 tanks | 125 | 5814 | 73 | [49] | ||
Total | 1070 | 15,355 | 6545 |
Appendix B. Environmental Impacts of the 5 GWp/a Industrial Site Setup
References
- International Energy Agency. Solar PV Global Supply Chains: An IEA Special Report. Available online: www.iea.org (accessed on 20 September 2023).
- Brailovsky, P.; Friedrich, L.; Nold, S.; Riepe, S.; Rentsch, J. Photovoltaics. Int. Ed. 2021, 46, 8. [Google Scholar]
- Wade, A.; Sinha, P.; Drozdiak, K.; Mulvaney, D.; Slomka, J. Ecodesign, Ecolabeling and Green Procurement Policies—enabling more Sustainable Photovoltaics? In Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), Waikoloa, HI, USA, 10–15 June 2018; p. 2600. [Google Scholar]
- Gervais, E.; Herceg, S.; Nold, S.; Weiß, K.-A. Sustainability strategies for PV: Framework, status and needs. EPJ Photovolt. 2021, 12, 5. [Google Scholar] [CrossRef]
- Goldschmidt, J.C.; Wagner, L.; Pietzcker, R.; Friedrich, L. Technological learning for resource efficient terawatt scale photovoltaics. Energy Environ. Sci. 2021, 14, 5147. [Google Scholar] [CrossRef]
- Brailovsky, P.; Baumann, K.; Held, M.; Briem, A.-K.; Wambach, K.; Gervais, E.; Herceg, S.; Mertvoy, B.; Nold, S.; Rentsch, J. Insights into circular material and waste flows from c-Si PV industry. EPJ Photovolt. 2023, 14, 5. [Google Scholar] [CrossRef]
- Lunardi, M.M.; Alvarez-Gaitan, J.P.; Chang, N.L.; Corkish, R. Life cycle assessment on PERC solar modules. Sol. Energy Mater. Sol. Cells 2018, 187, 154. [Google Scholar] [CrossRef]
- Nold, S.; Brailovsky, P.; Briem, A.-K.; Held, M.; Fischer, M.; Went, J.; Herceg, S.; Koschikowski, J.; Rueda, A.L.; Dannenberg, T.; et al. “Expertenkreis zur Entwicklung und Evaluierung ökologisch und ökonomisch effizienter Produktionsverfahren”: Teilvorhaben “Stoffstrom- und Lebensdauerzyklusanalyse der PV-Wertschöpfungskette”. 2023. Available online: https://www.tib.eu/de/suchen/id/TIBKAT%3A1876214708 (accessed on 26 February 2024).
- Stamford, L.; Azapagic, A. Environmental impacts of photovoltaics: The effects of technological improvements and transfer of manufacturing from Europe to China. Energy Technol. 2018, 6, 1148. [Google Scholar] [CrossRef]
- Louwen, A.; van Sark, W.G.; Faaij, A.P.C.; Schropp, R.E.I. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat. Commun. 2016, 7, 13728. [Google Scholar] [CrossRef] [PubMed]
- Frischknecht, R.; Stolz, P.; Krebs, L.; de Wild-Scholten, M.; Sinha, P.; Fithenakis, V.; Kim, H.C.; Raugei, M.; Stucki, M. Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems: PVPS Task 12 T12-19:2020. Int. Energy Agency (IEA) PVPS Task 2020, 12. [Google Scholar]
- ITRPV. International Technology Roadmap for Photovoltaic (ITRPV): 2021 Results; ITRPV: Frankfurt am Main, Germany, 2022. [Google Scholar]
- Pastuszak, J.; Węgierek, P. Photovoltaic cell generations and current research directions for their development. Materials 2022, 15, 5542. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394. [Google Scholar] [CrossRef]
- Ciroth, A.; Di Noi, C.; Burhan, S.; Srocka, M. IJoLCAS. 2019. Available online: https://www.greendelta.com/wp-content/uploads/2020/09/LCA-database-creation.pdf (accessed on 15 March 2023).
- Sphera Solutions GmbH. GaBi Software System and Database for Life Cycle Engineering 1992–2022; Sphera Solutions GmbH: Stuttgart, Germany, 2022. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218. [Google Scholar] [CrossRef]
- EN15978; 2011 Sustainability of Construction Works—Assessment of Environmental Performance of Buildings: Calculation Method. European Standard: Brussels, Belgium, 2011.
- Jungbluth, N.; Stucki, M.; Frischknecht, R. Sachbilanzen von Energiesystemen: Grundlagen für den Ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz: Ecoinvent Report No. 6-XII; Dones, R., Ed.; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2009. [Google Scholar]
- Althaus, H.J.; Chudacoff, M.; Hischier, R.; Jungbluth, N.; Osses, M.; Primas, A. Life Cycle Inventories of Chemicals: Ecoinvent Report No. 8, v2.0; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Nold, S. Techno-Ökonomische Bewertung neuer Produktionstechnologien Entlang der Photovoltaik-Wertschöpfungskette: Modell zur Analyse der Total Cost of Ownership von Photovoltaik-Technologien; Fraunhofer Verlag: Stuttgart, Germany, 2019. [Google Scholar]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Umberto 11; ifu Institut für Umweltinformatik Hamburg GmbH: Hamburg, Germany. Available online: https://www.ifu.com/de/umberto/oekobilanz-software/ (accessed on 15 March 2023).
- European Commission. Product Environmental Footprint Category Rules (PEFCR). Photovoltaic Modules Used in Photovoltaic Power Systems for Electricity Generation; European Commission: Luxembourg, 2020. [Google Scholar]
- Bundesfinanzministerium. AfA-Tabelle für den Wirtschaftszweig “Chemische Industrie”. Available online: https://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Steuern/Weitere_Steuerthemen/Betriebspruefung/AfA-Tabellen/AfA-Tabelle_Chemische-Industrie.html (accessed on 8 April 2024).
- Erumban, A.A. Lifetimes of machinery and equipment: Evidence from Dutch manufacturing. Rev. Income Wealth 2008, 54, 237. [Google Scholar] [CrossRef]
- Schneider, K.J. Bautabellen für Ingenieure; Werner Verlag: Dusseldorf, Germany, 2004. [Google Scholar]
- Grünthal, G.; Bosse, C.; Stromeyer, D. Building Code Related Seismic Hazard Analyses of Germany and Their Relation to SHARE; Deutsche Gesellschaft für Erdbebeningenieurwesen und Baudynamik (DGEB): Weimar, Germany, 2014. [Google Scholar]
- World Steel Association. Steel Markets; World Steel Association: Brussels, Belgium, 2020. [Google Scholar]
- Fennell, P.; Driver, J.; Bataille, C.; Davis, S.J. Cement and steel—Nine steps to net zero. Nature 2022, 603, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.J.; Kernan, P.C. Life-cycle energy use in office buildings. Build. Environ. 1996, 31, 307–317. [Google Scholar] [CrossRef]
- Aye, L.; Ngo, T.; Crawford, R.H.; Gammampila, R.; Mendis, P. Life cycle greenhouse gas emissions and energy analysis of prefabricated reusable building modules. Energy Build. 2012, 47, 159–168. [Google Scholar] [CrossRef]
- Rodrigues, V.; Martins, A.A.; Nunes, M.I.; Quintas, A.; Mata, T.M.; Caetano, N.S. LCA of constructing an industrial building: Focus on embodied carbon and energy. Energy Procedia 2018, 153, 420–425. [Google Scholar] [CrossRef]
- Herceg, S.; Briem, A.-K.; Fischer, M.; Brailovsky, P.; Dannenberg, T.; Held, M. A Comparative Life Cycle Assessment of PV Modules-Influence of Database and Background System. In Proceedings of the 38th European Photovoltaic Solar Energy Conference and Exhibition, Lissabon, Portugal, 6–10 September 2021; pp. 696–700. [Google Scholar] [CrossRef]
- Müller, A.; Friedrich, L.; Reichel, C.; Herceg, S.; Mittag, M.; Neuhaus, D.H. A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Sol. Energy Mater. Sol. Cells 2021, 230, 111277. [Google Scholar] [CrossRef]
- Linkec.cn. The Ultimate FAQs Guide To 100 MVA Transformer|Daelim Transformer. 2024. Available online: https://www.daelimtransformer.com/100-mva-transformer.html (accessed on 20 February 2024).
- China 1600 KVA 33kV Prefabricated Substation Suppliers, Manufacturers, Factory—Cost Price—SCOTECH. 2024. Available online: https://www.scotech-electrical.com/transformer/prefabricated-transformer/1600-kva-33kv-prefabricated-transformer.html (accessed on 20 February 2024).
- Compare. Ölgeschmierter Schraubenkompressor 160–250 kW CompAir. 2024. Available online: https://www.compair.com/de-de/rotary-screw-air-compressors/160-250kw (accessed on 20 February 2024).
- DRYTEC. Compressed Air Systems: Product Catalog; DRYTEC: Sprimont, Belgium, 2024. [Google Scholar]
- AIRBEST. APV Series High Pressure Vacuum Blower. Available online: https://www.airbest.com/uploads/file/apb-series-high-pressure-vacuum-blower.pdf (accessed on 20 February 2024).
- Blauberg Ventilatoren Gmbh. Industrial Ventilation. 2017. Available online: https://blaubergventilatoren.de/uploads/download/blcatalogueind201701en.pdf (accessed on 20 February 2024).
- Kiamili, C.; Hollberg, A.; Habert, G. Detailed assessment of embodied carbon of HVAC systems for a new office building based on BIM. Sustainability 2020, 12, 3372. [Google Scholar] [CrossRef]
- LNEYA Air Cooled Chiller or Water Cooled Chiller-Dynamic Temperature Control Systems-, FL 5 °C~35 °C. 2024. Available online: https://www.lneya.com/industrial-chiller/precision-chiller.html (accessed on 20 February 2024).
- RODI Systems Corp. Water and Wastewater Treatment Systems, Controls, Instrumentation. Water and Wastewater Purification and Treatment Systems by RODI Systems. 2024. Available online: https://www.rodisystems.com/water-purification-systems.html (accessed on 20 February 2024).
- Graver Water Systems. Lamella Clarifier. Available online: https://graver.com/wp-content/uploads/2020/05/Graver_DataSheet_Lamella_2020.pdf (accessed on 20 February 2024).
- The Filter Press Co., Ltd. Filtration & Separation Technologies. Available online: https://filterpress.eu/wp-content/uploads/2018/12/Filter-Press-Brochure.pdf (accessed on 20 February 2024).
- Evaporators, E. Thermal Evaporator Dimensions|ENCON Evaporators. 2024. Available online: https://www.evaporator.com/thermal-capacities-dimensions (accessed on 20 February 2024).
- Evoqua Water Technologies LLC. Equalization and Water Storage Tanks. 2017. Available online: https://www.evoqua.com/siteassets/documents/products/filtration/ep-eqwst-dspdf.pdf (accessed on 20 February 2024).
- Server Rack Singapore. 37U Floor Standing Server Rack F6837G—Server Rack Singapore. 2022. Available online: https://server-rack.com.sg/37u-floor-standing-server-rack-f6837g/ (accessed on 20 February 2024).
- THERMALCARE. HFCG Series Adiabatic Fluid Cooler. Available online: https://www.thermalcare.com/assets/files/HFCG-Specification-00.pdf (accessed on 20 February 2024).
- Acroama Water Treatment System. Acroama Water Treatment System. Available online: https://pdf.indiamart.com/impdf/12928861491/26216009/sewage-treatment-plant.pdf (accessed on 20 February 2024).
Building Component | Building Systems | ||
---|---|---|---|
Steel | Precast Concrete | Timber | |
Building hall | Hot-rolled structural steel framing, based on wide flange columns and lattice trusses beams. Purlins, wall grits and bracing elements made of steel. | Prefabricated structural concrete portal frames, including purlins and secondary columns and grits. Bracing system of metallic bars or cables. | Structural timber or glue-laminated timber framing. Purlins, secondary pillars, girts, bracing elements made of wood. |
Siding and roofing | Double-skin steel-faced sandwich panels with an insulation core. | Double-skin steel-faced sandwich panels with an insulation core. | Roofing same as for steel and precast concrete halls. Siding up to 7 m made of plasterboard panels with insulation. Siding from 7 to 15 m same as for steel and precast concrete halls. |
Foundations | Cast-in-place reinforced concrete with normal compressive strength. | ||
Slab on grade | Normal reinforced concrete, with an epoxy-coating layer on the top. | ||
False ceiling | Metallic false ceiling in manufacturing and ancillary areas. |
Factory | Annual Production EI | Produced Goods | Annual Production Case Study | Process Scaling Factor |
---|---|---|---|---|
[kg/year] | [kg/year] | |||
Si-ingot | 1,000,000,000 | Cz Ingots | 25,902,594 | 0.03 |
[m2/year] | [m2/year] | |||
Wafer | 24,300 | Wafers | 24,631,830 | 1014 |
Cell | 100,000 | Cells | 23,678,426 | 237 |
Module | 15,970 | Modules | 25,500,741 | 1597 |
Category | Module | Cell | Wafer | Ingot | ||||
---|---|---|---|---|---|---|---|---|
Units | OM | EI | OM | EI | OM | EI | OM | EI |
Freshwater ecotoxicity CTUe | 2.73E+08 | 9.75E+08 | 2.33E+08 | 4.05E+08 | 2.45E+08 | 7.57E+08 | 4.71E+08 | 1.33E+07 |
Carcinogenic and non-carcinogenic effects CTUh | 3.90E-01 | 1.03E+00 | 3.33E-01 | 4.85E-01 | 3.37E-01 | 9.98E-01 | 6.41E-01 | 1.18E-02 |
Respiratory effects, inorganics Disease incidences | 3.15E-01 | 3.57E+00 | 2.62E-01 | 1.23E+00 | 2.28E-01 | 8.46E-01 | 4.38E-01 | 5.59E-02 |
Ozone layer depletion kg CFC-11-Eq | 3.17E-01 | 3.09E-01 | 2.62E-01 | 8.75E-01 | 2.05E-01 | 1.11E-01 | 3.64E-01 | 5.75E-03 |
Climate change kg CO2-Eq | 3.67E+06 | 2.37E+07 | 3.08E+06 | 1.31E+07 | 2.66E+06 | 7.76E+06 | 4.98E+06 | 4.00E+05 |
Marine eutrophication kg N-Eq | 4.83E+03 | 3.47E+04 | 4.03E+03 | 1.52E+04 | 3.48E+03 | 1.06E+04 | 6.47E+03 | 6.03E+02 |
Photochemical ozone creation kg NMVOC-Eq | 1.80E+04 | 1.14E+05 | 1.51E+04 | 5.82E+04 | 1.30E+04 | 3.90E+04 | 2.43E+04 | 2.00E+03 |
Freshwater eutrophication kg P-Eq | 2.16E+02 | 8.56E+03 | 1.84E+02 | 4.61E+02 | 1.75E+02 | 6.65E+03 | 3.30E+02 | 1.38E+02 |
Minerals and metals kg Sb-Eq | 5.47E+02 | 8.43E+02 | 4.70E+02 | 4.09E+02 | 4.97E+02 | 8.00E+02 | 9.47E+02 | 1.25E+01 |
Ionizing radiation kBq U235-Eq | 1.57E+05 | 8.76E+05 | 1.27E+05 | 3.58E+05 | 1.04E+05 | 4.42E+05 | 1.87E+05 | 2.16E+04 |
Water scarcity m3 world-Eq | 1.42E+06 | 6.70E+06 | 1.19E+06 | 4.03E+06 | 1.05E+06 | 2.81E+06 | 1.97E+06 | 1.21E+05 |
Fossils MJ | 4.44E+07 | 2.43E+08 | 3.72E+07 | 1.25E+08 | 3.18E+07 | 8.68E+07 | 5.86E+07 | 4.29E+06 |
Freshwater and terrestrial acidification mol H+-Eq | 3.70E+04 | 2.39E+05 | 3.14E+04 | 6.83E+04 | 3.08E+04 | 9.60E+04 | 5.82E+04 | 3.45E+03 |
Terrestrial eutrophication mol N-Eq | 5.50E+04 | 7.48E+05 | 4.60E+04 | 1.68E+05 | 4.04E+04 | 1.50E+05 | 7.52E+04 | 1.15E+04 |
Land use points | 7.30E+07 | 1.12E+09 | 5.75E+07 | 2.47E+08 | 4.83E+07 | 1.93E+08 | 6.78E+07 | 2.35E+07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brailovsky, P.; Sanchez, L.; Subasi, D.; Rentsch, J.; Preu, R.; Nold, S. Photovoltaic Manufacturing Factories and Industrial Site Environmental Impact Assessment. Energies 2024, 17, 2540. https://doi.org/10.3390/en17112540
Brailovsky P, Sanchez L, Subasi D, Rentsch J, Preu R, Nold S. Photovoltaic Manufacturing Factories and Industrial Site Environmental Impact Assessment. Energies. 2024; 17(11):2540. https://doi.org/10.3390/en17112540
Chicago/Turabian StyleBrailovsky, Peter, Lorena Sanchez, Dilara Subasi, Jochen Rentsch, Ralf Preu, and Sebastian Nold. 2024. "Photovoltaic Manufacturing Factories and Industrial Site Environmental Impact Assessment" Energies 17, no. 11: 2540. https://doi.org/10.3390/en17112540
APA StyleBrailovsky, P., Sanchez, L., Subasi, D., Rentsch, J., Preu, R., & Nold, S. (2024). Photovoltaic Manufacturing Factories and Industrial Site Environmental Impact Assessment. Energies, 17(11), 2540. https://doi.org/10.3390/en17112540