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Abstract: Solar energy reaching a horizontal surface can possess fluctuations that impact electricity
generation at a solar plant. Despite this, energy access remains inadequate, particularly in rural
areas, with an estimated 82% deficiency. This drives us to assess the regressive and spatial-temporal
accessibility of solar energy in the southern and mid regions of Mozambique. This evaluation aims
to determine the actual availability of energy for electrification purposes. Data on global horizontal
irradiation from approximately 8 stations across all provinces in the specified regions, collected
between 2012 and 2014 at intervals of 1 and 10 min, were analyzed using regression and correlation
methods along with a specialized algorithm for classifying days based on clear sky index terms.
The statistical analysis identified days with significant potential for energy accessibility, exceeding
50% of the average. The findings suggest a correlation coefficient of approximately 0.30 for energy
and non-linear regression with clear sky index coefficients around 0.80. The method employed
demonstrated accuracy when compared to theoretical simulations of the clear sky index in the region,
indicating its potential applicability in other regions of interest.

Keywords: clear sky index; accessibility; spatial; regression; solar energy

1. Introduction

The blackbody radiation curve, which represents the solar radiation spectrum, un-
dergoes a shift towards lower intensities and longer wavelengths as the temperature
decreases [1,2]. However, the solar energy that reaches the Earth’s surface is slightly di-
minished and can vary in certain regions [3] due to factors such as dispersion caused by
solid particles, dust, aerosols, and gases present in the atmosphere (among others) [2,4,5].
Societies are constantly evolving and growing, resulting in increased energy consumption
to meet daily needs [2]. For instance, in 2023, the global population was estimated to be
18.01 million people [6]. Unfortunately, not everyone has access to energy [2], although the
number of unserved individuals decreased from 1.2 billion to 733 million between 2010
and 2020 [6,7], resulting in an increase in accessibility from 83 to 91% [2]. To accelerate
global electrification by 2030, compensating for the slowdown observed between 2010 and
2018, as well as between 2018 and 2020 [6,8], it is necessary to increase the number of new
connections to 100 million per year [2]. However, at the current rate, this target will only be
achieved by 92% [2,7]. Therefore, it is crucial to promote renewable actions on a large scale,
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aiming for more than 30% of energy generation to come from renewable sources (net zero
emissions by 2050), while reducing reliance on fossil fuels [6,7,9]. It is worth noting that ap-
proximately 80% of the global population without access to electricity resides in rural areas,
while urban areas have achieved a stable access rate of 97% since 2016 [2,7]. Notably, urban
electrification has experienced faster growth in Sub-Saharan Africa compared to other
regions, with an annual growth rate of 1 percentage point between 2010 and 2020 [2,6–8].
The 20 countries with the largest access deficits are home to approximately 76% of the total
population (Sub-Saharan Africa, Central Asia, South Asia, East Asia, South-East Asia, West
Asia, and North Asia), with Nigeria, the Democratic Republic of the Congo, and Ethiopia
having around 92 million, 72 million, and 56 million people, respectively, without access
to electricity [6,7]. Mozambique, with approximately 20 million people lacking access to
electricity, ranks 6th [2,6,7].

In Mozambique, specifically in the eastern channel, southern region, mid region,
and part of northern Mozambique, existing systems face challenges due to the variability
in photovoltaic energy production [2]. Understanding the spatiotemporal variability in
irradiance is crucial for effectively integrating a growing number of photovoltaic power
systems [10]. Electricity of Mozambique (EDM) projected a PV capacity of 53 MW at the
beginning of 2024, with an anticipated increase to 55 MW by the end of the year and
further expansion in the future to meet the projected global demand of 800 GW by 2050,
aiming to reduce environmental pollution [2,7]. The eastern channel of Mozambique,
encompassing the southern and mid regions, currently has a total PV capacity of 119 MW
(including autonomous PV systems and grid-connected ones), and is facing challenges
due to solar energy variability affecting PV system performance and battery storage sizing.
Variability in solar radiation has significant impacts on photovoltaic system efficiency and
battery storage sizing, as well as on the balance between generation and load, and the
maintenance of power quality, including voltage and frequency stability. It is essential to
comprehend biases in the portrayal of temporal variability caused by temporally coarse-
resolution observations, and also how spatial averaging (such as that from the distribution
of photovoltaic power in a region) reduces variability. Understanding the spatiotemporal
volatility of irradiance fields and their increments is crucial for the planning and dependable
operation of upcoming electrical networks and their related subsystems [10]. Recent
research has focused on analyzing solar energy from an on-site perspective. This involves
studying Global Horizontal Irradiance (GHI) samples collected locally or through remote
sensing using satellites. The purpose of this analysis is to understand the trajectory, spatial
distribution, and temporal behavior of solar energy. One specific application of this analysis
is in the dimensioning of photovoltaic systems. In 2015, the dimensioning analysis of
photovoltaic systems followed. It was observed that the already installed and designed
systems exhibited instability and fell short of the expected lifetime [2,11]. This can be
attributed to a lack of knowledge regarding periods with varying amounts of solar energy.
It is crucial to consider these periods when designing solar systems, whether they are
autonomous or connected to the electrical grid. By understanding the periods of high
solar energy incidence, excess energy can be utilized for other purposes. Similarly, during
periods of low solar energy, the system can be designed to ensure that energy supply is
not compromised. This is important to prevent any wastage or strain on the photovoltaic
system devices, which are susceptible to the variability in solar energy. In a recent study,
the variability in PV energy output was quantified. It was found that the total number
of PV systems determines the output, and this variability was measured as 1 [12,13].
Additionally, the spatio-temporal variability in PV system networks was analyzed. It
was demonstrated that classifying the sky conditions into different categories, such as
intermediate sky, increases the likelihood of fluctuations in solar energy production and
system output [10,14,15]. To further evaluate the behavior of solar energy, the clearness
index Kt was assessed using on-site measurements of GHI. The correlation was studied
over a time interval ranging from 1 to 24 h. The evaluation revealed that the daily GHI
exhibited various local sky conditions, with clear and cloudy skies being the predominant
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types [16–18]. Certain assessments involve computational estimations utilizing proactive
inference techniques of GHI data on a flat surface with an optimal tilt angle at 5 min
intervals. It has been noted that there is a fluctuation in solar energy classification on
tilted surfaces [19–21]. Another assessment conducted on flat surfaces involved the ability
to adjust certain parameters in the evaluation algorithm using a GHI sample obtained
through traditional instruments on-site. This assessment revealed the temporal fluctuations
in solar energy, specifically in the southern region of Mozambique, where the data were
collected at intervals ranging from 1 to 10 min during a measurement campaign. The
results indicated a prevalence of clear and partially cloudy days, with a smaller occurrence
of cloudy skies [2,22–24]. Additionally, there is a growing trend to manage the output
of solar photovoltaic energy by forecasting PV production through GHI processing for
renewable energy management. This helps to understand the variability in solar resources
and confirms the presence of fluctuations in terms of high-frequency changes in solar
energy density [25,26]. However, despite the utilization of sample data, particularly from
GHI, to study the dispersion of solar energy and its spatial and temporal behavior, there is
a higher margin of error when inferring data from satellite-extracted samples compared
to on-site measurements. The error is approximately 0.55 for satellite inference compared
to 0.50 for on-site data inference [1,2]. This discrepancy can be attributed to various
factors, including reduced content in satellite data collection, partial absorption during
satellite inference, and atmospheric influences that affect the accuracy of satellite-mediated
sample data. Furthermore, satellite data collection platforms primarily provide data in
hourly, daily, weekly, monthly, and/or annual averages [27,28], which limits the accuracy
of assessing real-time solar energy variability on a shorter time scale. Furthermore, the
cost of conducting a localized data inference campaign using traditional radiometers
installed on the Earth’s surface to collect and analyze radiation and its components is still
prohibitively high.

However, recent studies have demonstrated the effectiveness of utilizing satellite
data to predict short-term variability in global horizontal irradiance (GHI) and observed
solar energy variability. The potential of satellite-derived GHI for accurate photovoltaic
(PV) predictions was highlighted [29–33]. In addition, the assessment of solar energy
adoption in agricultural practices has been explored. This analysis involved gathering local
perceptions and samples of GHI to evaluate the significance of solar energy in achieving
higher returns [34]. Moreover, the analysis of urban morphology indicators for on-site
solar energy assessment has been conducted. These findings indicate a strong correlation
(R2 = 0.91) between the gross space index, facade-site relationship, sky factor, and solar
irradiance, suggesting the potential for utilizing these indicators in solar energy analysis
within urban contexts [35–37]. A probabilistic solar energy forecast was generated using
multiple linear regression analysis, based on data from various renewable energy sources.
This forecast serves as a valuable resource for mitigating the challenges posed by the
uncertain variability in solar PV and renewable energy in general [38–40]. The prediction
of solar radiation fluxes for solar PV systems was achieved through the use of in situ GHI,
multiple regression, and correlation analysis. The results indicate that the mean error
values fall within acceptable margins, supporting the use of global solar radiation flux for
design and performance estimation in solar applications [41–43]. Additionally, the model
employed in this study is applicable in areas without meteorological stations [42]. Various
studies have successfully modeled GHI for any location on Earth using regression analysis
and high-resolution GHI data [42–45]. These studies demonstrate improved performance
and reliability in simulating real variability at specific sites. Linear regression analysis was
employed to characterize the solar radiation based on in situ data collected from different
locations [42]. The analysis revealed that the incorporation of Hay effects did not reduce
the dispersion in the regression parameters. Upon reviewing the information provided,
it is imperative to analyze solar energy not only through a regressive lens, but using
multiple data sources to comprehend its behavior and intensity. Additionally, examining
the measurement of accessibility in both space and time, along with its regression in long-
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term assessment, is crucial for gaining insight into the real access and functionality of solar
energy. This understanding is essential for the development of reliable photovoltaic systems
with high power output, durability, and stability, unaffected by network fluctuations or
changes in solar irradiance.

Mozambique stands out as a region abundant in solar energy [2], yet approximately
55% of its central population lacks access to efficient electrification. By studying the correla-
tive and regressive patterns of solar energy in this area, there is potential for significant
advancements in the installation of highly efficient plants. This knowledge can lead to the
replacement of outdated or poorly designed systems, ultimately improving the lifespan
and effectiveness of existing solar energy setups.

Within the framework of the National Energy Fund of Mozambique (FUNAE), the
researcher utilized data collected from approximately eight measurement stations to in-
vestigate the regression and spatial-temporal variability in solar energy availability in
the southern and mid region of Mozambique. The data were collected over a time span
ranging from 1 to 10 min. To evaluate the sample, an algorithm was developed that con-
sidered the inferred GHI (Global Horizontal Irradiance) at each station. Additionally, a
mechanism was devised to assess the reliability of solar energy evaluation and quantify
it in specific portions, which provided a measure of the correlation dispersion between
stations at interprovincial distances. This mechanism also indicated the measure of rule
coefficients between stations. Furthermore, a classification scheme was implemented to
identify different types of skies and quantify the number of days associated with each type.
Systematic correlation statistics were conducted to analyze the temporal variability in these
different types of days. Correlations between increments of two sensor points and large
spatial averages were also examined. These analyses aimed to establish the accessibility
of regression and spatial-temporal solar energy availability in the southern and eastern
channel region of Mozambique, both on a short-term measurement scale and a long-term
data recording scale. The findings from this research will contribute to the improved
projection of projects utilizing solar PV energy in the region. Additionally, a consultation
tool for solar radiation in the central-western region of Mozambique will be developed.

The results obtained establish a set of procedural steps that can be applied globally,
while allowing for the adaptation of local input variables to the specific region, such as
topography, climate, and local incidents. However, it can be demonstrated that within
the study area, energy flows from Nhamadzi, Barue–1, and Barue–2 to Chipera along the
investigation path. Furthermore, based on more consistent measurements taken during
annual observations in 2012, it is evident that the Nhamadzi and Chipera stations have
the highest potential for full solar radiation availability on suitable days, followed by the
Barue–2 and Barue–1 stations, all of which exceed 50% in each instance.

2. Materials and Methods
2.1. Data Collection and Processing

The GHI data sample was collected during the solar radiation measurement campaign
conducted by the National Energy Fund of Mozambique (FUNAE) between 2012 and
2014. The campaign took place in the south and mid region of Mozambique, specifically
in the provinces of Maputo, Gaza, Inhambane, Sofala, Manica, and Tete. The data were
collected at three different locations: Maputo–1, Ndindiza, Massangena, Pembe, Nhamadzi,
Barue (Barue–1 and Barue–2), and Chipera. In Maputo–1, Ndindiza, Massangena, Pembe,
Nhamadzi, and Chipera there was one station each, while in Barue there were two stations
installed at the same latitude. Overall, there were four high-resolution radiometers placed
at distances dij > 1000 km.

Figure 1 illustrates the correlation and interconnection between the stations in the
south and mid region and other measurement stations strategically located throughout
Mozambique. It shows the relationship between the distance from the south and from the
mid region, resulting in a strong dependent relationship between the crossing from the
south and the middle of country.
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Figure 1. Map displaying the coordinates of the southern and mid regions for the combined station pairs.

Furthermore, Figure 1 illustrates that the density of repetition frequency for measuring
stations in the channel-east region of Mozambique is greater for cutoff classes of 982.0
and 1094.0 km when taking into account the combination of sensor pair distances. The
GHI radiation component and diffuse horizontal irradiation (DHI) were collected using
Pyranometer radiometer sensors, as shown in Figure 2. These sensors were linked to a
system that incorporated a Pyrheliometer to directly measure the direct normal irradiation
(DNI) component.
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Figure 2. Pyranometer used to measure GHI during the campaign.

The Pyrheliometer utilized for data collection underwent calibration to ensure the
following optimal characteristics: a calibration factor ranging from 295 to 2800 nm, a
spectral range with a 1 min response time, linearity within ±0.5% (0 to 1400 W/m2), cosine
accuracy of ±1% (0 < Z < 70◦) and ±3% (70 ≤ Z < 80◦), and temperature response accuracy
of ±1% from −20 ◦C to 40 ◦C. Data collection was conducted using a Campbell–23X data
logger, version No. 0021, Model 4280, set to operate at a frequency of 1 Hz, with the storage
of the instantaneous average of 1 and 10 min intervals.

For the duration of the measurement period, each instrument underwent regular
seasonal maintenance. This maintenance included various tasks such as transferring data,
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replacing batteries, cleaning, adjusting, leveling, and realigning. Throughout this process,
the cleaning and orientation periods were meticulously recorded and recognized as periods
of interference and turbulence during the data selection phase. In the event of a data
miscalibration, the voltage angle was promptly identified, although such instances were
rare during the week-long campaign.

Afterwards, a comprehensive quality control procedure was conducted on the data
to eliminate any erroneous values. Subsequently, the data underwent processing using
specialized software specifically designed for radiation calculation, with a time interval of
1 and 10 min.

The processing of the data is illustrated in Figure 3, which demonstrates the catego-
rization of the data into two groups: acceptable days and unacceptable days. Acceptable
days are those in which the experimental GHI spectrum closely aligns with the calculated
theoretical radiation spectrum. Conversely, unacceptable days are characterized by a sig-
nificant deviation between the experimental GHI spectrum and the calculated theoretical
irradiation, either being considerably lower or excessively higher. This deviation is at-
tributed to various atmospheric factors, such as intense cloud reflection and inhibitors that
impede the passage of solar radiation, thereby impacting the accurate determination of
incident radiation.
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Furthermore, there exist days when the data sample is not applicable, as it only
accounts for around 25% of the daily measurements or lacks any recorded measurements.
This situation arises due to various factors such as the unavailability of electrical power to
the measurement system, the presence of animals, or the presence of fixed obstacles that
hinder and obstruct radiation inference during that specific time frame. By implementing
this approach, the occurrence of outliers is reduced, leading to an improved statistical
analysis and the categorization of days into distinct groups.

Following the examination of the raw GHI sample, several tests were conducted to
determine the K∗

t . The clear sky index exhibited excellent values, aligning closely with
the theoretical light sky irradiation spectrum, making it an ideal choice. The data for the
K∗

t underwent analysis using various techniques for inferring measurement errors. Once
again, the K∗

t data were visualized, along with their daily behavior. Ultimately, the model’s
conceptualization led to the determination of an increment in the clear sky index (∆K∗

t ).
Finally, spatial and temporal meta-analyses of K∗

t were performed to assess the accessibility
of solar energy in the study region.

2.2. Study Area

The research area, which is situated in the south and mid region of Mozambique,
spans between the 10◦27′ and 26◦52′ south latitude parallels and the 30◦12 and 40◦51′
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east longitude meridians. Within this region, eight stations, namely Maputo–1, Ndindiza,
Massangena, Pembe, Chipera, Nhamadzi, and Barue, have been established. Table 1
provides detailed information about the latitude and longitude of these stations.

Table 1. Location of study stations.

ID Name Number
of Stations Province Longitude Latitude

MZ06 MZ06–Chipera 1 Tete 31◦40′3.4′′ E 14◦58′28.1′′ S

MZ11 MZ11–Nhamadzi 1 Sofala 35◦2′18.7′′ E 19◦43′46.6′′ S

MZ15 MZ15–Massangena 1 Gaza 32◦56′26.7′′ E 21◦34′59.5′′ S

MZ17 MZ17–Ndindiza 1 Gaza 33◦25′22.8′′ E 23◦27′37.1′′ S

MZ20 MZ20–Pembe 1 Inhambane 35◦35′35.5′′ E 22◦56′44.3′′ S

MZ21 MZ21–Barue 2 Manica 33◦13′0.8′′ E 17◦47′32.5′′ S

MZF01 MZF01–Maputo–1 1 Maputo City 32◦9′39.8′′ E 23◦55′7.8′′ S

Figure 4 displays the topographic profile of the south, mid region, highlighting the
various measuring stations. The purpose of preparing the sample was to perform calcula-
tions using data collected between the time the sun rises and sets. The sample was obtained
from the FUNAE campaign, specifically from Maputo–1–Maputo City, Ndindiza–Gaza,
Massangena–Gaza, Pembe–Inhambane, Nhamadzi–Sofala, Barue–Manica, and station
Chipera–Tete. The sample consists of three years of complete measurement data from 2012,
2013, and 2014, starting from the sixth month of each year. Therefore, the data only cover
the months from June to December. In 2013 and 2014, the data include measurements for all
months of the year. In total, there are approximately 315,360.0 daily radiation data points
in the useful area.
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During certain months, there may be fluctuations in the data, such as missing values for
a specific period or half of the month. To address this, a priori classification was necessary.

An example of this classification can be seen in Figure 5, which shows the process
of selecting days for an applicable case at the Barue−1 station in 2013. This process was
carried out among all four stations whose data samples were analyzed.
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2.3. Experimental Procedure

Solar radiation fluctuates during the day, influencing the daily and annual evaluations
of solar energy on the Earth’s surface. The equation of time and the distance from the
standard meridian are measured in minutes, offering a precise representation of energy
distribution throughout the seasons. This correlation is illustrated by Equation (1), with the
time equation variable E indicating the 60 min variation between summer and standard
time [1,46].

E = 229.2 × (0.000075 + 0.001868 × cos(B)− 0.032077 × sin(B)− 0.014615 × (2 × cos(B))− 0.04089 × (2 × sin(B)) ) (1)

The number of days in a given year, denoted as n, varies between 1 and 365. In
Equation (1), the parameter B is determined by the formula B = (n − 1)× (360/365) [16].
It is crucial to consider the solar angle coordinates when analyzing the sun’s position at a
specific time of the day. To compute the direct normal irradiance (DNI) under clear sky
conditions at an altitude above 2.5 km, Equation (2) can be used to relate the incoming
radiation to the measurement on the horizontal surface of the earth [1,2,47].

Gcnb = Gonτb (2)

Equation (2) defines Gon as the extraterrestrial radiation received by a plane perpen-
dicular to the radiation on a given day, as stated in Equation (3) [27,28].

Gon = Gsc

(
1 + 0.0033cos

(
360n
365

))
(3)

The evaluation of the daily radiation’s efficacy was conducted by calculating the
standard direct horizontal radiation. This measurement is derived from the sum of di-
rect horizontal radiation received from clear skies, showcasing the potential fluctuations
throughout the day as denoted by Equation (4) [16]. By transforming the correlation of
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Equation (4), it is possible to depict the direct radiation instead of the currently analyzed
direct radiation [1,2].

Icb = Ionτbcos θz (4)

Ion represents the extraterrestrial radiation incident on a regular plane, while τb denotes
the atmospheric transmittance for the incident radiation, and θZ represents the zenith
angle [48].

It has been observed that the presence of GHI is reduced during sunrise and sun-
set. Nevertheless, there is a notable surge in the occurrence of solar energy during the
peak period.

The analyzed days are within the range of theoretical radiation distribution under
clear skies, conforming to a Gaussian curve. To link GHI with clear sky radiation, the
clear sky index K∗

t was introduced. This index signifies the correlation between GHI and
theoretical radiation under clear skies, which pertains to the irradiation from the Earth’s
atmosphere on cloudless days [32], as shown in Equation (5) [2,49].

K∗
t =

GHI
GClear

(5)

GClear is the total radiation received on a horizontal surface, which includes both direct
and diffuse radiation within an hour. The average value was determined using the GHI
measurement interval of one day (amplitude) with M measurement intervals to categorize
various sky types, as described in Equation (6) [1,47,50].

K∗
i =

1
M

M

∑
t=1

K∗
t (t) (6)

Figure 6 illustrates the flawless progression of the daily course, perfectly matching
the theoretical frequency density and frequency of the clear sky index averages derived
from Equation (6). This demonstrates an ideal representation of the experimental treatment,
sample selection, and the utilized clear sky index algorithm [2,51].
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Figure 6. Progression of the daily K∗
t values over time.

To assess the fluctuations in temporal variability, a metric is employed to compute
the disparity between the present and preceding clear sky index values [27,50]. To guar-
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antee precise outcomes, a time interval of ten minutes was incorporated to discern the
dissimilarity between two consecutive measurements, as depicted in Equation (7) [13,49].

∆K∗
t = K∗

t+1 − K∗
t (7)

The statistical software produced different outcomes when adjusting the modeled K∗
t

values, however, it successfully enhanced the accuracy of the analysis and RMSE (Root
Mean Squared Error), with a 30% margin of error. The nominal variance was evaluated by
computing the standard deviation of K∗

t and ∆K∗
t as depicted in Equation (8) [2,52,53].

σ(∆K∗
t ) =

√
var
[
∆K∗

t ∆t
]

(8)

The GHI and Total Theoretical Radiation spectra were employed chronologically to
detect a maximum of 10 days in which GHI closely corresponded to Total Theoretical
Radiation, signifying satisfactory performance. Likewise, the same approach was used to
identify unsatisfactory days. The probability density function f (x) was determined using
the Kernel Density estimation function (PDF) [2].

The days selected for each month were arranged in a table that included the day
reference, the average value of K∗

t , σK∗
t , and f (x).

Subsequently, the graphical representation of the spectrum of K∗
t was plotted against

σK∗
t , K∗

t , and f (x). This allowed for the calculation of the average values of ∆K∗
t . By

analyzing the graphs, the sample was categorized into different classes. Cloudy days were
identified as those with horizontal and vertical coordinates falling within the range before
the average of K∗

t and below σK∗
t . Clear sky days were defined as those with coordinates

falling within the range after the average of K∗
t and below σK∗

t . Lastly, intermediate sky
days were defined as those with coordinates above the σK∗

t values, regardless of the K∗
t

values, as shown in Figure 7.
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Figure 7. Classification of the days of each month of the year, using average values of K∗
t , σK∗

t , and f (x).

New spectra were generated by tallying and analyzing various types of days, such
as clear, cloudy, and intermediate. These spectra were then displayed in a bar graph. The
main objective of this analysis was to determine the month with the highest occurrence
of clear and cloudy days. The values of ∆K∗

t were recorded for each day classification.
Following this, frequency density histograms were produced to depict the distribution
of ∆K∗

t values across the three categories of days. By examining these histograms, the
variability of specific days was evaluated for each day throughout the chosen year.
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To observe the accumulation of days across all classes simultaneously, histograms
were created. These histograms plotted the variation of K∗

t against frequency density for
each type of day in each year. Different values of K∗

t were examined for different types of
days (clear, intermediate, and cloudy), establishing a connection based on the correlation
coefficient distance or systematic relationship of the clear sky index ρ

∆K∗
t

ij , as presented in
Equation (9) [10,54].

ρ
∆k∗t
ij =

cov
(

∆K∗
t,i(t), ∆K∗

t,j(t)
)

σ∆K∗
t,i(t)

σ∆K∗
t,j

(9)

The increments and corresponding arithmetic averages of the time series between
two locations i and j, denoted as ∆K∗

t,i(t), ∆K∗
t , j(t) and ∆K∗

t,i, ∆K∗
t,j, respectively, were

analyzed [2,49].
Statistically, the inequality −1 ≤ ρ

K∗
t

ij ≤ 1 holds true. Spatially, when considering
a subspace station located between two points x and y, the randomized values related

to x + y can be expressed as σx+y =
√

σ2
x + σ2

y + 2χxyσxσy. It is important to note that
σ∆k∗t,i(t)

̸= 0 and σ∆k∗t,j
̸= 0 [54,55].

The difference in points between the two sets of measurements was denoted as t.
Likewise, the relationship or consistent link between the changes in the clear sky index
ρ

∆k∗t
ij was examined [2,15].

The correlation study involved two equidistant measuring stations, starting from the
Maputo–1 station and continuing to the Ndindiza, Massangena, Pembe, Barue–1, Barue–2
stations, with the evaluation endpoint being the Chipera station, from FUNAE’s GHI
measurement campaign [56]. The systematic correlation of clear sky index increments was
assessed through the systematic correlation connection ρ

∆K∗
t

ij .
Initially, this comparison was made with the spatial correlation coefficient model

proposed by Marcos et al. (2011) [52] and Barry et al. (2017) [57].

ρ
∆K∗

t
ij = exp

(
t−1dijln(0.2)

1.5

)
(10)

In the study region, the spatial correlation coefficient model suggested by Hoff and
Perez (2012) [12] was employed, incorporating a range of relative cloud speed values
between 4 m/s and 6 m/s.

ρ∆k∗t =

(
1 +

dij

t.v

)−1

(11)

Furthermore, within the study area, the spatial correlation coefficient model proposed
by Duffie & Beckman (1991) [1] was also employed. This model has the capability to
accurately depict the decorrelation curves for various frequencies, based on either predeter-
mined or specified values of k∗t . This relationship is defined in Equation (12) [1].

ρ∆k∗t =
exp
(

γ∆k∗t, min

)
− exp(γ∆k∗t )

exp
(

γ∆k∗t, min

)
− exp

(
γ∆k∗t, max

) (12)

The parameter γ is employed for explicit correlation curve fitting. The examination
focused on the accessibility of solar energy, analyzing the distribution patterns throughout
the year and classifying the number of days as acceptable, unacceptable, or non-applicable,
based on the relationship described in Equation (13) [1,16,27].

K∗
t =

1
Gcleari

(
n

∑
i=1

DNIi +
n

∑
i=1

DHIi

)
(13)
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Over the years, the data measurement has consistently yielded exceptional data with
minimal imperfections. Particularly, the year 2012 stood out across all aspects, producing
remarkable outcomes.

A quantitative chart was formulated to depict the highest percentage and the most fa-
vorable days, which were distinguished by clear skies and frequent incidents. Furthermore,
by examining the peak of the probability density function derived from the kernel density
estimation for each day within the designated study area, the cloudiest day was identified.

The determination of the average area’s variability and its changes, which were based
on the average area A, were assessed by employing random circle sampling in the southern
and mid regions of the east-channel of Mozambique. This evaluation was conducted using
Equation (14) [2,47].

σ̂∆k∗ =
σ

∆K∗
t

area

σ
∆K∗

t
0

(14)

where, σ̂∆k∗ represents the normalized standard deviation of the clear sky index increment,
which may originate from the initial clear sky index; σ

∆K∗
t

area denotes the standard deviation
of the clear sky index increase within the research area, while σ

∆K∗
t

0 stands for the standard
deviation of normalization over a one-minute time interval [10]. The normalized values of
the average area quantities’ variability, in relation to the standard deviation, were employed
to evaluate their significance and any alterations.

Finally, the analysis of solar energy accessibility in the central-eastern region of Mozam-
bique was conducted, focusing on the applicability of various methods in comparison to
linear regression. The regression matrix and other factors were considered in this assess-
ment, given in Equation (15) [58,59].

Y =


Y1

Y2
Y3
. . .
Yn

 (15)

Y has dimensions of n × 1 [60]

X =


X11
X21

X12
X22

X1z
X2z

. . . . . . . . .
Xn1 Xn2 Xnz

 (16)

while X has dimensions of n × z + 1 [58].

β =


β0
β1
. . .
βz

 (17)

There are α and p explanatory variables, β is a matrix of size z + n × 1 of explanatory
variables with β0 constants, α and ε are matrices of n × 1 residuals [61,62].

ε =


ε0
ε 1

. . .
εz

 (18)
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The computerization for analysis in terms of logarithmic regression observed the
existence of a trend of a greater deviation of pairs of stations for other types of regression
models [63].

3. Results
3.1. Occurrence Content and Categorization of Varieties of Days

In the process of classifying acceptable days, as illustrated in Figure 8, for Nhamadzi
and Barue–1 stations in 2012, there is a greater focus on the maximum values of K∗

t during
the hot season and the minimum values during the cold season. This is in contrast to
what is observed on unacceptable days, as shown in Figure 9. Unacceptable days for the
Nhamadzi station in 2012 and 2013 lack consistency in the timing of their measurements
due to various influencing factors. It is essential to identify the days with the highest and
lowest levels of radiation, as they play a crucial role in determining the success of both
independent solar power systems and those connected to the conventional electrical grid.
This information aids in sizing the system based on the availability of solar energy in the
area. During periods of higher radiation, surplus energy can be generated and utilized for
other purposes, such as injecting it into the electrical grid. The categorization of permissible
and impermissible days plays a significant role in producing a well-structured ultimate
evaluation. It discloses that Maputo–1 and Chipera stations encounter the most frequent
instances of cloudless conditions, succeeded by Nhamadzi and Pembe. Lastly, Barue–2,
Barue–1, Ndindiza, and Massangena each possess distinct attributes.
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Figure 8. Scatter diagram for classifying acceptable days for all months of the year, using the values
of K∗

t , σK∗
t , and f (x) for each day: Nhamadzi Station in 2012 (a) and Barue–1 Station in 2012 (b).
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Chipera station in Tete: (1) The year 2012 saw acceptable days with varying K∗
t values,

ranging from a minimum of 0.39 in July to a maximum of 0.99 in November. Cloudy days
were limited to 0.82, while lower and upper intermediate sky days were restricted to 0.79
and 0.87, respectively. Clear sky days were limited to 0.94. On the other hand, unacceptable
days in 2012 had K∗

t values ranging from 0.22 in August to 0.81 in September. Cloudy
skies were limited to 0.45, lower and upper intermediate skies to 0.54 and 0.68, and clear
skies to 0.79. (2) Moving on to 2013, acceptable days displayed a minimum K∗

t of 0.51 in
June and a maximum of 0.82 in January. Cloudy days were limited to 0.63, while lower
and upper intermediate skies were restricted to 0.67 and 0.74, respectively. Clear days
were limited to 0.83. Unacceptable days in 2013 had a minimum K∗

t of 0.25 in May and a
maximum of 0.76 in July. Cloudy skies were limited to 0.39, lower and upper intermediate
skies to 0.51 and 0.64, and clear sky to 0.76. The Nhamadzi station in Sofala experienced
varying levels of acceptable and unacceptable days in 2012, 2013, and 2014. In 2012, the
minimum K∗

t was 0.64, observed in December, while the maximum was 0.92, also observed
in December. Cloudy days were limited to 0.77, with lower and upper intermediate skies
limited to 0.81 and 0.84, respectively. Clear days were limited to 0.91. Unacceptable days
had a minimum K∗

t of 0.0001, observed in September and a maximum of 0.84, observed in
October. Cloudy days were limited to 0.43, with lower intermediate skies at 0.46 and upper
intermediate skies at 0.0001. Clear skies were limited to 0.82. In 2013, only unacceptable
days were recorded, with a minimum K∗

t of 0.04 observed in December and a maximum of
0.14 observed in June. Cloudy days were limited to 0.08, with lower and upper intermediate
skies at 0.09 and 0.11, respectively. Clear skies were limited to 0.14. Finally, in 2014, only
unacceptable days were observed, with a minimum K∗

t of 0.07 in January and a maximum
of 0.12 in May. Cloudy days were limited to 0.08, with lower and upper intermediate skies
at 0.09 and 0.12, respectively, and clear skies at 0.12.

The Barue–1 station in Manica experienced varying levels of acceptable and unac-
ceptable days from 2012 to 2014. In 2012, the minimum K∗

t value for acceptable days
was 0.08 in December, while the maximum was 0.89 in July. Cloudy days were limited
to 0.62, lower and upper intermediate sky days to 0.66 and 0.78, and clear sky days to
0.89. On the other hand, unacceptable days had a minimum K∗

t of 0.11 in October and a
maximum of 0.71 in September. In 2013, the minimum K∗

t for acceptable days was 0.28 in
October, with a maximum of 0.94 in August. Cloudy days were limited to 0.61, lower and
upper intermediate days to 0.66 and 0.78, and clear days to 0.94. Unacceptable days had
a minimum K∗

t value of 0.09 in September and a maximum of 0.93 in October. Finally, in
2014, the minimum K∗

t for acceptable days was 0.41 in December, with a maximum of 0.94
in April. Cloudy days were limited to 0.61, lower and upper intermediate skies to 0.68 and
0.76, and clear skies to 0.94. Unacceptable days had a minimum K∗

t of 0.16 in September
and a maximum of 0.62 in October.

In Manica, the Barue–2 station recorded varying levels of acceptable and unacceptable
days in the years 2012, 2013, and 2014. For instance, in 2012, the minimum K∗

t observed
was 0.47 in September, while the maximum was 0.98 in November. Cloudy days were
limited to 0.62, lower and upper intermediate skies to 0.69 and 0.75, and clear skies to 0.98
on acceptable days. Conversely, unacceptable days had a minimum K∗

t of 0.13 in October
and a maximum of 0.67 in September. Cloudy days were limited to 0.41, lower and upper
intermediate skies to 0.48 and 0.55, and clear skies to 0.67. The trends continued in 2013
and 2014 with varying K∗

t values and sky conditions on acceptable and unacceptable days.

Quantitative Analysis of Different Categories of Days

The percentage of acceptable days shown in Figure 10, and the percentage of unaccept-
able days also shown in Figure 11, indicates a higher quantity of clear and intermediate sky
days, and a lower quantity of cloudy days. This enhances the presence of solar energy in
the region for photovoltaic utilization as well as other purposes, quantified by the following
proportions:
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Figure 10. Quantification of day types and temporal distribution diagram for classifying the months’
days, using the values of K∗

t , σK∗
t , and f (x) for each day, at the Chipera Station in 2012.
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Figure 11. Quantification of types of unacceptable days and temporal distribution diagram for
classifying day types of months, using the values of K∗

t , σK∗
t , and f (x) for each day at the Nhamadzi

Station in 2012.

At the Maputo–1 station in 2012, 53.0% of days were acceptable, with 13.0% clear,
11.0% cloudy, and 29.0% intermediate days. Of the unacceptable days, 49.0% were recorded,
with 28.0% clear, 19.0% cloudy, and 28.0% intermediate days.

At the Pembe station in 2012, 68.0% of days were acceptable, with 19.0% clear, 18.0%
cloudy, and 30.0% intermediate days. Of the unacceptable days, 41.0% were recorded, with
10.0% clear, 12.0% cloudy, and 21.0% intermediate days. These days are comparable for the
days at the stations of Ndindiza and Massangena.

At the Nhamadzi station in 2012, 60.0% of days were acceptable, with 15.0% clear,
16.0% cloudy, and 28.0% intermediate days. Of the unacceptable days, 41.0% were recorded,
with 10.0% clear, 12.0% cloudy, and 21.0% intermediate days. In 2013, no acceptable days
were recorded. However, 100.0% of days were unacceptable, with 25.0% clear, 25.0% cloudy,
and 50.0% intermediate days. Lower intermediate sky accounted for 24.0% and upper
intermediate sky for 26.0%. In 2014, no acceptable days were recorded. A total of 100.0%
of days were unacceptable, with 26.0% clear, 26.0% cloudy, and 48.0% intermediate days.
Lower intermediate sky was 24.0% and upper intermediate sky was 26.0%.

At the Barue–1 station in 2012, 56.0% of days were acceptable, with 15.0% clear, 16.0%
cloudy, and 26.0% intermediate days, including 15.0% lower intermediate sky and 11.0%
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upper intermediate sky. On the other hand, 44.0% of days were unacceptable, with 11.0%
clear, 11.0% cloudy, and 21.0% intermediate days, including 11.0% lower intermediate sky
and 10.0% upper intermediate sky. In 2013, 56.0% of days were acceptable, with 14.0% clear,
14.0% cloudy, and 27.0% intermediate days, including 14.0% lower intermediate sky and
13.0% upper intermediate sky. Meanwhile, 44.0% of days were unacceptable, with 12.0%
clear, 10.0% cloudy, and 23.0% intermediate days, including 15.0% lower intermediate
sky and 11.0% upper intermediate sky. Lastly, in 2014, 58.0% of days were acceptable,
with 15.0% clear, 15.0% cloudy, and 29.0% intermediate days, including 16.0% lower
intermediate sky and 10.0% upper intermediate sky. On the other hand, 42.0% of days
were unacceptable, with 13.0% clear, 11.0% cloudy, and 18.0% intermediate days, including
19.0% lower intermediate sky and 7.0% upper intermediate sky.

At the Barue–2 station, the breakdown of acceptable and unacceptable days varied over
the years. In 2012, 56.0% of days were acceptable, with 13.0% clear, 14.0% cloudy, and 26.0%
intermediate. On the other hand, 44.0% of days were unacceptable, with 12.0% clear, 11.0%
cloudy, and 20.0% intermediate. Moving on to 2013, 52.0% of days were acceptable, with 13.0%
clear, 15.0% cloudy, and 28.0% intermediate. Meanwhile, 48.0% of days were unacceptable,
with 11.0% clear, 11.0% cloudy, and 22.0% intermediate. Finally, in 2014, 52.0% of days were
acceptable, with 12.0% clear, 13.0% cloudy, and 27.0% intermediate. Conversely, 48.0% of days
were unacceptable, with 12.0% clear, 13.0% cloudy, and 27.0% intermediate.

At Chipera station in 2012, out of the total 62.0% of acceptable days, 15.0% were clear
days, 15.0% were cloudy days, and 31.0% were intermediate days, with 16.0% of lower
intermediate sky and 14.0% of upper intermediate sky. On the other hand, of the total 38.0%
of unacceptable days, 9.0% were clear days, 10. 0% were cloudy days, and 19.0% were
intermediate days, with 10.0% being lower intermediate sky and 8.0% upper intermediate
sky. In 2013, out of the total 52.0% of acceptable days, 12.0% were clear days, 15.0% were
cloudy days, and 27.0% were intermediate days, with 15.0% lower intermediate sky and
12.0% upper intermediate sky. Conversely, of the total 48.0% of unacceptable days, 12.0%
were clear days, 12.0% were cloudy days, and 24.0% were intermediate days, with 13.0%
being lower intermediate sky and 11.0% upper intermediate sky.

3.2. Correlation of the Clear Sky Index Coefficient between Station Sensor Pairs

The spatial autocorrelation of the clear sky index coefficients, in relation to the distance
between the pair of pyranometers dij, shows a decrease for both acceptable and unaccept-
able days as illustrated in Figure 12. This decrease is observed across different classes
of days, including clear (Figure 12a), cloudy (Figure 12b), intermediate (Figure 12c), and
all types of days when considered together. Specifically, the decrease in autocorrelation
occurs as the distance between the pair of dij sensors increases along the eastern channel of
Mozambique, from the Province of Maputo to Inhambane and the Province of Sofala.

It is worth noting that a global analysis also confirms this result, although there are
some fluctuations. These fluctuations were also observed in the study conducted by Marcos
et al. (2015) [52], which focused on the spatial-temporal evaluation of solar energy. In
their study, a high number of radiometers were used, spaced closely together, and the
classification of types of days was based on a variability index. Interestingly, the correlation
between correlation coefficients resulted in a decorrelation pattern as the distance between
the sensors increased.

Similar results were obtained by Lohlman et al. (2018) [10] in their study of an area with
a large number of pyranometers. They found numerous decorrelative correlation points,
further supporting the observed decrease in autocorrelation with increasing distance.

In the examination of interprovincial distances, as well as interprovincial and interre-
gional kilometers depicted in Figure 12, it is observed that the decline in solar energy levels
varies significantly across different stations. The Maputo–1 and Nhamadzi stations show a
substantial decrease, while Ndindiza, Barue–1, and Barue–2 exhibit a lesser decline. On
the other hand, Pembe and Chipera stations are positioned above the adjusted correlative
curve, displaying high solar energy intensity with occasional deterministic fluctuations.
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The decline is particularly noticeable on days deemed unacceptable, where sudden
experimental GHI values are observed, which are uncommon in measurements. These
findings suggest that the record-breaking decrease may be attributed to solar radiation
caused by solar flares and other extraordinary solar events.
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Figure 12. Systematic connection between stations throughout the southern and mid region of Mozambique
for acceptable days of the following types: (a) Clear sky; (b) Cloudy sky; and (c) Intermediate sky.

3.3. The Temporal Assessment of the Clear Sky Index and Its Increments

Figure 13 displays the growth pattern of the clear sky index over time intervals of 1
and 10 min. Prior to this analysis, the three types of sky (clear, intermediate, and cloudy)
were categorized, and the results were examined simultaneously for all three types. The
probability density functions (PDFs) exhibit a concentrated peak at the center, indicating
a high likelihood of increments. The PDF gradually decreases and widens on either side,
forming extensive tails. This pattern aligns with previous findings by Lave and Kleissl
(2010) [64] and van Haaren et al. (2014) [65], who conducted comprehensive studies using
numerous pyranometers in measurement campaigns. These studies provided a clearer
understanding of the subject compared to solar plants, highlighting the impact of plant
capacity on increment variations. Consequently, this analysis sheds light on the probabilistic
fluctuations of the clear sky index, which pose a significant challenge to solar efficiency
and the overall output of solar plants.
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Figure 13. Distribution of ∆K∗
t variability on acceptable and unacceptable days.

The evaluation of solar energy accessibility in various stations along the eastern
channel of Mozambique reveals distinct patterns depending on the weather conditions. On
cloudy days, there is a prominent central peak with less pronounced tails. Similarly, clear
sky days exhibit a strong central peak, but with taller, broader, and flatter tails. On days
with intermediate sky conditions, the central peak is wider and the tails are much flatter.
These observations indicate that there is a higher probability of experiencing significant
changes in cloud cover, leading to large excursions in solar energy availability. However,
the probability density graph demonstrates a gradual decrease, as the frequency of ∆K∗

t
values outside the range of [–1,1] is higher. This suggests that there is a higher likelihood of
transitioning from cloudy to clear and then to intermediate skies.

The frequency of values close to zero, as depicted in Figure 14, is lower on clear
sky days and higher on cloudy sky days. However, they can also occur on days with
intermediate sky conditions and sporadically in the assessment conditions of all three sky
types. Conversely, the occurrence of values near 1 is more common in clear sky conditions,
occurs occasionally in intermediate conditions, and occurs sporadically when observing all
three sky types, with a reduced frequency in cloudy sky conditions.
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Figure 14. Distribution of K∗
t variability on clear sky days.

3.4. Correlation of Two-Point Increments Using Different Methods

To thoroughly examine the spatio-temporal and regression aspects of the entire field
in the study area, we conducted an analysis on the correlation between two points using K∗

t
increment coefficients. In Figure 15, we specifically focused on pairs of sensors that shared
the same type of sky. For instance, Figure 15a illustrates the correlation coefficients of the
clear sky index as it relates to the distance between sensor pairs at clear days.

In Figure 15, the incremental correlation structure relative to the length scale of inter-
provincial study distances is demonstrated, resulting in a decorrelation of the clear sky index
coefficient along the analysis path. The solar radiation sample is defined as the minimum dis-
tance from the point of origin of the measurement campaign where the correlation coefficient
of the clear sky index equals 0.30, determined after evaluating solar radiation and classifying
different types of classes that converge to the same coefficient mean.

The correlation distances between fixed station points generally increase with longer
time intervals, transitioning from less predominant cloudy conditions to more prevalent
clear skies, and then to intermediate sky conditions, which are mostly prevalent in almost
all stations in the channel-east region of Mozambique (a potential issue in the utilization of
solar energy).

The data in Figure 15a,b show a smooth decorrelation mechanism under varying sky
conditions with K∗

t increments and short time intervals t = 1 min. However, Figure 15c
displays a measurable decorrelation for intermediate sky types (Most models are not
capable of capturing the correlation structure for intermediate sky conditions). Furthermore,
when considering all sky types in each season, a decorrelation of solar energy is evident
along the eastern canal section.
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Figure 15. Spatial correlation coefficients of two stations along the southern and mid region of Mozam-
bique for acceptable days of the following types: (a) Clear sky, (b) Cloudy sky, and (c) Intermediate
sky [1,12,52,54].

In a separate analysis, the Maputo station exhibits a high energy content extending
south of Inhambane, while in the mid region of the east−channel of Mozambique Nhamadzi
shows even higher energy content running along an adjusted curve towards the Chipera
station. These findings highlight the variations in energy distribution across different
locations in the region, supported by correlation validation methods such as those used
by Marcos et al. (2011) [52] and Hoff & Perez (2010) [13] for cloud speeds up to 6 m/s.
The decorrelation patterns observed align with the model proposed by Wilson & Tanaka
(2018) [54], indicating that decorrelation can be smooth on clear days and cloudy, or
measurable for intermediate sky conditions. Duffie & Beckman, (1991) [1] also discovered
the aspect related to solar energy decorrelation.

By increasing the decorrelation length, the correlation decay or effective decorrelation
for short scale distances d = tv

(
ρ−1 − 1

)
can be enhanced. For a correlation coefficient of

approximately 0.30, this adjustment corresponds to an intermediate value of model speed.
However, beyond this point, correlations diminish at a much quicker rate ranged in 0.6 and
0.8 km for velocities next to 4 and 6 m/s.

3.5. Accessibility from a Regressive and Correlative Point of View of Solar Energy

The comparison of the theoretical radiation in clear skies and the horizontal exper-
imental global solar radiation on the earth’s surface in the southern and mid region
of Mozambique, based on annual observations in 2012 with consistent measurements
(Figure 16), indicates that the Nhamadzi and Chipera stations have the highest potential
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for full solar radiation availability, with approximately 68.0% and 67.0% of acceptable days,
respectively. Following closely are the Barue–2 and Barue–1 stations, with around 57.0%
and 55.0% availability.
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at the Ndindiza station in Gaza.

The correlative analysis revealed a decorrelation of energy in the southern region from
Maputo–1 to Pembe and in the central region from Nhamadzi to Chipera. However, when
considering the entire section, the decorrelation is intertwined with energy fluctuations in
the central region of the channel. The standard decorrelation curve reflects the average
accessibility of the stations, with Ndindiza, Massangena, Barue–1, and Barue–2 stations
prevailing in the intermediate region of the decorrelation. These stations exhibit charac-
teristics that suggest potential for utilizing solar energy and an average of over 50.0% of
the estimated average incidence energy availability in the study area. Figure 16, which
is applied to the Ndindiza station, serves as an example illustrating the true intensity of
energy accessibility in the region through acceptable and unacceptable days. The latter
are influenced by various factors such as multiple reflections of solar radiation, cloud
cover, solid particles in the atmosphere, and dispersion that may affect the readings of the
radiometers. Despite these challenges, they do not pose significant obstacles. Additionally,
conducting a group analysis of unacceptable days, after eliminating outliers, in conjunction
with acceptable days, enhances the overall feasibility of the study.

In the southern region, the evaluation of acceptable days shows that the Pembe,
Ndindiza, and Massangena stations have higher levels of access to solar energy with an
estimated potential of 81.0%, 73.0%, and 72.0%, respectively. The Maputo–1 station has a
slightly lower estimated access of 62.0% due to incomplete sampling. When it comes to
unacceptable days, Ndindiza and Massangena stations show a greater potential for the
accessibility of solar energy at around 23.0% and 18.0%, while Pembe and Maputo–1 have
potentials of around 20.0% and 18.0%, respectively.

Moving on to the central region, the evaluation of acceptable days reveals a lower
potential for solar energy accessibility at the Barue–1 and Chipera stations, with estimates
of around 68.0% and 67.0%, respectively. The average potential in Barue–2 and Chipera
is around 57.0% and 55.0%. In terms of unacceptable days, Barue–1 and Barue–2 show a
higher accessibility potential of around 15.0% and 26.0%, while Chipera and Nhamadzi
have lower potentials of 14.0% and 26.0%, respectively.

The region’s remarkable access to solar energy, particularly for electrification and other
purposes, highlights the prevalence of solar energy and its impact on uneven heating. This
leads to the movement of air masses from areas with higher solar energy accessibility to
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those with less, in an effort to achieve equilibrium. However, the seasonal variations along
the decorrelation curve, characterized by both high and sometimes moderate features,
result in fluctuations in solar energy. These fluctuations are primarily caused by various
atmospheric phenomena that significantly diminish the amount of solar energy reaching
the Earth’s surface. This ultimately affects the overall enjoyment of solar energy.

3.6. Variability in the Standardized Deviation of the Clear Sky Index and Its Increment

The availability of solar energy in the east−channel region of Mozambique is determined
to be the most prevalent, with over 50.0% of the total power estimated in each station.
The standardized assessment of the variability in average area quantities in relation to the
relative standard deviation indicates that the reduction in variability is more rapid for shorter
increments of time compared to longer ones. This trend is illustrated in Figure 17. However,
the decrease in variability is slower for cloudy conditions than for other types of skies.
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Figure 17. The normalized standard deviations for the area’s increments, in both the acceptable
and unacceptable days, are observed for two factors: (a) the clear sky index and (b) the clear sky
index increments.

This study examines the daily deviation patterns each year in relation to different
categories of days susceptible to deterministic fluctuations. In Figure 17a, it is evident
that days deemed acceptable exhibit a strong correlation and high values of normalized
deviation and the clear sky index, along with an increase in accuracy in their quantification.
Conversely, unacceptable days display a noticeable correlation, with significantly lower
values of normalized deviation and the clear sky index, as well as a smaller increase,
indicating lower precision in their dispersion due to various factors.
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However, Figure 17b demonstrates that there is a gradual decrease in the relative
variability of acceptable days for both the normalized deviation of the K∗

t and its increment.
This decline becomes noticeable as the K∗

t deviates towards less than 0.3. Furthermore,
the analysis of unacceptable days reveals an irregular decrease, but still within the same
order of clear sky indices. This irregularity is due to the range of values represented by
this lineage.

Nevertheless, in the southern and mid regions of Mozambique, the energy decorrela-
tion tends to follow a normalized deviation pattern that aligns with the energy decorrelation
along the eastern-channel, as observed in the selected stations. This indicates above-average
accessibility to solar energy with a regular distribution. However, it is crucial to accurately
quantify the extreme fluctuations in solar irradiance in order to address various issues that
may arise in the operation of a solar plant.

3.7. Regression of the Clear Sky Index and Its Increments

In the mid region of Mozambique, there is a significant occurrence of high PV power.
The analysis of solar energy regression in the eastern−channel of Mozambique ex-

amines the relationship between solar energy in that particular region. In Figure 18, the
regression is presented for days with acceptable solar energy levels, whereas Figure 19 dis-
plays the deviation from the regression for unacceptable days. This deviation is measured
in terms of clear sky index regression coefficients.
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Figure 18. Illustrates the regression analysis conducted on pairs of states within the eastern canal
region of Mozambique, specifically focusing on acceptable days, in the conditions of: (a) clear sky
days, (b) cloudy sky days, (c) intermediate sky days and (d) all sky days.
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Figure 19. Regression analysis performed on pairs of stations within the channel-east region of
Mozambique, but this time focusing on unacceptable days, in the conditions of: (a) clear sky days,
(b) cloudy sky days, (c) intermediate sky days and (d) all sky days.

The regression coefficients for the clear sky index and their increase for acceptable days
are, R2 = 0.8 and 0.88 for clear days as depicted in Figure 18a, R2 = 0.7 and 0.8 for cloudy days
as depicted in Figure 18b, R2 = 0.7 and 0.8 for intermediate sky days as depicted in Figure 18c,
and R2 = 0.7 and 0.7 for all sky types as depicted in Figure 18d. For unacceptable days, the
regression coefficients for, for clear days R2 = 0.7 and 0.7 as depicted in Figure 19a, for cloudy
days R2 = 0.6 and 0.8 as depicted in Figure 19b, intermediate sky days are R2 = 0.7 and 0.8 as
depicted in Figure 19c, and for all sky types R2 = 0.7 and 0.8 as depicted in Figure 19d.

The trajectory back to the norm is more noticeable on days with intermediate sky con-
ditions, as illustrated in Figures 18c and 19c, in comparison to other types of sky conditions.

The region shows a non-linear regression with a tendency towards logarithmic be-
havior, with a regression coefficient of approximately 0.8 and 0.8 for all types of days.
The regression analysis indicates that the deviation pattern from the normalized curve is
more pronounced on non-acceptable days compared to acceptable days. The regressively
accessible solar energy maintains consistency in relation to correlative access solar energy,
as the linear regression coefficient matrices are standardized and adjusted to logarithmic
models to ensure uniformity in accounting for accessibility on acceptable days.
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4. Discussion

In the south and mid region of Mozambique, there is a significant occurrence of high
PV power under clear and intermediate sky conditions. This is marked by a consistent
increase in the maximum power point (MPP), which poses a threat to the reliability of
the network. In cloudy conditions, PV plants may require hybridization to mitigate the
temporary lack of PV generation, especially when facing high, intermediate, and low PV
fluctuations. Studies conducted by Mucomole et al. (2023) [2] and Zhu et al. (2019) [66]
focus on sizing PV systems for autonomous operations by considering days with the
highest radiation as a key factor for generation (clear days with high radiation and cloudy
days with less radiation). This approach helps in determining the appropriate site size
based on daily energy generation, which can then be injected into the grid. On the contrary,
research by Marcos et al., (2011) [52], Hoff & Perez, (2010) [13], and (Lohmann, 2016) [10]
suggests that clear and intermediate conditions may have adverse effects on the electrical
grid. These studies also quantify the variability of days throughout the year, highlighting
potential patterns such as a hot and rainy season with clear and intermediate days, as well
as a cold and dry season with predominantly cloudy days. Understanding these factors is
crucial for accurately projecting the reliability of PV systems across the region.

The distribution of acceptable days (Figures 8 and 9) exhibits a consistent pattern
compared to unacceptable days (Figures 10 and 11), which are attributed to measurement
errors or external factors like cloud reflections, solar radiation absorption in the atmosphere,
and other interferences observed at the monitoring sites.

The relationship between correlation coefficients and distance is illustrated in
Figures 12 and 15. These coefficients tend to be higher at the starting point in Maputo–1
and Nhamadzi and lower on the arrival route in Pembe and Chipera. Similar findings
have been observed in the research conducted by Perez et al. (2012) [53], which focused on
decorrelation distances below 10 km and temporal lags below 15 min using virtual pyra-
nometer networks. The temporal resolutions of single-point measurements in their study
were as low as 20 s. Additionally, Lohmann, (2018) [49] found that decorrelation distances
for linear distance scale and time intervals may not be applicable to observed multipoint
samples of K∗

t fields at very high spatiotemporal resolutions. Hoff & Perez, 2012 [12] also
support this relationship by presenting a linear scale of decorrelation distances based on
satellite-derived data in Figures 12 and 15.

When comparing intermediate sky days to cloudy and clear skies, it is observed
that intermediate sky days have flatter arms and a higher probability density of strong
fluctuations, as shown in Figure 13. However, Lohmann, (2016) [49] reports that strong
fluctuations can be even greater when considering inclined photovoltaic panels.

The Barue–1 and Barue–2 stations exhibit a potentially higher intermediate energy
power between the Chipera stations compared to Nhamadzi. This difference is attributed to
heat flow transport phenomena, where the mass flow of solar energy follows the seasonal
direction to establish the solar energy balance.

The results of the regression analysis indicate that the deviation pattern from the nor-
malized curve is more pronounced on days that are considered non-acceptable compared
to acceptable days. The accessibility of solar energy, when analyzed regressively, remains
consistent when compared to the accessibility based on correlation. This is achieved by
adjusting the standardized linear regression coefficient matrices to logarithmic models,
ensuring uniformity in accounting for accessibility on acceptable days. In a study con-
ducted by Lam & Li (1996) [58], and Ibrahim et al., (2012) [42] a similar methodology was
employed to investigate the relationship between global radiation and regression. The
findings of this study were highly promising, as they successfully estimated the Global
Horizontal Irradiance (GHI) in a specific area. Similarly, the current study also quantifies
the regression process of solar energy accessibility by inversely correlating a pair of stations.
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5. Conclusions

The electrification of rural areas is being combined with the utilization of clean energy
sources like solar PV energy, which is efficient, clean, and stable. This trend is growing
worldwide, particularly in the south and mid-western region of Mozambique where there
is a lack of access to electricity. However, the implementation of PV systems in this region
has faced challenges, resulting in a short lifespan. These challenges are caused by various
factors that affect the functioning of the systems, including the fluctuation of solar energy
and other important factors that impact the planning and reliability of future PV electrical
networks and other solar energy projects. By analyzing data collected during the FUNAE
campaign in Maputo–1, Ndindiza, Massangena, Pembe, Nhamadzi, Barue (Barue–1 and
Barue–2), and Chipera, the accessibility of and variability in solar energy in the south and
mid-west region of Mozambique were determined on a short-term scale. From this analysis,
the following can be concluded:

The solar energy potential in the south and mid-west region is significant. In 2012, at
the Maputo–1 and Chipera station, approximately 24.74% of the days were clear, 49.48%
were intermediate, and 25.77% were cloudy. Moving on to 2013, the percentages were
estimated as 24.14% clear days, 50.86% intermediate days, and 27.99% cloudy days. At
the Pembe and Nhamadzi station, in 2012, an estimated 25.0% of the days were clear,
48.53% were intermediate, and 27.94% were cloudy. In 2013, the percentages were 25.0%
clear days, 50.0% intermediate days, and 25.0% cloudy days. In 2014, the estimates were
26.0% clear days, 48.0% intermediate days, and 26.0% cloudy days. At the Ndindiza
and Barue–1 station, in 2012, the estimated percentages were 25.93% clear days, 47.22%
intermediate days, and 26.85% cloudy days. In 2013, the estimates were 26.04% clear days,
50.23% intermediate days, and 24.19% cloudy days. Finally, in 2014, the estimates were
28.45% clear days, 47.51% intermediate days, and 25.96% cloudy days. At the Massangena
and Barue–2 station, in 2012, approximately 23.48% of the days were clear, 46.09% were
intermediate, and 24.78% were cloudy. In 2013, the estimates were 24.07% clear days, 50.0%
intermediate days, and 25.93% cloudy days. Lastly, in 2014, the estimates were 24.45% clear
days, 67.28% intermediate days, and 26.20% cloudy days.

The frequency density of values near zero is lower compared to values near 1 on clear
sky days, but this relationship is reversed on cloudy days. On days with intermediate sky
conditions, the frequency density of observations for values near 1 is lower than those near
0.66, and values below 0.02 are observed for K∗

t values near 0. The analysis of all sky types
shows that K∗

t exhibits similar characteristics to other days, and these values fall within the
theoretical radiation spectrum, ranging from −1 to 1.

When the distances between pairs of pyranometers dij exceed 103 km, the solar energy
decrease along the correlative curve is significant in Nhamadzi, and reduced in Barue–1
and Barue–2. However, above the adjusted correlative curve lies the Chipera station.

By calculating the average of the sensor K∗
t increments, one can obtain an approxima-

tion of the output variability in a collection of PV installations situated in different locations.
Nevertheless, it is worth noting that the intermediate sky days pose a greater challenge in
terms of PV power fluctuations and exhibit higher absolute values of ∆K∗

t .
Intermediate sky daytime conditions with significant decay in the K∗

t arms have
demonstrated sub-minute incremental PDFs with more uniform tails and increased likeli-
hood of intense fluctuations compared to overcast and clear skies.

Correlation coefficients typically decline as distance increases and rise with fluctuation
timescales.

The assessment of the Maputo–1 and Chipera stations in 2013, as well as the Nhamadzi
station in 2013 and 2014, faced obstacles due to various factors such as cloud interference and
the obstruction of solar energy measurement. However, the Ndindiza and Barue–1 stations
exhibit a greater potential for solar energy compared to the Massangena and Barue–2 stations.
In 2013, the Ndindiza and Barue–1 station recorded approximately 71 and 65.0% more solar
energy, respectively. Similarly, in 2014, the difference was around 75% and 70.0% more. This
disparity was also observed in both 2013 and 2014, with the Ndindiza and Barue–1 station
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having 63.0% and 64.0% more solar energy, respectively. This variation can be attributed to
the phenomenon of heat flow transport, where solar energy moves in a seasonal direction to
establish equilibrium.

The area exhibits a non-linear regression pattern that leans towards logarithmic be-
havior. The regression coefficient for clear sky and its increment is approximately 0.8 and
0.87, respectively, for all types of days.

6. Patents

This research article appears as one of the first obligations in obtaining a Doctorate
degree in the Doctoral Course in Energy Science and Technology, at Eduardo Mondlane
University, which the main author is attending.
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