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Abstract: The mathematical model of a flexible multistate switch (FMSS) exhibits nonlinear and strong
coupling characteristics, whereas traditional power decoupling control makes it difficult to completely
decouple the output power. The traditional proportional–integral control parameters are difficult
to adjust, and their robustness and dynamic performance are poor, which affects the stability of the
voltage of the power distribution network and feeder power. To address these problems, this study
first converted the original system into a linear system via coordinate transformation using feedback-
accurate linearization to decouple active and reactive currents. Thereafter, a super-twisting sliding
mode control (ST-SMC) algorithm was introduced, and an adaptive quasi-super-twisting sliding
mode control (AQST-SMC) algorithm comprising the quasi-sliding mode function and adaptive
proportional term was proposed. An FMSS double closed-loop controller was designed to achieve
improved vibration suppression and convergence speed. A three-port FMSS simulation model was
developed using MATLAB/Simulink, and the simulation results show that the proposed control
strategy enhances the robustness and dynamic performance of the system.

Keywords: flexible distribution network; flexible multistate switch; exact feedback linearization;
adaptive quasi-super-twisting sliding mode control

1. Introduction

With the generalization of distributed energy sources and new types of load access
to power systems, traditional distribution networks are experiencing problems such as
voltage overruns, bidirectional tidal currents, and feeder power imbalances [1–3]. Flexible
multistate switches (FMSSs), widely used in medium-voltage distribution grids, can realize
continuous and precise power control, improve feeder voltage distribution, and increase
the reliability of grid power supply. Furthermore, they can realize a flexible closed-loop
operation of the distribution system and increase the ability to consume distributed en-
ergy resources [4,5]. Recently, many related studies on FMSSs have been conducted. The
proportional–integral (PI) control strategy has been applied [6]; however, this presents
challenges, such as difficult parameter adjustment and weak anti-interference ability of
multiport FMSSs. In a previous study [7,8], instead of PI control, finite-set model predictive
control (MPC) was proposed, which showed excellent dynamic characteristics and anti-
interference in a steady state along with a high current response speed. However, such
a model presents challenges, such as unstable switching frequency, high control system
computation, and model mismatch. Another study [9] proposed an FMSS-based fault
detection method for distribution networks under grid-side AC faults, in which the tradi-
tional fault management devices were replaced, with the method achieving better dynamic
performance during faults. However, the double closed loop still uses PI control, which is
parameter-sensitive and insufficiently robust.
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FMSSs belong to nonlinear systems exhibiting a strong coupling degree, and it is
challenging to design FMSS controllers by applying traditional control theory. When
feedback linearization is employed, a nonlinear system can be linearized by selecting an
appropriate coordinate mapping method, which can completely decouple the state variables
of the system, thus considerably improving the control performance of the system [10].
Sliding mode control (SMC) is a nonlinear control method that requires a model exhibiting
high accuracy but considerably short response time and high robustness; it has been
widely used in the design of FMSS controllers and observers. In a previous study, second-
order SMC was combined with a nonlinear disturbance observer to design a strategy for
suppressing direct current (DC)-side voltage fluctuations caused by the voltage imbalance
of FMSS ports [11], which resulted in accurate tracking of the reference voltage and current.
However, the nonlinear disturbance observer was sensitive to the system model error
and parameter perturbation, and exhibited poor robustness. A soft open point (SOP)
strategy based on adaptive voltage drop outer-loop control and feedback-linearized sliding
mode inner-loop control was proposed to fully harness the regulation capability of the
converter in the SOP system to avoid reaching the voltage limit [12]. Furthermore, the
strategy was proposed to balance the tidal current in the distribution network. However,
the inner loop uses a conventional first-order linear sliding mode, which may not be
sufficiently robust to external perturbations and uncertainties, leading to a decline in the
control system’s performance. A full-order terminal SMC method was proposed to enhance
system immunity to disturbances by establishing a mathematical FMSS model considering
parameter uptake [13]. However, the full-order terminal sliding mode response was slower
in the initial moments and cases of large nonlinear disturbances. The super-twisting SMC
(ST-SMC) algorithm is a second-order sliding mode algorithm. This algorithm only uses
information about the system state and its first-order derivatives in designing the system
control law, and can be directly used to design controllers and observers for relative-degree-
one systems, which makes it widely applicable in second-order sliding mode control [14].
Moreover, it is more accurate and robust than first-order SMC. Furthermore, extensive
research has been conducted on the mathematical computation of ST-SMC algorithms.
Xu et al. proposed a variable-step closed-loop angle compensation method using the
tangent reaching law based on SMC and the convergence law. Results revealed that the
algorithm exhibited good dynamic compensation performance and disturbance resistance
while maintaining good steady-state compensation accuracy [15]. Maged et al. proposed a
new application of ST-SMC based on an artificial hummingbird optimization technique,
in order to enhance the transient performance of islanded microgrids [16]. Ghazi et al.
proposed an ST algorithm based on the circle search algorithm to improve the efficiency of
grid-connected photovoltaic systems; its parameters were optimized in combination with
the gray wolf optimizer to improve the robustness of the system, tracking speed, and the
optimal convergence to the minimum error value [17].

In recent years, ST-SMC has been widely used in power electronics and power drives;
moreover, considerable research has focused on improving the traditional ST-SMC by
combining it with other nonlinear control algorithms to optimize the dynamic and steady-
state characteristics of the system. Saadaoui et al. proposed an ST-SMC method for ultrafast
chargers of pure electric vehicles for grid imbalance conditions, which can always achieve
the lowest performance index compared with other nonlinear methods, demonstrating the
fast response speed, strong robustness, and low steady-state error of ST-SMC [18]. Celik
et al. designed a Kalman filter using an ultra-twisted sliding-mode strategy, which ensures
a shallow DC-link voltage ripple and achieves a fast dynamic response for a battery electric
vehicle charger based on a three-phase two-level rectifier and a conventional DC/DC buck-
boost converter [19]. Tiwary et al. designed an ST-SMC controller based on an isolated
DC–DC bidirectional dual active bridge (DAB) power converter, in order to achieve DC
bus voltage stability and high robustness for accurate reference voltage tracking [20].

To enhance the performance of the control system in complex environments, some
improved ST-SMCs have been created. Wang et al. proposed a model-free predictive current
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control strategy based on an adaptive super-twisting sliding-mode observer, in order to
design an adaptive gain matrix and dynamically adjust the observer parameters to suppress
the effect of boundary uncertainty in the dynamic part of the rectifier system, and to ensure
the accuracy of the prediction model [21]. Pati et al. proposed adaptive ST-SMC and dual-
loop control for a three-phase differential boost inverter in a grid-connected photovoltaic
system to regulate voltage across a DC bus capacitor, and to compensate for harmonics
under nonlinear loads [22]. However, for FMSS systems, ST-SMC exhibiting improved
efficiency should be developed to withstand various complex operating conditions, and
exhibit enhanced dynamic performance in complex environments. Composite second-order
SMC was proposed to apply ST-SMC in the outer loop of an FMSS [23]. Nevertheless,
the full-order fast terminal SMC used in the inner loop requires high model accuracy,
is sensitive to measurement errors, and is prone to cause instability in the controller’s
performance. Another paper [24] proposed an ST sliding-mode observer to improve the
immunity of an FMSS system, and applied the conventional ST-SMC to design a voltage
outer-loop controller to enhance its dynamic performance and robustness. However, the
inner loop was poorly controlled using three-vector MPC, which requires high system data
accuracy and complex computation.

In this study, a linear radiation model of a three-terminal FMSS was first obtained by
applying the exact feedback linearization method, which decouples active and reactive
currents. Subsequently, an adaptive QST-SMC (AQST-SMC) algorithm was proposed to
design the voltage outer-loop and current inner-loop controllers of the three-terminal FMSS.
The algorithm adopted the sigmoid function in the quasi-sliding mode to discretize the
switching function and reduce the jitter. An adaptive scaling term was introduced to
adjust the response speed of the system, which considerably shortens its response time and
enhances immunity to interference. Finally, a three-terminal FMSS simulation model was
constructed to verify the effectiveness of the proposed AQST-SMC strategy.

The rest of the paper is organized as follows: Section 2 describes the establishment of
an affine nonlinear model of the FMSS system, which provides the basis for the subsequent
construction of an AQST-SMC controller. Section 3 explains the construction of the AQST-
SMC controller and compares it with conventional control strategies, such as first-order
SMC. Section 4 describes the construction of the voltage outer-loop and current inner-
loop controllers based on a radiative nonlinear model and mathematical equations of the
FMSS system. Section 5 presents the establishment of a simulation of the three-terminal
FMSS system, and the verification of its performance under different operating conditions.
Section 6 presents the conclusions of this study.

2. FMSS Nonlinear Control Design
2.1. FMSS System Architecture

In medium-voltage distribution networks, feeders of different voltage levels are con-
nected through an FMSS. However, with the upgrade and transformation of these distri-
bution networks and the rapid development of loads, double-ended flexible switchgear
cannot fulfill the requirements of the interconnection of multi-distribution areas in complex
environments. In addition, the switchgear cannot regulate the power between the feeders if
one of the ports fails. Therefore, it is important to study three-port and multiport FMSSs. A
three-port FMSS can connect multiple feeders and reduce the construction cost. In addition,
if one end is out of operation owing to failure, the rest of the converter can flexibly switch
the working mode to support the normal operation of the power grid, which is more
reliable. Figure 1 shows the structure of the three-terminal FMSS system mentioned earlier.
For each feeder, the head of the transmission line is typically connected to the substation.
Thus, the AC system connected to the FMSS can be equated to a Davignon equivalent
circuit comprising a fixed alternating current (AC) voltage source and a series impedance
at the point of common coupling.
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Figure 1. Structure diagram of three-terminal FMSS system. 
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Modular multilevel converters (MMCs) are widely used in power electronics, owing
to their small loss and good quality of voltage and current waveforms generated by
power conversion in the working state [25]. Thus, this study used MMCs as the main
circuit topology.

2.2. FMSS Radiation Modeling

Assuming the AC system is balanced in three phases, the MMC equation of state was
obtained from the circuit law as follows:

L
d
dt

[
isd
isq

]
=

[
−R ωL
−ωL −R

][
isd
isq

]
+

[
usd −mdUdc
usq −mqUdc

]
, (1)

where ω represents the AC voltage angular frequency. In the rotating coordinate system, isd
isq and usd usq represent the output current and voltage of any phase of the port, respectively.
Moreover, md mq represents the modulation switching function components of any phase
of the port.

The transformation of (1) yielded the following nonlinear radiation model of the
FMSS system: { .

x = f(x) + g(x)u
y = h(x)

, (2)

f(x) =
[

f1(x)
f2(x)

]
=

[
− R

L x1 + ωx2 +
usd
L

− R
L x2 − ωx1 +

usq
L

]
, (3)

g(x) =
[

g1(x)
g2(x)

]T

=

[
−Udc

L 0
0 −Udc

L

]
, (4)

where x = [x1, x2]T = [isd, isq]T, u = [u1, u2]T = [md, mq]T, and y = [y1, y2]T. h(x) satisfies
h(x) = [h1(x), h2(x)]T = [isdref−x1, isqref−x2]T, and isdref, isqref denotes the inner-loop current
reference.

The Lie derivative of function h(x) along the vector field f (x) is defined as follows:

L f (x)hi(x) =
∂hi(x)

∂x
f(x). (5)

From (5), we obtain the following:

Lgi(x)L f (x)hi(x) =
∂L f (x)hi(x)

∂x
gi(x). (6)
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According to the differential geometry theory, the nonlinear radiation model satisfies
the following constraints, and the matrix, B(x), is nonsingular:

Lk
f (x)hi(x) = L f (x)

(
Lk−1

f (x)hi(x)
)

Lgi(x)Lk
f (x)hj(x) = 0

L0
f (x)hi(x) = hi(x)

Lgi(x)L
rj−1
f (x)hj(x) ̸= 0

k = 1, 2, · · · i, j = 1, 2. (7)

B(x) =

[
Lg1(x)L

r1−1
f (x) h1(x) Lg2(x)L

r1−1
f (x) h1(x)

Lg1(x)L
r2−1
f (x) h2(x) Lg2(x)L

r2−1
f (x) h2(x)

]
=

[
Udc

L 0
0 Udc

L

]
, (8)

where r = [r1, r2] corresponds to the subrelativity of function h(x).
When the FMSS satisfies the normal operation of the aforementioned equation and

r1 + r2 = 2 is equal to the order of the system, the choice of coordinate transformation can
fully linearize the nonlinear model of the FMSS.

2.3. Coordinate Mapping and Control Law Solving

The following coordinate transformation matrix was selected:

z =

[
z1
z2

]
=

[
h1(x)
h2(x)

]
=

[
isdref − x1
isqref − x2

]
. (9)

The control variable after the exact feedback linearization takes the following form:

ν = A(x) + B(x)u +
R
L

z. (10)

A(x) =

[
Lr1−1

f (x) h1(x)

Lr2−1
f (x) h2(x)

]
=

[ R
L x1 − ωx2 − usd

L
R
L x2 + ωx1 −

usq
L

]
. (11)

The reintegrated linear system was as follows:

u = B−1(x)
[

ν − A(x)− R
L

z
]

. (12)

u =

[
md
mq

]
=

[ L
Udc

(
ν1 + ωx2 +

usd
L
)
− R

Udc
isdref

L
Udc

(
ν2 − ωx1 +

usq
L

)
− R

Udc
isqref

]
. (13)

3. Construction of Adaptive Quasi-Super-Twisting Sliding Mode Controller

Second-order SMC uses the differentiation of the control input as a new virtual control
quantity, and applies it to the higher-order derivatives of the sliding mode surface to ensure
that the sliding variable, s, converges to zero in a restricted time [26]. This weakens the
jitter, eliminates relative-order limitations, and improves the accuracy and reliability of
the SMC.

The super-twisting algorithm (STA) is a second-order SMC algorithm designed for
systems of relative order 1, which ensures that the system reaches the ideal state (s). Its
first-order derivative is zero in a finite time. Conversely, conventional first-order SMC can
only render the system state (s) zero in a finite time. The general expression of the STA is
as follows: {

u = −α|s|1/2sign(s) + u1.
u1 = −βsign(s) +

.
φ

, (14)

where s represents a sliding variable; u1 represents an auxiliary variable; φ represents a
perturbation term; and α and β represent sliding mode gain coefficients.
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If (14) satisfies
∣∣ .
φ
∣∣ ≤ δ and δ > 0, then α and β simultaneously satisfying the following

conditions can cause (14) to converge in a finite time [27].{
α > 2

β > α3+(4α−8)δ2

α(4α−8)
. (15)

Figure 2 shows the phase plane trajectory of the STA, and point S1−A is the intersection
of the system-state trajectory curve with the axis,

.
s = 0 and 2

(
K′

1−Aβ − L
)
s1−A =

.
s2

0, where

K′
1−A and L are positive constants. The calculation shows that

.
s1−A = − 2

α

(
L

K′
1−A

+ β

)
s1/2

1−A,

which affords
∣∣ .
s1−A

∣∣/∣∣ .
s0
∣∣ < 1. Considering that

∣∣ .
s1
∣∣ ≤

∣∣ .
s1−A

∣∣, ∣∣ .
s1
∣∣/∣∣ .

s0
∣∣ < 1 holds;

repeating the process ensures the inequality
∣∣ .
sk+1/

.
sk
∣∣ = ∣∣ .

sk+1
∣∣/∣∣ .

sk
∣∣ < 1 holds. Similarly, it

can be shown that |sk+1/sk| = |sk+1|/|sk| < 1 holds, indicating that the closed-loop system
can converge to stability in a finite time [28].
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Based on (14), the introduction of the integral term can effectively attenuate the jitter
and eliminate the static error of the system. However, there is still a sign function with
poor smoothing performance near the sliding mode surface in the control law. This can
cause high-frequency jitter with rapid and frequent switching on the sliding mode surface,
and reduce the control accuracy of the system. A study [29] added a sinusoidal saturation
function, sat (s), in the super-twisting control law to reduce the system jitter. However,
the saturation function presents the problem of selecting the appropriate thickness of the
boundary layer, which is extremely large to lead to the insufficient control accuracy of the
system, and excessively small to cause oscillations. Thus, the following smoother sigmoid
function was designed:

sd(s) =
2

1 + e−ns − 1. (16)

A constant (n > 0) was used to adjust the rate of the curve rise, which determines
the function boundary layer thickness. Figure 3 shows that the sign function changes
stepwise at t = 0, and that the sigmoid function continuously and smoothly changes with
the input. The quasi-smooth mode changes more gradually than the switching function,
which can alleviate the shock of the smooth mode switching and reduce the appearance of
high-frequency jitter to a certain extent. This can improve the response speed and control
accuracy of the FMSS system.
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Equation (14) shows that the proportional term, −α|s|1/2sign(s), improves the con-
vergence speed of the algorithm. However, the exponent of the state vector is always 1/2,
which prevents the system state from converging to a smaller region. The immunity of the
algorithm to interference and the arrival speed are directly affected by its gain. A previous
study [18] introduced the proportional term in a traditional STA to improve the conver-
gence trajectory of the system. However, when s < 1, i.e., ks is zero; the proportional term is
only left with the original square root term, and the problem of low arrival speed remains.
To solve the aforementioned problem, this study introduced an adaptive linear term to
realize the adaptive regulation of the convergence speed with the following expression:

q(s) = k|s|c·sign(|s|−1)s, (17)

where k > 0, 0 < c < 1. When the system state tends to the sliding mode surface, i.e.,
s < 1, the adaptive term becomes q(s) = k|s|−cs, α|s|1/2sign(s) + k|s|−cs ≫ α|s|1/2sign(s),
which speeds up the convergence. Furthermore, when the system state tends to the sliding
mode surface, i.e., s > 1, the adaptive term becomes q(s) = k|s|cs, α|s|1/2sign(s) + k|s|cs ≫
α|s|1/2sign(s), which speeds up the convergence.

Using the sigmoid function and adaptive scaling term, the AQST-SMC mathematical
expression can be written as follows:

u = −α|s|1/2sd(s)− q(s) + ω
.

ω = −βsd(s) +
.
φ

q(s) = k|s|c·sign(|s|−1)s
. (18)

If (18) satisfies 2
∣∣ .
φ
∣∣ ≤ δ and σ > 0, then α, β, and k simultaneously satisfying

condition (19) can cause (18) to converge to the origin in a finite time. The stability of the
AQST-SMC algorithm was confirmed, as described in Appendix A. It was discovered that
the stability of the system will not be affected by the introduction of the adaptive linear
term, q(s), into the super-twisting algorithm, as long as it is guaranteed that k > 0.

α > 2

β >

(
α+k|x1|1/2

)2

4
(

α+k|x1|1/2
)2

−8
+ δ2

4α

k > 0

. (19)

To verify the effectiveness of the proposed AQST-SMC, it was compared with the
conventional first-order SMC, conventional STA, and STA without the adaptive acceleration
term. Figures 4 and 5 show the comparison results. First-order SMCs can usually reach
the sliding mold surface in finite time. Nevertheless, they cannot maintain stability and
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equilibrium, and most conventional first-order SMCs are less efficient than second-order
SMCs in terms of control performance and the tracking error, as shown in Figure 4a,b;
the tracking accuracy and convergence speed of conventional first-order SMCs are worse
than those of the conventional ST-SMC and the ST-SMC that contains only the sigmoid
function. Using the designed adaptive convergence term equation q(s), the AQST-SMC
can approach the surface of the sliding mode quickly, and the system’s state variables can
converge smoothly. From Figure 5, the introduction of the continuous smooth sigmoid
function attenuates the system’s jitter and enhances the system’s perturbation resistance
compared to the sign function, confirming the effectiveness of the AQST-SMC.
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Owing to the limitation of the stability condition Equation (19), control gain k must
be selected within a certain range. When k is excessively small, the adaptive term q(s)
tends to zero, thus preventing the achievement of the desired acceleration effect and
simultaneously departing from the limitations of the stability condition. This causes
the system trajectory to deviate from the sliding mode surface; however, although the
convergence speed increases when k becomes larger, it may cause new problems such as
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considerable overshooting or system oscillations due to the integral term. Therefore, k
must be designed in a reasonable range to ensure that the system state variables converge
smoothly in a stable range. Figure 4c,d show simulations that were conducted to test the
effect of different gain coefficients k on the convergence of the system state to the surface of
the sliding mode. When a higher value of k is considered (e.g., k = 200), the convergence
is fast; thus, oscillations may occur. Conversely, when a small value of k is considered
(e.g., k = 2 or 5), the system state does not reach the surface of the sliding mode completely,
but the convergence speed is still faster than that of the conventional ST-SMC. Notably,
in Figure 4, the three ST-SMCs use the same gain coefficients. Conversely, traditional
first-order SMCs use the integral sliding mode surface and the exponential convergence
law. Their gain parameters are selected to ensure that the system reaches the surface of the
sliding mode in a finite amount of time and remains stable.

4. FMSS AQST-SMC Controller Design
4.1. AQST-SMC Voltage Outer Ring Design

During normal operation, the FMSS needs to operate in the UdcQ mode at one end
to maintain a constant voltage on the DC side. The remaining ports operate in the PQ
mode for power exchange. However, in the traditional outer-loop PI controller, when
the system parameters are changed, the dynamic performance and response time of the
system will increase because of the constant parameters of the PI. In this research, the
AQST-SMC was designed to effectively suppress the jitter and speed up the response; it
exhibits good dynamic performance and response time. The steady-state inverse model [7]
was used to improve the traditional power outer-loop controller, which improves the outer-
loop regulation rate and eliminates the static error of the system. For example, this study
analyzed MMC1 running in the UdcQ operation mode, and MMC2 and MMC3 running in
the PQ mode.

First, the three-port FMSS DC side satisfied (20), as follows:
C dUdc

dt = idc1 + idc2 + idc3 =
3
∑

k=1
idck

idck = makiak + mbkibk + mckick = ∑
j=a,b,c

mjkijk
, (20)

where idck represents the DC side current of port k, and mjk, ijk denotes the one-phase
switching function and output current of port k.

Combining (20) with coordinate mapping transformation shows the following:

C
dUdc

dt
= makiak + mbkibk + mckick

=
3
∑

k=1

3
2

(
−mdkisdk + mqkisqk

) . (21)

In the rotated coordinate system, mdk and mqk denote the port k switching function compo-
nents. Moreover, usdk and isdk denote the voltage and current of port k, respectively.{

isqk = 0
disdk

dt = 0
. (22)

Equation (21) can be transformed into the following:

C
dUdc

dt
= −3

2
md1isd1 −

3
2

md2isd2 −
3
2

md3isd3, (23)

where mdk satisfies mdk = (usdk − Rkisdk)/Udc.
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The sliding mode surface s0 was selected as the DC voltage tracking error.

s0 = Udcref − Udc. (24)

Equation (24) was differentiated as follows:

.
s0 = −

.
Udc. (25)

The uncertain disturbance φ was unknown; however, it was assumed to be bounded
and satisfies |φ| ≤ m, where m represents a known positive constant. To accurately track
the reference DC voltage, it was obtained according to the AQST-SMC theory:

.
s0 = −

.
Udc = α0|s0|1/2sd(s0) + k0|s0|c0·sign(|s0|−1)s0 +

∫
β0sd(s0)dt

=
3

2C

[
usd1 − R1isd1

Udc
· isd1 +

usd2 − R2isd2
Udc

· isd2 +
usd3 − R3isd3

Udc
· isd3

]
. (26)

When the FMSS system is three-phase-balanced and in a steady state, the d-axis current
reference value is obtained via simplification as follows:

isdref =

2C
3

Udc

(
α0|s0|1/2sd(s0) + k0|s0|c0·sign(|s0|−1)s0 +

∫
β0sd(s0)dt

)
usd1 − R1id1

+
−isd2(usd2 − R2isd2)− isd3(usd3 − R3isd3)

usd1 − R1isd1

. (27)

Figure 6 shows the AQST-SMC-based FMSS voltage outer-loop control.
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(1) During normal operation, the MMC of one port typically operates in the UdcQ 
mode to stabilize the DC bus voltage and regulate the reactive power of that port. The 
MMCs of the rest of the ports operate in the PQ mode to separately regulate the active and 
reactive power of the ports. 

(2) The MMC running in the UdcQ mode is the more vulnerable link in the entire 
system. When the MMC running in this mode fails, it is necessary to switch the MMC in 
the PQ mode to the UdcQ mode to maintain the DC side voltage. 

Figure 6. Voltage outer loop AQST-SMC block diagram.

4.2. AQST-SMC Current Inner Loop Design

The current inner-loop sliding mode surfaces s1 and s2 of the FMSS were expressed
as follows:

s =

[
s1
s2

]
=

[
z1
z2

]
. (28)

When the system reaches a steady state, the derivatives of s1 and s2 are zero, and the
system control law is as follows:

ν =

[
ν1
ν2

]
=

[
R
L z1 − α1|s1|1/2sd(s1)− k1|s1|c1·sign(|s1|−1)s1 − β1sd(s1)
R
L z2 − α2|s2|1/2sd(s2)− k2|s2|c2·sign(|s2|−1)s2 − β2sd(s2)

]
. (29)

Furthermore, the original system control volume is obtained as the following:

u =
L

Udc

[
ν1
ν2

]
+

1
Udc

[
−Risdref + ωLx2 + usd
−Risqref − ωLx1 + usq

]
. (30)

Figure 7 shows a schematic of the final FMSS AQST-SMC integrated control strategy.
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5. Analysis of System Simulation Examples

According to the demand of a distribution network under different working conditions,
the FMSS mainly operates in the UdcQ, PQ, and Uacf modes. To enable the FMSS to precisely
control the current and fast power supply restoration, the following collaborative control
methods are adopted [30]:

(1) During normal operation, the MMC of one port typically operates in the UdcQ
mode to stabilize the DC bus voltage and regulate the reactive power of that port. The
MMCs of the rest of the ports operate in the PQ mode to separately regulate the active and
reactive power of the ports.

(2) The MMC running in the UdcQ mode is the more vulnerable link in the entire
system. When the MMC running in this mode fails, it is necessary to switch the MMC in
the PQ mode to the UdcQ mode to maintain the DC side voltage.

(3) In the event of a port feeder failure, the FMSS can rapidly isolate the fault and switch
to the Uacf mode to provide continuous power to critical loads in the area experiencing loss.

The three-port FMSS model (Figure 1) was built using MATLAB 2023a/Simulink
software. Table 1 lists the system parameters of the three ports.

Table 1. Simulation parameters of the FMSS system.

System Parameter Symbol Value

AC voltage rating us 10 kV
AC side-rated frequency f s 50 Hz

Rated port capacity S 10 MVA
DC voltage reference Udc 40 kV

Submodule point capacitance C 5000 µF
Bridge arm inductance L0 2 mH

Number of sub-modules N 20

5.1. AQST-SMC Performance Analysis

The simulations of the conventional first-order SMC, conventional STA, and improved
AQST-SMC were compared to study the optimization performance of the algorithms and
validate the theoretical analyses presented in Section 3. The traditional first-order SMC
uses an integral sliding mode surface and the exponential convergence law. In addition,
the sign function in the original exponential convergence law is replaced by a saturation
function, which is more effective in suppressing jitter (Appendix A). The Pref and Qref of
port 2 were 0.2 p.u. and 0.3 p.u. At t = 0.02 s, the active and reactive powers of port 2 were
assumed to suddenly increase and decrease by 0.2 p.u., respectively. Figure 8 shows the
simulation results.
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The power response curves presented in Figure 8a,b show that the proposed AQST-
SMC method had a faster response speed at the startup moment of the system. Furthermore,
it reached a steady state in a shorter time because of the rapid adjustment of convergence
when the power changed. Based on the calculations, the power oscillation of the AQST-
SMC algorithm using the sigmoid function was considerably smaller in the steady-state
operation than in other SMCs. It was approximately 66.71% and 60.13% of the active and
reactive oscillations, respectively, under the proposed STA, compared with that under the
traditional STA, effectively reducing the power oscillation in the steady-state operation and
improving the transient performance of the system.

Table 2 lists the output power response time at the system startup moment and the
regulation time to return to a steady state when disturbed. Table 2 shows that the active
power response times at the startup moment using the proposed AQST-SMC method were
1.96 and 8.43 times those of the traditional STA and first-order SMC algorithm, respectively.
The reactive power response times were 2.61 and 11.70 times better than those of the
traditional STA and first-order SMC algorithm, respectively. The active power regulation
time to return to a steady state when disturbed under the AQST-SMC algorithm improved
compared with those of the traditional STA and first-order SMC algorithm. The active
power regulation times of the AQST-SMC algorithm were 3.75 and 12.34 times better than
those of the traditional STA and first-order SMC algorithm, respectively. Finally, the reactive
power regulation times were 3.33 and 14.67 times better than those of the traditional STA
and first-order SMC algorithm, respectively. Thus, the proposed AQST-SMC method
effectively improved the speed of the system to reach a steady state, and considerably
reduced the degree of fluctuation of the system under transient operation. In addition, the
robustness and anti-interference capability of the system improved.
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Table 2. Performance characteristics of FMSSs.

Control Modes Response Time (ms) Adjustment Time (ms)
Steady-State
Oscillation
Amplitude

First-order SMC
P: 4.30 P: 3.95 P: 9.87%
Q: 5.50 Q: 4.40 Q: 8.91%

Traditional STA
P: 1.00 P: 1.20 P: 6.96%
Q: 1.23 Q: 1.00 Q: 8.36%

AQST-SMC
P: 0.51 P: 0.32 P: 4.64%
Q: 0.47 Q: 0.30 Q: 5.03%

5.2. Dynamic Simulation Verification of FMSS System

To further investigate the dynamic performance and anti-interference ability of the
control system, this study compared the simulations of several typical working conditions
prone to occur under new energy access. The initial operating state of the three-port FMSS
is as follows: the output power value of port 1 is Q1ref = 0 p.u.; the output power values of
port 2 are P2ref = 0.1 p.u. and Q2ref = 0.3 p.u.; and the output power values of port 3 are
P3ref = 0.2 p.u. and Q3ref = 0.5 p.u. Table 3 lists the parameters of different controllers. The
first-order traditional SMC features an additional control action based on the exponential
convergence law. Notably, the present study only applied the AQST-SMC in port MMC1
(traditional UdcQ outer loop) and MMC2, and 3 (traditional PQ control outer loop) used PI
control. Furthermore, the controller parameters were calculated and then carefully selected
for the optimal steady-state operation of the system, as well as to achieve the desired
response speed and convergence.

Table 3. Parameters of different FMSS controllers.

Control Method Parameters of Outer Loop
Controller

Parameters of Inner Loop
Controller

Traditional PI (MMC 1) kp1 = 0.5, ki1 = 100 kp1 = 22, ki1 = 3.46
Traditional PI (MMC 2) kp2 = 0.00005, ki2 = 70 kp2 = 22, ki2 = 3.46
Traditional PI (MMC 3) kp3 = 0.000028, ki3 = 80 kp3 = 22, ki3 = 3.46

First-Order SMC ε = 1, q = 40, c1 = 30, ∆ = 0.05 ε = 3, q = 4000, c1 = 30, ∆ = 0.05
AQST-SMC α1 = 2, β1 = 30, k1 = 10 α1 = 110,000, β1 = 20,000, k1 = 10

5.2.1. Comparison of Simulations with Disturbed System Output Power

The active power variation affects the stability of the DC-side voltage. The simulation
of port 3 was subjected to power fluctuation after accessing distributed power supply and
a new type of load. The traditional PI and proposed AQST-SMC algorithm were simulated
and compared; Figure 9 shows the output feedback curves of the three-terminal FMSS.

Figure 9 shows that the system startup moment, using the traditional PI control under
the output power response, was slow. It took approximately 0.1 s to stabilize. Based on
the active power reference of MMC3 at t = 0.2 s, the voltage jumped from 0.2 (standard) to
0.5 to simulate the power fluctuation of the FMSS system caused by the distributed power
supply and new load access. Under PI control, the system required approximately 0.12 s to
reach a steady state after being perturbed. The dynamic mathematical model of the DC
side of the three-port FMSS and the active power balance relationship showed that the
active power perturbation affected the stability of the voltage on the DC side [9]; moreover,
owing to the inability of the PI controller to adapt to the dynamics of the system under the
sudden change of power, the DC voltage fluctuated considerably at 0.2 s and 0.45 s, and
the sizes of the oscillations were approximately 112.05 V and 105.85 V, respectively. When
the reactive power of MMC1 fluctuated at 0.35 and 0.55 s, its active power suffered from a
certain degree of fluctuation, verifying the proposed control strategy for the effectiveness
of the power decoupling. Under the proposed AQST-SMC, the system stabilized within
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0.001 s at the startup moment and after being disturbed. The dynamic response time was
reduced by 100 times, and the DC voltage remained stable. Thus, the feasibility of the
AQST-SMC was verified, the anti-disturbance performance of the system considerably
improved, the decoupling between the output powers of the system was realized, and the
stability of the additive system improved.
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Figure 9. Output feedback of FMSS system under power perturbations. (a) Active power, (b) reac-
tive power, and (c) DC voltage response curves. 

Figure 9. Output feedback of FMSS system under power perturbations. (a) Active power, (b) reactive
power, and (c) DC voltage response curves.

5.2.2. System AC Measured Voltage Amplitude Dips

To validate the proposed method for AC fault measurements, the MMC3 AC voltage
was simulated at an amplitude drop of −0.4 (units) in 0.2–0.3 s. Figure 10a shows the AC
voltage and current responses; the current response was rapid and accurate. Figure 10b,c
show that during voltage dips, the proposed AQST-SMC exhibited good transient charac-
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teristics at instances of fault occurrences and good steady-state characteristics during the
fault period, compared with the conventional first-order SMC and conventional PI control.
The active and reactive powers were rapidly maintained, with fast response and robustness.
Figure 11a,b show that during voltage dips at the MMC3 side, MMC2 can function normally
without being affected, and its active and reactive powers can remain stable. This indicated
that the dynamic response of the system was fast, with good anti-interference properties.
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active and reactive power.

5.2.3. Disturbance of System Electrical Parameters

During practical operation, the AC-side equivalent impedance of the system generated
parameter perturbations in response to changes in grid conditions, environmental factors,
and load conditions. To analyze the immunity of the system, it was assumed that the AC
inductance on the MMC1 side increased to thrice its original value and reduced to 40% of
the original value at t = 0.2 s. Figures 12 and 13 show the response curves of the d-axis
currents and DC side voltages using the three methods. Under PI control, the system
exhibited a slow response at the initial moment, and produced fluctuations in the d-axis
currents of approximately 93 A when the inductance parameters were changed. However,
the STA and proposed AQST-SMC overcame the problem of slow response at the initial
startup moment of the system. The ability of the proposed AQST-SMC to track the reference
value of the d-axis current in the steady state and after parameter changes was superior
to that of the conventional STA, and the jitter considerably reduced. The DC voltage of
the proposed AQST-SMC responded rapidly and fluctuated to a lesser extent at the time
of parameter ingestion. Furthermore, the voltage was stabilized at the reference value of
40 kV, confirming the superiority of the AQST-SMC strategy.
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Figure 12. Current response of phase a of MMC1 under parameter perturbation. (a) L tripled. (b) L 
reduced to 40% of the original value. 
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5.3. Validation of Uacf Mode of Operation

When the feeder connected to the FMSS fails, to guarantee the operation of important
loads, a stable AC voltage and grid frequency must be provided to the power loss area;
this is called the Uacf mode of operation. To verify the effectiveness of the AQST-SMC
method during power loss, port 2 was set to fail and the load connected at the end was
purely resistive (value = 120). Figure 14 shows the three-port AC measurement output
response. Figure 14a shows the output voltage and current waveforms of the failed port
2. The output voltage and current were smooth and stable, and the faulty power supply
function was realized. Figure 14b,c show that the voltage and current waveforms of ports
1 and 3 remained stable and unaffected by port 2. This confirmed the feasibility of the
proposed control strategy, and ensured continuous power supply in the faulty area.
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6. Conclusions

This study proposes adaptive super-twisting SMC based on feedback-accurate lin-
earization decoupling for the nonlinear and strongly coupled mathematical model of an
FMSS in the distribution network and the difficulty in the traditional PI double-closed-loop
control parameter tuning. The main conclusions are as follows:

(1) The three-terminal FMSS nonlinear radiation model was transformed into a linear
model via exact feedback linearization and applied to the FMSS inner-loop control design.
This completely decoupled the output power, achieved a simple controller design, and
improved the operating characteristics of the system.

(2) To address the large jitter vibration and low convergence speed of the first-order
SMC, STA control was introduced. AQST-SMC was designed using the sigmoid function
and adaptive proportional term to realize better jitter vibration suppression and higher
convergence speed, respectively. The inner- and outer-loop composite control system of
the FMSS was designed to effectively improve the dynamic response speed, robustness,
and steady-state characteristics of the system.

(3) The proposed method improved the transient and steady-state characteristics of
the system, with good anti-interference ability under several working conditions with high
incidence rates. This can provide insights into innovative solutions for the application of
FMSSs in smart distribution networks and new power systems.

Although this study implemented the AQST-SMC algorithm in the UdcQ and PQ oper-
ating modes with the corresponding validation analyses, the dynamic process of switching
between different operating modes has not yet been considered. In the future, the different
operating conditions of FMSSs should be investigated from the perspective of mode switch-
ing. In addition, the proposed AQST-SMC should be applied to the virtual synchronous
control of new grid-type energy sources to improve its robustness and response speed.
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Appendix A

For the actual situation of the system, the constant-value disturbance can be a special
case of the time-varying disturbance [31]. Simultaneously, the adaptive term evolved from
the proportional term, ks; thus, the quadratic-like Lyapunov function was used to perform
the STA stability proofs in terms of the time-varying perturbation.

First, (17) was replaced using the following variables:
x1 = s
.
x1 = u = −α|x1|1/2sd(x1)− kx1 + x2
x2 = ω
.
x2 = −βsd(x1) +

.
φ

. (A1)

The following class of quadratic Lyapunov functions [32] was selected:

V(x1, x2) = ζTPζ, (A2)
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where ζT =
[
ζ1 ζ2

]
=

[
|x1|1/2sd(x1

)
x2

]
; real symmetric positive definite matrices P

and ζ satisfy the following:

P =

4β +
(

α + k|x1|1/2
)2

−
(

α + k|x1|1/2
)

−
(

α + k|x1|1/2
)

2

, (A3)

.
ζ =

[
1
2 |x1|−

1
2
(
−α|x1|

1
2 sd(x1)− kx1 + x2

)
−βsd(x1) +

.
φ

]
= 1

2|ζ1|
(Aζ + Bϕ)

, (A4)

where A =

[
−
(

α + k|x1|1/2
)

1
−2β 0

]
, B =

[
0
1

]
, ϕ = 2|ζ1|

.
φ.

According to (17), V(x1, x2) is a radially unbounded continuous positive definite
function, and V(x1, x2) is differentiable to any point except the set {x1 = x2 = 0}, for which
the following derivation was obtained:

.
V(x1, x2) =

.
ζ

T
Pζ + ζTP

.
ζ

= 1
2|ζ1|

[
(Aζ)T + (Bϕ)T

]
Pζ + ζTP 1

2|ζ1|
(Aζ + Bϕ)

= 1
2|ζ1|

[
ζT ATPζ + ϕTBTPζ + ζTPAζ + ζTPBϕ

]
= 1

2|ζ1|

[
ζ
ϕ

]T[ ATP + PA PB
BTP 0

][
ζ
ϕ

] . (A5)

ϕ is a scalar, and an expansion of BTPζ reveals that it is also a scalar; therefore, we
obtain the following:

BTPζ =
(

BTPζ
)T

= ζTPT
(

BT
)T

= ζTPB. (A6)

Taking n = BTPζ = ζTPB and n2 = ζTPBBTPζ, this follows from the inequality
shown below:

(n − ϕ)2 = n2 − 2nϕ + ϕ2 ≥ 0, ∀n, ϕ ∈ R. (A7)

Through (A7), the following results:

ζTPBBTPζ ≥ ϕTBTPζ + ζTPBϕ − ϕ2. (A8)

By (19), the perturbation term was assumed to be Lipschitz continuous 2
∣∣ .
φ
∣∣ ≤ δ and

δ > 0.
Combined with ϕ = 2|ζ1|

.
φ, this can be obtained by simplifying the following inequal-

ity operation:
δ2ζ2

1 − ϕ2 ≥ 0. (A9)

At C = [1 0], the following can be obtained:

δ2ζ2
1 = δ2ζTCTCζ. (A10)
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Combining (A5) through (A10), the following conclusions were drawn:

.
V(x1, x2) = 1

2|ζ1|

[
ζ
ϕ

]T[ ATP + PA PB
BTP 0

][
ζ
ϕ

]
≤ 1

2|ζ1|

{[
ζ
ϕ

]T[ ATP + PA PB
BTP 0

][
ζ
ϕ

]
+ δ2ζ2

1 − ϕ2

}
≤ 1

2|ζ1|
ζT[ATP + PA + δ2CTC + PBBTP

]
ζ

= − 1
2|ζ1|

ζTQζ

. (A11)

Let
[
ATP + PA + δ2CTC + PBBTP

]
= −Q < 0; therefore, according to Equation (A11),

we obtain the following:
.

V(x1, x2) = − 1
2|ζ1|

ζTQζ < 0. (A12)

Equation (A12) shows that the Lyapunov function of the system satisfies the stability
conditions in the Lyapunov stability theory, which is radially unbounded, and a < b.
However, when a time-varying perturbation exists, it is not guaranteed that a symmetric
positive definite matrix P can be found to satisfy the algebraic equations for any positive
definite matrix, Q. However, the idea of (15) can be used to find the range of values of the
control parameter that ensures the finite time convergence of the system, such that Q is
positive definite.

By solving the calculation for the Q matrix, the following expansion was obtained:

Q = −
[
ATP + PA + δ2CTC + PBBTP

]
=

 2
(

α + k|x1|1/2
)3

−
(

α + k|x1|1/2
)2

+ 4β
(

α + k|x1|1/2
)
− δ2 2

(
α + k|x1|1/2

)
− 2

(
α + k|x1|1/2

)2

2
(

α + k|x1|1/2
)
− 2

(
α + k|x1|1/2

)2
2
(

α + k|x1|1/2
)
− 4

 . (A13)

If Q is nonnegative, then
.

V < 0; it can be deduced that a sufficient condition for Q to
be a symmetric positive definite matrix is the following:

α + k|x1|1/2 > 2

β >

(
α+k|x1|1/2

)3
+δ2

(
α+k|x1|1/2

)
−2δ2

4
(

α+k|x1|1/2
)[(

α+k|x1|1/2
)
−2

] . (A14)

Considering that k > 0, and there must be |x1|1/2 ≥ 0 in the FMSS system, (A14) can
be transformed as follows: 

α > 0

β >

(
α+k|x1|1/2

)2

4
(

α+k|x1|1/2
)
−8

k > 0

+
δ2

4α
. (A15)

According to Lyapunov’s stability theorem, the system is stable when the conditions
in (A15) are satisfied, and there is a symmetric positive definite matrix Q in that

.
V < 0.

The traditional first-order SMC used in this paper is the exponential convergence law
and the integral slip mode surface, the expression of which is shown below:

ν1 = Udcref − Udc
s1 = ν1 + c1

∫
ν1dt

.
s = −εsat(s1)− qs1 ε, q > 0

. (A16)

where s1 represents the sliding-mode surface, c1 is the sliding-mode surface control param-
eter, ν1 is the DC voltage error signal of the FMSS system, and ε and q are the exponential
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convergence law control parameters. Saturation function sat(s1) was selected for reducing
the system jitter.
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