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Abstract: With the development and refinement of the carbon emissions trading market, the relation-
ship between the carbon market and the stock market has grown increasingly intertwined. This has
led to a surge in research investigating the interactions between the carbon market and related sectors.
This study examines the intensity and direction of spillover effects among ten industries associated
with carbon emissions, spanning traditional and emerging energy sectors. Through static analysis,
we find that spillover effects between industries in the carbon and stock markets are bidirectional
and asymmetric. Dynamic analysis reveals that the carbon market, acting as the primary recipient of
spillover effects, is notably influenced by traditional energy industries such as coal and oil, followed
by photovoltaics, new energy vehicles, and others. The magnitude of these spillover effects is subject
to fluctuations influenced by energy crises and events like the COVID-19 pandemic, while policy
interventions can alter the overall trends in net spillover effects across various industries.

Keywords: carbon market; stock market; traditional energy markets; new energy markets; dynamic
spillover effects

1. Introduction

Since the implementation of carbon emissions trading in China, the participation of
companies across various industries in emission reduction initiatives has steadily increased.
These companies engage in trading within the carbon emission rights market, thereby
attracting significant investments from a multitude of investors. Subsequently, these funds
are allocated within the stock market. Enterprises involved in emission reduction activities
invest and finance within the stock market, thereby facilitating the flow of funds between
the carbon market and the stock market. Consequently, both domestic and international
scholars have extensively researched the interplay between the carbon market and the
stock market. Numerous studies have revealed that fluctuations in carbon emissions
trading prices transmit signals to investors, consequently influencing their investment
decisions within the stock market. In essence, fluctuations in carbon market prices can
propagate to the stock market, with the effects primarily manifested in energy-related
industries. This is because energy utilization serves as the primary source of carbon
emissions. Fluctuations in energy sector prices within the stock market can precipitate
changes in industrial carbon dioxide emissions, subsequently impacting the trading volume
of carbon emission quotas. This, in turn, influences price fluctuations within the carbon
market. Notably, when prices fluctuate within the carbon market, industries with significant
carbon emissions and dependencies on carbon emission quotas, such as the energy sector,
are the first to be affected. These industries respond by enhancing energy efficiency and
adjusting energy structures, such as increasing the utilization of clean, low-carbon energy
sources while reducing reliance on traditional fossil fuels and adopting emission reduction
technologies to mitigate the effects of carbon market price fluctuations. In summary, given
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the inherent correlation between the carbon market and the energy industry, this article
aims to investigate the spillover effects between the carbon emissions market and the
stock market, with particular emphasis on the impact of the carbon emissions market on
traditional and new energy sectors.

The subsequent sections of this paper are structured as follows. Section 2 conducts
a review of the pertinent literature. Section 3 outlines the methodology employed in this
study. Section 4 presents the data used and provides summary statistics. In Section 5,
the primary empirical findings are presented. Finally, Section 6 concludes the paper and
discusses the implications of the empirical results.

This paper contributes significantly in two key aspects. Firstly, it adopts a dynamic
research framework to explore the connection between carbon and energy markets, us-
ing the Diebold and Yilmaz (2014) [1] methodology to analyze spillovers. This approach
effectively captures market inter-dependencies and quantifies the dynamic relationship
between carbon and energy markets. Secondly, this paper focuses on the relationship
between carbon and energy markets in China, which has received relatively limited at-
tention in the existing literature. While previous studies have explored the link between
the carbon market and energy stocks, as shown in the literature review part, there is a
dearth of research unifying three components—the Chinese carbon market, traditional
energy, and new energy market stocks—for in-depth analysis. Therefore, this paper fills
this gap by comprehensively studying China’s carbon market alongside traditional and
new energy market stocks. This holistic research approach enhances our understanding of
the interactions and impact of these different asset classes in China’s financial markets.

The findings of this study reveal crucial insights into the dynamics of these markets.
Notably, the spillover effects between the carbon market and the stock market suggest a
strong linkage between the two markets. In terms of spillover direction, the carbon market
is identified as a net recipient, while in terms of intensity, spillover performance varies and
is asymmetric across sectoral markets. Particularly, the traditional energy sector exhibits
the largest spillover effect on the carbon market. This dynamic study further demonstrates
that each market exhibits unique time-varying characteristics. These dynamic empirical
results underscore the importance of understanding the intricate and evolving relationship
between carbon markets and traditional and new energy markets.

2. Literature Review

Regarding the relationship between the carbon market and the energy stock market, a
large number of scholars have carried out relevant research, which can be divided into the
following aspects.

Firstly, a wealth of literature research indicates a close relationship between carbon
markets and stock markets. It was found that there is a significant negative long-term and
short-term asymmetric relationship between China’s carbon emissions trading market and
the overall stock market. Among them, carbon emission trading prices are significantly
related to the stock markets of some energy-intensive industries and financial industries.
However, China’s stock index has no significant impact on the transmission of carbon
emissions trading prices [2]. It was also revealed that the stock market generally leads the
Chinese carbon emissions trading market, with the relationship reversing when carbon
market returns are significantly negative. Moreover, exogenous shocks, including govern-
ment policy and the COVID-19 outbreak, have varying effects on the lead-lag relationship
between the carbon market and different stock market sectors [3].

Secondly, there are also corresponding studies on the spillover effects between carbon
markets and traditional energy stocks [4–11]. It was found that the correlation between the
EU carbon market and the crude oil market exhibits symmetry, with fluctuations in depen-
dence observed across different stages. Particularly, during periods characterized by crisis
and instability, there is an amplified interdependence between the two markets [11]. Other
studies found that in Europe, the spillover effects of the carbon market are directly trans-
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mitted to the electricity market through prices rather than yields, and the energy market
plays a bridge role in promoting the coupling of the carbon and electricity markets [4].

Thirdly, more studies focus on the correlation between the carbon market and re-
newable energy markets [8,12–19]. It has been illustrated that in the context of Europe’s
low-carbon environment, the interconnection between the carbon market, stock market,
and renewable energy market is increasingly pronounced. In the short term, the carbon
market positively impacts the renewable energy market, although this influence gradually
diminishes over time. However, in the long term, the correlation between the carbon
market and both the stock market and the renewable energy market is nearly negligible.
Comparing the period of the European Green Deal with COVID-19, the negative impact of
the carbon market on the renewable energy market is more substantial during the latter [5].
By utilizing the TVP-VAR method, some researchers investigated return spillovers among
different markets. It was revealed that the clean energy stock market predominantly in-
fluences carbon prices and the green bond market. Furthermore, it serves as the primary
net transmitter of shocks throughout the entire network, while the green bond and wind
energy markets are emerging as the principal recipients of shocks within the system [15].

The analysis of interconnectedness among financial assets has gained popularity in
recent years [20–26]. In the realm of model-based research, prominent methodologies
include VAR and its extensions [13,27–30], GARCH and its extensions [31–33], the Diebold–
Yilmaz spillover index model [34,35], and so on. In terms of measuring connectedness,
Diebold and Yilmaz [35] pioneered the use of a time-varying spillover to quantify it,
laying the foundation for subsequent research. The advantages of the Diebold and Yilmaz
spillover index model lie in its comprehensive consideration of bidirectional influences
among different markets, enabling a thorough capture of spillover effects among assets in
financial markets. Additionally, the model’s reliance on time-varying methods allows for
the dynamic tracking of spillover effects in financial markets, facilitating a more accurate
understanding of changing trends and characteristics in the interrelations among markets.
Furthermore, this spillover index model provides intuitive metrics to measure spillover
effects among different assets, aiding decision makers in formulating appropriate risk
management strategies.

Drawing inspiration from prior research on spillover effects between the carbon
market and both the stock market and energy markets, this study innovatively delves
deeper into the relevant energy sectors within the stock market. Improvements in the
systematic and comprehensive selection of data have been made, ensuring a more robust
analysis framework. Furthermore, the incorporation of the COVID-19 pandemic as a
temporal marker adds a novel dimension to the investigation, enabling an examination of
how spillover effects between the two markets have evolved before and after the outbreak,
thereby enriching the understanding of market dynamics amidst significant global events.

3. Research Methods
DY Spillover Index Model Construction

This study primarily employs the Diebold and Yilmaz (DY) spillover index model [35],
complemented by the generalized vector autoregression (VAR) method, to address potential
issues arising from the lag order dependency of variables. This model is a framework used
to measure volatility spillover effects between financial markets. Initially proposed by
Diebold and Yilmaz in 2009 [36], this model has been widely adopted to analyze the degree
of correlation and risk transmission mechanisms among international financial markets.
The model is based on a multivariate GARCH (MV-GARCH) framework, which captures
the volatility of each financial market by estimating conditional variances. The DY spillover
index model primarily focuses on the volatility transmission effects between two financial
markets, known as spillovers. It calculates the spillover index by computing the conditional
variance-covariance matrix between the two financial markets. This index indicates how
changes in volatility in one market affect another, providing insights into the strength and
direction of volatility transmission between them. The advantage of the DY spillover index
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model lies in its ability to offer an intuitive approach to quantifying volatility spillover
effects between different financial markets, aiding investors in better understanding and
managing cross-market risks.

Additionally, it quantifies directional spillovers between various markets, providing a
comprehensive understanding of intermarket dynamics. The building steps are as follows:

First, construct a stationary N dimension P order vector autoregressive model,

Xt =
p

∑
i=1

φixt−i + εt (1)

where εt ∈ (0, Σ) is an independent and identically distributed vector. The moving average
process is

Xt =
∞

∑
i=0

Miεt−i (2)

where the coefficient matrix Mi satisfies the following recursion equation:

Mi = φ1Mi−1 + φ2Mi−2 + · · ·+ φp Mi−p (3)

where M0 is an identity matrix of N × N. If i < 0, set M0 = 0; if i = 0, then M0 is the
identity matrix with an N dimension.

The estimated value of the spillover effect is
∼
θ

g

ij(H), which means the part caused from

Xj to Xi with an H-step prediction error. For H = 1, 2, · · · , K, we can calculate
∼
θ

g

ij(H)
as follows:

∼
θ

g

ij(H)=
σjj∑H−1

h=0

(
e′i Mh∑ ej

)2

∑H−1
h=0 e′i Mh∑ ej

(4)

where Σ is the covariance matrix of the error vector ε. σjj is the jth standard error of the error
term of the equation, and ei is the selection vector; that is, except for the ith elements that
have a value of 1, other elements are all 0. To calculate the overflow index, we standardize
each variance decomposition matrix by column as follows:

∼
θ

g

ij(H) =
θ

g
ij(H)

∑N
j=1 θ

g
ij(H)

(5)

where ∑N
j=1 θ

g
ij(H)=1, ∑N

i,j=1

∼
θ

g

ij(H)=N. Based on the fundamental equations above, we can
derive the total spillover effect index, directional spillover index, and net spillover index.

The total spillover index characterizes the contribution of spillover effects among
variables in the vector to the total prediction error variance. It can be calculated as follows:

TS = Sg(H) =

∑N
i, j = 1
i ̸= j

∼
θ

g

ij(H)

∑N
i,j=1

∼
θ

g

ij(H)
× 100 =

∑N
i, j = 1
i ̸= j

∼
θ

g

ij(H)

N
× 100 (6)

In a generalized VAR model, directional spillover effects received by variable i from
all other variables j can be further computed by standardizing the generalized variance
decomposition matrix, given by

Sg
i←j(H) =

∑N
j = 1
i ̸= j

∼
θ

g

ij(H)

∑N
i,j=1

∼
θ

g

ij(H)
× 100 (7)
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Alternatively, directional spillover effects generated by variable i on other variables j
can be calculated as

Sg
i→j(H) =

∑N
j = 1
i ̸= j

∼
θ

g

ji(H)

∑N
i,j=1

∼
θ

g

ji(H)
× 100 (8)

Finally, the net spillover effect of variable i on other variables is given by Sg
i→j − Sg

i←j.

4. Data and Variable Description

The Shenzhen Emissions Trading Scheme (ETS) is the first carbon emissions trading
exchange established in China. It has the longest operating time, the most comprehensive
trading data, and the most representative carbon emission trading prices in the country.
This study selects the trading prices from 4 January 2017 to 30 December 2022, comprising
a total of 1266 trading days on the Shenzhen ETS. All data were processed using MATLAB
2021b.The trading prices are processed to derive returns as follows:

s = (lnpt−1 − lnpt)× 100 (9)

where pt represents the trading price on the tth day.
In addition, ten industry stock indices are selected as the research objects. The datasets

are from the wind database. On the one hand, the selection of stock indices is based on
the fact that the fluctuations in stock indices reflect the economic changes in a country
over a while. According to the Efficient Market Hypothesis, the price volatility of stocks
expresses a signal, thereby influencing investors’ investment choices in both the carbon
market and the energy market. On the other hand, based on the classification standards of
the energy industry, these ten industries represent both traditional and new energy sectors
and hold significant shares in the stock market. In recent years, carbon emissions from the
electricity industry account for approximately 48% of the national total emissions, industrial
process emissions account for around 36%, and emissions from the transportation and
construction sectors, respectively, contribute 8% and 5%. Therefore, four industries related
to electricity generation sources, including coal (CO), petroleum and natural gas (PE), basic
chemicals (CH), and photovoltaics (PH), are selected, along with three industries primarily
involved in industrial processes with steel (ST), non-ferrous metals (NO), and new energy
metals (ME). Additionally, two industries related to transportation, namely new energy
vehicles (VE) and new energy batteries (BA), are chosen, along with the environmental
protection industry (PR), which aims to achieve low-carbon emissions through energy
conservation and emission reduction measures. It is evident from the selections above that
all ten industries are closely related to carbon emission indicators.

Figures 1–5 show the time series of prices and returns of the carbon market, traditional
energy markets, and new energy markets. From Figure 1, it can be observed that the
volatility of the carbon market’s rate of return is relatively small, remaining around 0 to
30%. However, in the first half of 2019, the rate of return began to fluctuate dramatically,
reaching a maximum of 85.7%. From the second half of 2019 to the first half of 2020,
the volatility of the rate of return moderated. At the end of 2020, the volatility began
to fluctuate frequently with large amplitudes, even exhibiting extreme values exceeding
100%. According to Figure 4, the price trends of the five stocks in the traditional energy
industry from 2017 to 2022 were quite similar, exhibiting a “U” shape with a gradual decline
followed by an increase before 2022. Around 2022, a small peak can be observed for all
stocks. From Figure 5, it can be seen that the new energy industry, like the traditional
energy industry, initially displayed a “U” shape. However, around 2022, a noticeable
trough emerged for the new energy industry. While the rates of return for the new and
traditional energy industries generally exhibited similar trends, this pattern became less
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apparent in 2021 and 2022, with larger fluctuations in the rates of return for each market,
potentially due to severe external shocks to the overall environment.
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According to the descriptive statistics in Table 1, it is evident that the mean and
variance of the carbon market are significantly higher compared to other markets, indicating
greater price uncertainty in the carbon market. This suggests that external influences
would have a more pronounced impact. Moreover, the maximum and minimum returns
of the carbon market exceeded 100%, occurring in September 2021. The occurrence of
extreme values in September may be attributed to the report issued by the State Council
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on September 5, highlighting significant achievements in carbon reduction efforts, which
boosted market participants’ optimistic forecasts for carbon market trading. This led to a
short-term surge in market activity and rapid price escalation. However, such short-term
stimuli do not constitute stable price trends, and two days later, carbon market trading
volumes and prices reverted to previous levels. The skewness of each sequence in the
descriptive statistics is non-zero, and the JB statistic results indicate a rejection of the null
hypothesis at the 1% significance level for each market’s return sequence, suggesting that
the selected sample data do not follow a normal distribution but exhibit characteristics
of peakedness and heavy tails. The Augmented Dickey–Fuller (ADF) test results for each
data series demonstrate stationarity at the 1% confidence level, indicating the feasibility of
constructing a DY overflow index model.
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Table 1. Summary statistics of all series.

Min Max Mean S.D. Skew Kurt JB ADF

CB −120.412 146.344 0.0185 16.2630 0.320 15.458 12,519.191 *** −57.053 ***

ST −3.7848 4.6237 0.0004 0.7629 0.052 3.647 694.953 *** −36.19 ***

ME −5.8372 7.2720 0.0232 1.1247 −0.143 3.300 572.476 *** −34.378 ***

VE −5.0393 5.9550 0.0193 0.9450 −0.197 3.288 572.368 *** −33.983 ***

PH −8.6209 5.5933 0.0257 0.9481 −0.398 8.210 3556.668 *** −36.305 ***

PR −5.5193 4.5705 0.0061 0.7776 −0.419 4.623 1153.262 *** −35.188 ***

CH −4.2021 3.6064 0.0032 0.7152 −0.553 3.704 780.364 *** −34.606 ***

CO −5.0241 4.6636 0.0214 0.9124 0.014 3.286 563.529 *** −34.52 ***

PE −3.8627 4.7001 0.0080 0.7388 0.102 4.743 1177.173 *** −36.423 ***

BA −5.3829 6.2398 0.0293 0.9801 −0.094 3.505 643.055 *** −34.38 ***

NO −4.6367 5.9044 0.0125 0.9422 −0.135 3.790 753.673 *** −36.196 ***

Note: CB represents the carbon market of China. Steel (ST), basic chemicals (CH), coal (CO), petroleum and
natural gas (PE), and non-ferrous metals (NO) represent the traditional energy sector, while batteries (BA), new
energy metals (ME), new energy vehicles (VE), photovoltaics (PH), and environmental protection (PR) represent
the new energy industry. *** indicates rejection of the null hypothesis at a 1% level.

Figure 6 depicts the correlation coefficients among various markets, revealing no corre-
lation between carbon market returns and those of other markets. This suggests that carbon
market returns can be analyzed as an independent time series for subsequent analysis.
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5. Empirical Analysis

In this section, we employ the DY model to examine the static spillover effects among
the data. The specific numerical values obtained from the static spillover effects are used to
investigate the magnitude and direction of spillover effects between markets. Subsequently,
considering the temporal aspect, a dynamic rolling window technique is utilized to study
the total spillover index and net spillover index among markets from 2017 to 2022 over five
years. The net spillover index is further divided into two components: spillovers from the
carbon market to other markets and spillovers from other markets to the carbon market.

5.1. Static Spillover Index

Firstly, we estimate directional spillover effects among a total of 11 markets, including
the carbon market, over the entire time window from January 2017 to December 2022.
Since the model’s operation and computation utilize the entire dataset, the results reflect
the average level over the entire time window and do not indicate the nonlinear dynamic
characteristics of spillover effects over time. Therefore, this section of the study focuses on
the analysis of static spillover effects.

Table 2 presents the results of static spillover analysis for each dataset, where each row
represents the extent to which the price fluctuations of a particular market (FROM) influence
other markets, and each column represents the extent to which the price fluctuations of
a particular market influence other markets (TO). The net spillover effect of one market
on another is obtained by subtracting the influence received from the influence exerted.
From Table 2, it can be observed that the carbon market is significantly influenced by its
fluctuations, accounting for 84.58% of the total influence. Additionally, the carbon market
exhibits relatively evenly distributed influences on other markets. The price spillover
effects between the carbon market and other stock markets are found to be bidirectional and
asymmetric. Furthermore, the net values for the carbon market, steel market, photovoltaic
industry, coal market, and petroleum market are negative, indicating that these markets
are net recipients of price fluctuations, while non-ferrous metals, new energy metals, new
energy vehicles, the environmental protection industry, the chemical industry, and the new
energy battery industry act as net sources of price fluctuations. Further analysis reveals
that the carbon market is significantly influenced by traditional energy industries such
as coal and petroleum, followed by photovoltaics and new energy power batteries. This
is attributed to the rapid development of new clean energy-related industries such as
photovoltaic power generation and power batteries, which, to some extent, weaken the
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demand for fossil fuels in the market, thereby reducing the demand for carbon emission
quotas in the market and ultimately affecting the trading prices of carbon. However, the
stability, convenience, and availability of new energy sources still have a long way to go
in their development process. Currently, traditional energy sources remain predominant,
exerting the greatest influence on the carbon market. Additionally, the development of the
carbon market is still incomplete, and its financial attributes and economic value need to be
enhanced. Hence, its overall spillover effect on stock markets is not particularly significant.

Table 2. Spillover index table for carbon and various energy stock markets.

CB ST ME VE PH PR CH CO PE BA NO FROM

CB 84.58 1.88 1.03 1.26 1.26 1.25 1.47 2.29 2.14 1.31 1.53 15.42

ST 0.35 21.29 7.64 5.65 5.47 6.91 10.83 12.79 12.71 5.01 11.36 78.71

ME 0.34 6.41 16.85 12.53 8.04 10.25 9.69 4.83 4.95 11.15 14.97 83.15

VE 0.27 4.85 11.99 16.04 9.94 12.91 9.66 4.11 4.26 15.21 10.75 83.96

PH 0.3 5.45 9.13 11.62 18.68 15.58 9.68 4.3 4.7 11.38 9.18 81.32

PR 0.23 5.74 9.73 12.72 13.17 15.8 10.63 4.6 5.04 12.5 9.85 84.2

CH 0.38 8.57 9.55 9.76 8.31 10.85 16.58 7.29 7.91 9.38 11.42 83.42

CO 0.6 13.13 5.71 4.79 4.36 5.61 9.51 22.3 20.24 4.09 9.67 77.7

PE 0.65 12.72 5.71 4.88 4.63 6.01 10.13 19.7 21.63 4.26 9.66 78.37

BA 0.31 4.5 11.21 16.07 10.26 13.37 9.71 3.73 3.92 16.95 9.98 83.05

NO 0.32 8.53 13.82 10.33 7.53 9.61 10.65 7.19 7.36 9.16 15.49 84.51

TO 3.75 71.77 85.52 89.61 72.96 92.35 91.95 70.83 73.24 83.44 98.37 833.79

NET −11.67 −6.94 2.37 5.66 −8.35 8.15 8.53 −6.87 −5.13 0.4 13.86

Note: CB represents the carbon market of China. Steel (ST), basic chemicals (CH), coal (CO), petroleum and
natural gas (PE), and non-ferrous metals (NO) represent the traditional energy sector, while batteries (BA), new
energy metals (ME), automobiles (VE), photovoltaics (PH), and environmental protection (PR) represent the new
energy industry.

5.2. Dynamic Spillover Index

Due to the limitation of static spillover indices in capturing the evolving nature of
spillover effects over time, this study employs a combination of the rolling window method
and the DY model. A rolling window of 100 days is selected to investigate the time-varying
spillover effects among different markets.

5.2.1. Total Spillover

As depicted in Figure 7, the overall spillover index has remained between 75% and
90%, indicating a relatively high level of correlation among markets. Moreover, the total
spillover index exhibits significant volatility and uncertainty. It shows a notable trough in
early 2018, followed by a gradual increase in spillover effects from 2018 to 2019, reaching a
peak of nearly 90% in mid-2019. Subsequently, there was a continuous decline until 2022,
with three subsequent troughs observed after 2020. In early 2018, amid the impact of the
U.S.–China trade war, the United States continuously increased tariffs on Chinese imports
and restricted Chinese businesses’ investments and operations in the U.S. This led to a
continuous depreciation of the Chinese yuan against the U.S. dollar, causing domestic stock
markets traded in yuan to decline continuously. This situation further affected trading
prices in the market, as well as the stock values of carbon and energy markets, resulting in
a trough in the overall spillover index. From 2018 to 2019, while other markets tightened,
national carbon market construction proceeded in an orderly fashion. Various aspects of
carbon trading, such as legal foundations, institutional rules, and data management, were
comprehensively promoted, leading to a significant increase in carbon trading prices and
further strengthening the overall spillover effects, showing an upward trend. However, by
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the end of 2019 and the beginning of 2020, with the sudden onset of the pandemic, policies
such as staying at home led to a reduction in people’s production and living activities,
slowing down the national economy and causing market prices to stagnate, with the GDP
falling by 6.8% year-on-year. Energy demand also decreased further, leading to a slow
reduction in carbon emissions, a decrease in carbon quota demand in the carbon trading
market, and the correlation between the carbon market and other markets. Consequently,
until the end of 2022, the total spillover index exhibited a period of fluctuating decline.
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5.2.2. Directional Spillover and Net Spillover

From the following graphs, it can be observed that each market’s directional spillover
index exhibits significant volatility and uncertainty, being heavily influenced by external
policies and extreme events. Furthermore, the development of China’s carbon market is
still incomplete, with the limited impact of enterprise carbon market emissions reduction
on the enterprises themselves, resulting in relatively weaker spillover effects between the
carbon market and the stock market, especially within low-carbon emitting industries.
However, investor behavior, market efficiency, and other factors may facilitate price impact
and information transmission among markets.

Figure 8 depicts the net spillover effect of the carbon market, which is derived by
subtracting the spillover effects received by the carbon market from the spillover effects
exerted by the carbon market on other markets. The line graph illustrates how the carbon
market primarily acts as a net receiver of spillover effects most of the time, as indicated by
its negative net spillover. In 2018, there was a V-shaped change in spillover effects, followed
by a continuous increase in spillover effects, with a brief period in mid-2019 where the
carbon market briefly acted as a net spillover emitter for several months. Subsequently, the
change in spillover effects has been gradual, with two troughs observed, while maintaining
an upward trend until 2022.

From Figures 9 and 10, it can be observed that the net spillover effects of the carbon
market on both traditional energy industries and new energy industries generally exhibit
similar trends, albeit with more pronounced fluctuations in the case of the new energy sector.
In 2019, the spillover effects of the carbon market on the traditional energy sector showed a
steady upward trend. Collaborative efforts between the Shanghai Stock Exchange and the
Shanghai Environment and Energy Exchange, innovative futures exchanges focusing on
carbon emissions in Guangzhou, and the establishment of the first low-carbon development
research center in the power industry in Jiangxi contributed to the development of various
carbon financial products. These innovations increased the impact of carbon emissions on
other industries, with fluctuations in carbon emission prices transmitting more significantly
to other sectors through avenues such as carbon finance and stock markets, especially in
high-carbon emitting sectors like traditional energy, thereby leading to a continuous rise in
the net spillover effects of the carbon market. In 2020, the net spillover effects of the carbon
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market on the energy sector remained stable, with both the new energy and traditional
energy industries hovering around the 0 level. Despite the sluggish national economic
environment due to the onset of the COVID-19 pandemic, gradual progress in initiatives
such as the Belt and Road Initiative and the internationalization of the Renminbi contributed
to a stable economic environment in China. This steady progress in the domestic economy
ultimately stabilized the mutual price impact between the carbon market and the stock
market. The spillover effects of the carbon market on four markets, steel, coal, oil and
natural gas, and new energy metals experienced a decline in October 2021. For industries
such as steel and coal, as the weather turned colder, pollution dispersion slowed down,
and environmental production restrictions expanded their impact on the production side;
coupled with continued policy implementations such as production reduction and energy
consumption control, market supply remained constrained while raw material prices
trended upward overall, leading to a rise in enterprise costs. Stock prices, on the other
hand, experienced consecutive declines influenced by various factors, leading to decreased
trading activity in the carbon market due to overall industry profit declines, resulting in a
discontinuous decline in the spillover effects received.
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Figures 11 and 12 depict the net spillover effect of the traditional energy market and
the new energy market, separately. Figure 12 illustrates that the net spillover effects of
non-ferrous metals, new energy metals, and new energy power batteries exhibited an
evident “V-shaped” trend in 2020. The non-ferrous metals industry serves as a spillover
emitter, holding a significant share in carbon emissions. In 2020, China’s non-ferrous metals
industry emitted approximately 660 million tons of carbon dioxide, accounting for 4.7% of
the national total carbon emissions. Notably, the aluminum industry contributed around
550 million tons of carbon dioxide emissions, representing 83.3% of the non-ferrous metal
industry. However, with the outbreak of the pandemic at the end of 2019, international and
domestic markets witnessed a rapid decline in non-ferrous metal prices, inducing panic
among investors.
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Subsequently, metals like copper and zinc experienced significant price fluctuations.
However, in the following months, the market gradually digested the bearish sentiment.
Prices of major non-ferrous metals stabilized and rebounded between 7 and 10 February,
indicating the market’s digestion of various negative factors induced by the pandemic. As
the pandemic was gradually brought under control and the situation improved, the prices
of major metals began a slow recovery. The fluctuations in spillover effects synchronized
with price fluctuations, exhibiting a trend of decline followed by an increase.

New energy metals, such as lithium, platinum, and rare earth, contribute to reducing
enterprise carbon emissions and energy consumption. However, under the influence of the
pandemic, limitations in existing mining technologies combined with the implementation
of dual carbon policies increased the impact of carbon emission quotas on new energy
metals. Consequently, the spillover effects of new energy metals experienced a decline
around 2020, temporarily becoming net recipients of spillover effects. New energy vehicles
(VE) have consistently been net spillover emitters as an emerging industry. Globally, the
transportation sector accounts for 26% of total carbon emissions, making it the third-largest
contributor to China’s carbon emissions, with an 8% share. Therefore, reducing carbon
emissions in the transportation sector is crucial for energy conservation and emission
reduction efforts. New energy vehicles, powered by new power batteries, effectively reduce
carbon dioxide emissions. The performance of power batteries, a core component of new
energy vehicles, significantly influences market acceptance, while the rapid increase in new
energy vehicle sales injects momentum into the development of the power battery industry.
However, in 2020, the pandemic affected the new energy vehicle industry’s production
capacity due to the suspension of transportation activities. Although this did not impact
new energy vehicle sales, factory shutdowns and decreased demand affected the utilization
of battery materials. Consequently, the spillover effects of the battery industry experienced
a precipitous decline in 2020, while the spillover effects of related automotive industries
only saw minor changes.

In the new energy industry chain, China leads in both photovoltaics and new energy
vehicles. In recent years, China’s photovoltaic industry has continued to advance. Facing
the direct impacts of climate change, such as frequent extreme weather events, both the
government and the public have a stronger desire to reduce carbon emissions. Therefore,
solar energy is seen as an effective means to address global climate change. Photovoltaic
power generation, in particular, is preferred over traditional oil and coal-fired power
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generation. As solar electricity prices decrease, it becomes more advantageous relative
to traditional energy sources. Several large energy companies in China have entered the
photovoltaic industry, attracting increasing capital investment. This has led to an increase
in spillover effects from the photovoltaic industry after 2020. The chemical industry, new
energy metals, environmental protection industry, and new energy power battery industry
all experienced extreme growth in 2020.

Although facing the impact of the pandemic, some industries exhibited an increasing
trend in spillover effects. Low-carbon-emitting industries like environmental protection
benefit from reduced overall carbon emissions during the pandemic. Environmental in-
dustries, such as biogas and waste incineration for power generation, experience increased
profits during periods of decreased carbon emissions. The chemical industry, as a cor-
nerstone of traditional energy industries, has a significant impact on manufacturing and
defense industries and maintains high stability in the face of pandemic impacts. Moreover,
increased production is necessary to maintain the normal standard of living during crises,
leading to an increase in its net spillover effects around 2020. In the face of the same crisis,
the overall market fluctuations increase their intrinsic correlation, increasing spillover
effects for these industries.

In 2021, both traditional energy and new energy industries experienced significant
fluctuations in net spillover effects. This was due to the emergence of a global energy
crisis caused by the stark contrast between energy supply and demand worldwide. In
China, there were intermittent supply shortages in coal-fired power generation, leading to
record-high prices for traditional energy sources such as coal and steel. The drastic changes
in the energy market prompted domestic energy companies to adjust their demand and
supply dynamics. The traditional energy sector, facing high prices due to limited supply,
experienced reduced carbon emissions, thereby decreasing its spillover effects on the carbon
market. Conversely, the new energy industry, which is an alternative to traditional energy
sources, witnessed increasing influence on the carbon market due to favorable government
policies supporting energy transition. However, these fluctuations were not long-lasting.
Benefiting from policies ensuring stable energy supply by the Central Committee and the
State Council, China’s energy economy remained robust throughout 2021. After a period
of strong price increases, energy market prices gradually stabilized, with the traditional
energy sector continuing to play a significant role in ensuring a stable energy supply.

The carbon market emerged as the largest net recipient, while the non-ferrous metals
market emerged as the largest net emitter. The non-ferrous metals industry, being one of
China’s four major high-energy-consuming industries, heavily relies on resources such as
steel and coal for production due to limitations in smelting technology. Consequently, its
spillover effects on the steel industry are pronounced. As a high-carbon emitting industry,
the non-ferrous metals industry must optimize its industrial layout, invest in new energy,
and utilize carbon derivative products as risk-hedging tools to realize a low-carbon, green,
and environmentally friendly production approach.

5.2.3. The Robustness of the Spillover Index

In this part, we show a robustness test on the empirical results conducted by varying
the forecasting horizon. The total spillover index plots for forecasting horizons (H) of
10 periods and 15 periods were computed, as depicted in Figure 13. It can be observed that
the spillover effect plot for a forecasting horizon of 15 days exhibits the same results as the
one for a forecasting horizon of 10 days, indicating that increasing the forecasting horizon
does not impact the estimation results.
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6. Implications and Conclusions

The study selected data on indicators from the carbon market and stock markets
related to industries such as coal, steel, chemicals, oil and natural gas, non-ferrous metals,
photovoltaics, new energy vehicles, new energy power batteries, environmental protection,
and new energy metals from 4 January 2017 to 31 December 2022 as research objects. From
the perspective of price spillovers, the direction and intensity of spillovers between the
carbon market and the stock markets of traditional energy and new energy industries were
calculated. The conclusions can be drawn as follows.

On the one hand, from the perspective of the static spillover index, the overall infor-
mation linkage between the carbon market and stock markets is strong, with significant
trendiness in value spillovers. In terms of spillover direction, the carbon market is a net
recipient, while in terms of intensity, different industries exhibit varying spillover perfor-
mances, with asymmetry present. The traditional energy industry shows the highest price
spillover to the carbon market. On the other hand, from the perspective of the time-varying
index, during the enactment of relevant policies and macroeconomic fluctuations, such as
the COVID-19 crisis at the end of 2019, the implementation of the National Carbon Emission
Trading Management Measures in 2021, and the energy crisis in 2021, the spillover index
between the carbon market and stock markets also fluctuated, with the carbon market price
spillover index exhibiting significant volatility. Overall, during periods of price volatility in
related stock markets, Chinese carbon markets experience significantly higher inflow effects
from energy markets than during other periods. In summary, significant and time-varying
spillover effects exist between China’s carbon market and stock markets.

7. Recommendation

To effectively prevent financial risks, achieve carbon peak requirements, actively pro-
mote green and low-carbon lifestyles, and further promote the development of the carbon
market, the following suggestions are proposed. Firstly, from the perspective of policy-
makers, it is necessary to clarify the transmission mechanism between the carbon market
and stock markets, adhere to the improvement of energy–economic policies, establish
reasonable pricing for carbon quotas in traditional energy industries, actively increase the
supply of products from the new energy industry, gradually transition to green economic
development, and continuously optimize energy consumption structures. Secondly, from
the perspective of investors, it is important to grasp the knowledge system of price spillover
mechanisms between the carbon market and related markets, attach importance to the
financial attributes of carbon emission trading, use different financial instruments, adjust
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asset allocation strategies in the face of fluctuations in domestic and foreign energy industry
stock prices, and obtain maximum investment returns. Thirdly, from the perspective of the
carbon market, it is essential to expand the coverage of industries and trading participants
and enhance the activity of market participants. It is necessary to enrich carbon financial
products, provide diversified trading methods and effective risk-hedging tools for market
participants, and build the carbon market into a composite market with investment value
and regulatory support for the green development of enterprises.
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