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Abstract: The reactive power optimization of an active distribution network can effectively deal
with the problem of voltage overflows at some nodes caused by the integration of a high proportion
of distributed sources into the distribution network. Aiming to address the limitations in previous
studies of dynamic reactive power optimization using the cluster partitioning method, a three-
stage dynamic reactive power optimization decoupling strategy for active distribution networks
considering carbon emissions is proposed in this paper. First, a carbon emission index is proposed
based on the carbon emission intensity, and a dynamic reactive power optimization mathematical
model of an active distribution network is established with the minimum active power network loss,
voltage deviation, and carbon emissions as the satisfaction objective functions. Second, in order to
satisfy the requirement for the all-day motion times of discrete devices, a three-stage dynamic reactive
power optimization decoupling strategy based on the partitioning around a medoids clustering
algorithm is proposed. Finally, taking the improved IEEE33 and PG&E69-node distribution network
systems as examples, the proposed linear decreasing mutation particle swarm optimization algorithm
was used to solve the mathematical model. The results show that all the indicators of the proposed
strategy and algorithm throughout the day are lower than those of other methods, which verifies the
effectiveness of the proposed strategy and algorithm.

Keywords: active distribution network; carbon emission; dynamic reactive power optimization;
partitioning around medoids clustering algorithm; linear decreasing mutation particle swarm
optimization algorithm

1. Introduction

In the 21st century, as China’s economy has grown and its people’s living standards
have improved, the problem of energy shortages has become more serious. To deal with
the problems of resource shortage and environmental pollution, the implementation of
clean energy transmission and distribution control industry strategies has become the
key decision in China’s economic development [1]. Therefore, the distributed generation
(DG) supply represented by wind turbines (WTs) and photovoltaic (PV) power generation
devices has been rapidly developed [2]. However, as a high proportion of DG is connected
to the distribution network, it changes from a “passive network” to an “active network”.
The randomness and uncertainty of its output, combined with multiple types of load
volatility, will cause voltage control risks and problems such as feeder voltage overreach,
which will pose huge challenges to the optimization control, safe operation, and operation
situation prediction of the distribution network [3]. The reactive power optimization of
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the active distribution network is achieved by scheduling and adjusting reactive power
control devices, such as the on-load voltage changer (OLTC), shunt capacitor bank (SCB),
and static var compensator (SVC), which are effective means to ensure the economic and
safe operation of the distribution network to achieve the goal of reducing active power
network loss and improving system voltage quality [4].

Static reactive power optimization is the optimization of the landscape load of a section
at a certain time. However, the wind-borne load is constantly changing throughout the day,
which will lead to the frequent operation of discrete devices, such as the OLTC and SCB, thus
shortening their service life, so this is not allowed in practical engineering applications [5].
Therefore, dynamic reactive power optimization is required to constrain the adjustment
times of equipment throughout the day. However, in addition to the strong coupling of
reactive power outputs between different periods of the day, the reactive power outputs of
discrete devices, such as OLTC gear adjustment and the SCB, are also discrete. Therefore,
the dynamic reactive power optimization of active distribution networks is a mixed-integer
nonlinear programming (MINLP) problem, which is very difficult to solve directly [6].

In recent years, many scholars at home and abroad have explored the dynamic re-
active power optimization problem of active distribution networks. Many scholars have
studied the objective functions of optimization models. The authors of [4,7–10] established
distribution network reactive power optimization mathematical models with the minimum
active power loss as the objective function. They only considered the economy of the distri-
bution network when establishing the mathematical model of reactive power optimization.
Reference [11] established a mathematical model of the reactive power optimization of a
distribution network with the minimum voltage deviation as the objective function. The
authors only considered the safety of the distribution network when establishing the math-
ematical model of the reactive power optimization of the distribution network. On this
basis, the authors of [12–18] considered the economy and safety of distribution network
operation at the same time and established a reactive power optimization model for a distri-
bution network with the minimum active network loss and voltage deviation/static voltage
stability as the objective functions. The authors of [19] performed a more in-depth study
on the operation economy of the distribution network. They established a multi-objective
reactive power optimization model for a distribution network with the minimum invest-
ment in active power network loss, voltage deviation, and reactive power compensation
devices. In order to constrain the adjustment times of control equipment throughout the
day, the authors of [20,21] established a two-stage reactive power opportunity-constrained
optimization model, with the objective functions being the minimum active power network
loss and control equipment adjustment. In the same literature [22], in order to reduce the
number of daily operations of discrete devices on a long time scale, an optimization model
of discrete regulation equipment was established with the minimum active network loss,
OLTC operation cost, and SCB operation cost as the objective functions, and a continuous
regulation equipment optimization model with the minimum active network loss and
voltage overcrossing risk as the objective functions was established for the short time scale.
In [23], in order to prevent voltage overtripping, an optimization model with the minimum
voltage overtripping severity, active power network loss, and voltage deviation as objective
functions was established. Ref. [24] considered the problem of three-phase imbalance and
established a three-phase distribution network voltage reactive power control model with
the minimum voltage offset of each phase, active network loss, and three-phase imbal-
ance of the local bus voltage as objective functions. Ref. [25] considered the reliability of
photovoltaic power supply and established a reactive power optimization model with the
minimum active network loss, an active power reduction in photovoltaic power supply,
and the maximum junction temperature of IGBT as objective functions. In [26], electric
vehicles were added to traditional new energy forms, and a reactive power optimization
model was established with the minimum active power network loss, voltage deviation,
and maximum static voltage stability margin as objective functions. The authors of [6]
considered the harmonic distortion of wind turbines and established a reactive power opti-
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mization model with the minimum active power network loss, voltage deviation, OLTC
operand, and harmonic distortion rate of wind turbines as objective functions. To achieve
an economical operation in the context of the voltage/var optimization (VVO) problem
while considering the stochastic bidirectional penetration of plug-in electric vehicles (PEVs),
the authors of [27] established a reactive power optimization model aimed at minimizing
the upstream network energy loss, minimizing the PEV charging cost, and minimizing the
PV system input cost. However, in the context of the current dual “carbon neutral, carbon
peak” strategy, none of the above studies considered the carbon emissions generated by
-DG in the reactive power optimization process.

At the same time, some scholars have carried out research on how to reduce the maxi-
mum number of movements of discrete devices throughout the day during optimization,
which can be roughly divided into the following categories: commercial solver methods [4],
cost function methods [6,20–22], grey relational analysis methods [14], and cluster division
methods [9,19,23]. There are some limitations in previous research on dynamic reactive
power optimization using clustering partition methods: (1) The K-Means clustering al-
gorithm uses the average value as the cluster center, which is not in line with the actual
situation. (2) The computational steps of the Ward clustering algorithm are complex. (3) At
present, the optimal value adjustment rule of discrete control equipment only uses the aver-
age value instead, which is too simple to lead to a large difference between the actual value
that meets adjustment requirements and the optimal value, thus reducing the dynamic
reactive power optimization effect.

This paper presents three major contributions to the field of reactive power optimiza-
tion of active distribution networks:

(1) In the current dual carbon context, this paper optimizes the carbon emission index of
DG as one of the objective functions of the reactive power optimization mathematical
model of an active distribution network.

(2) In view of the limitations existing in previous research on dynamic reactive power
optimization based on the clustering partition method, a three-stage dynamic reactive
power optimization decoupling strategy for an active distribution network based on
the partitioning around medoids (PAM) clustering algorithm is proposed.

(3) The standard particle swarm optimization algorithm easily falls into local optima
when solving optimal power flow problems, such as the reactive power optimization
of an active distribution network. This paper proposes a linear decreasing mutation
particle swarm optimization algorithm to solve the mathematical model.

The subsequent sections of this paper are structured as follows. Section 2 shows
the dynamic reactive power optimization mathematical model of an active distribution
network composed of objective functions and constraint conditions. Section 3 shows the
linear decreasing mutation particle swarm optimization algorithm used to solve the model.
Section 4 shows the proposed three-stage decoupling strategy for an active distribution
network’s dynamic reactive power optimization based on the PAM clustering algorithm in
this paper. Section 5 demonstrates the superiority of the proposed strategy and algorithm
through numerical examples. Section 6 summarizes the research work in this paper and
explores future research directions.

2. Dynamic Reactive Power Optimization Mathematical Model of Active
Distribution Network
2.1. Objective Functions

The goal of reactive power optimization should consider the economy, security, and
low carbon of the distribution network [28]. In this paper, the minimum active power
network loss, voltage deviation, and carbon emissions are used as sub-objective functions
to establish the satisfaction function model.

(1) Minimum active network loss
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minPloss =
m

∑
k=1

Gij(U2
i + U2

j − 2UiUjcosθij) (1)

In (1), Ploss is the system’s active power network loss; Ui and Uj are the voltage
amplitudes of node i and node j, respectively; Gij and θij are, respectively, the real and
imaginary elements of the bus admittance matrix between node i and node j; and m
indicates the total number of branches.

(2) Minimum voltage deviation

minUd =
n

∑
j=1

|Uj − Ujn| (2)

In (2), Ud is the system voltage deviation; Uj is the actual voltage of node j; Ujn is the
rated voltage of node j; and n indicates the total number of nodes.

(3) Minimum carbon emissions

In the current dual carbon context, considering the carbon emissions of power genera-
tion energy is crucial and is a response to the national call. Therefore, this paper takes the
minimum DG carbon emissions as one of the optimization objectives.

Based on the life-cycle assessment method, this paper analyzes the carbon footprint
of WT and PV units, obtains the unit carbon emission intensity by combining materials,
energy consumption, and carbon emission factors of different links [29], and proposes the
DG carbon emission index.

minEcarbon = ∑
i∈ΩWT

γWT PWT
i + ∑

i∈ΩPV

γPV PPV
i (3)

In (3), Ecarbon is the total carbon emissions of DG; ΩWT and ΩPV are the sets of WT and
PV access nodes in the distribution network; γWT and γPV are the unit carbon emission
intensities of WT and PV units, respectively; and PWT

i and PPV
i are the active output

absorption of WT and PV units at node i, respectively.
In this paper, a single-objective reactive power optimization mathematical model is

established to explore the impact of optimizing a single objective on the other objectives.
The PSO algorithm is used to solve the model. The improved IEEE33-node distribution
network [30] is used for a calculation example.

As can be seen from Table 1, performing single-objective reactive power optimization
is bound to weaken the optimization degree of the other objectives, so it is necessary to
consider the reactive power optimization model in the form of multi-objective weighted
summation at the same time.

Table 1. Comparison results of all-day reactive power optimization effect.

Optimization Objective
All-Day Average Active

Power Loss/kW
Average Voltage Deviation

throughout the Day/kV
Average Daily

Carbon Emissions/g

Minimum active network loss 137.63 13.21 11,061.9
Minimum voltage deviation 159.59 10.54 10,293.9
Minimum carbon emissions 175.91 16.81 7251.9

Since the units of the three objective functions are different, they are normalized and
weighted together in the satisfaction function.

F = w1 f ∗1 + w2 f ∗2 + w3 f ∗3 (4)

f ∗i =


1, fi ≤ fmin

fmax− fi
fmax− fmin

, fmin < fi < fmax

0, fi ≥ fmax

(5)

In (4) and (5), F is the satisfaction function, and the closer the value is to 1, the bet-
ter the reactive power optimization effect is; f ∗i is the normalized objective function,
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where i = 1, 2, 3; fi is the original objective function, where f1 = minPloss, f2 = minUd,
f3 = minEcarbon; fmax is the result without reactive power optimization; fmin is the result of
single-objective reactive power optimization; and wi is the corresponding weight coefficient
of each objective function, where w1 +w2 +w3 = 1, since the main objective of the dynamic
reactive power optimization of an active distribution network is to reduce the active power
of the system, and the secondary objective is to improve the quality of the system voltage,
so the value is divided according to importance by the analytic hierarchy process [31]:
active network loss > voltage deviation > carbon emissions. This results in w1 = 0.637,
w2 = 0.258, and w3 = 0.105.

2.2. Constraint Conditions

(1) Power flow equation constraints

PGi − PLi = Ui

n

∑
j=1

Uj(Gijcosθij + Bijsinθij) (6)

QGi − QLi + QCi = Ui

n

∑
j=1

Uj(Gijcosθij − Bijsinθij) (7)

In (6) and (7), PGi and QGi are the active and reactive power injected by the generator
and DG, respectively; PLi and QLi are the active and reactive power consumed by the load,
respectively; QCi is the reactive power compensated by node i; and Gij and Bij are the
conductance and susceptance between node i and node j.

(2) Node voltage constraints

Uimin ≤ Ui ≤ Uimax (8)

In (8), Ui is the voltage amplitude of node i; Umax and Umin are the upper limit and
lower limit of the node voltage amplitude.

(3) Equilibrium node constraints

Pgmin ≤ Pg ≤ Pgmax (9)

Qgmin ≤ Qg ≤ Qgmax (10)

In (9) and (10), Pgmin and Pgmax are the lower limit and upper limit of active power
of the equilibrium node, respectively; Pg is the active power inflow from the transmission
system operator (TSO); Qgmin and Qgmax are the lower limit and upper limit of reactive power
of the equilibrium node, respectively; and Qg is the reactive power inflow from the TSO.

(4) OLTC gear constraints

Kmin ≤ K ≤ Kmax (11)

In (11), K indicates the OLTC gear value; Kmin and Kmax are the maximum and mini-
mum levels of the OLTC, respectively.

(5) Constraints on the maximum number of OLTC adjustments throughout the day
24

∑
it=1

(Kit − Kit−1) ≤ nKmax (12)

In (12), Kit is the gear value of the OLTC at the it moment; nKmax indicates the maxi-
mum number of OLTC adjustments in an entire day.

(6) Reactive power output constraint of reactive power compensation device

QSVCmin ≤ QSVC ≤ QSVCmax (13)

QSCBmin ≤ QSCB ≤ QSCBmax (14)

In (13) and (14), QSVC is the reactive power output of the SVC; QSVCmax and QSVCmin
are the upper limit and lower limit of the SVC reactive power output, respectively; QSCB is
the reactive power output of the SCB; QSCBmax and QSCBmin are the upper limit and lower
limit of the reactive power output of the SCB.
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(7) SCB’s maximum number of daily switching constraints

24

∑
it=1

(QSCBit
⊕

QSCBit−1) ≤ nSCBmax (15)

In (15), QSCBit is the reactive power output of the SCB in it time;
⊕

is the xOR operator;
and nSCBmax indicates the maximum number of SCB switches in a whole day. If the reactive
power output of the SCB changes at the it hour, QSCBit

⊕
QSCBit−1 = 1; if the reactive

power output of the SCB does not change at the it hour, QSCBit
⊕

QSCBit−1 = 0.

(8) Restriction of DG output cutting quantity

PWT
jcut.min ≤ PWT

jcut ≤ PWT
jcut.max (16)

QWT
jcut.min ≤ QWT

jcut ≤ QWT
jcut.max (17)

PPV
jcut.min ≤ PPV

jcut ≤ PPV
jcut.max (18)

QPV
jcut.min ≤ QPV

jcut ≤ QPV
jcut.max (19)

To simplify the calculation, the WT and PV are treated as PQ-type DG connected to the
distribution network in this paper. The output of DG will not be fully absorbed when it is
connected to the distribution network at certain times. Therefore, to make the optimization
model conform to the actual situation, the restriction on the WT and PV spillage is adopted
as one of the constraints of the optimization model.

In (16), PWT
jcut is the active output cutting quantity of the jth WT; PWT

jcut.max and PWT
jcut.min

are the upper and lower limits of WT active output cuts, respectively. In (17), QWT
jcut is the

reactive output cutting quantity of the jth WT; QWT
jcut.max and QWT

jcut.min are the upper and

lower limits of WT reactive output cuts, respectively. In (18), PPV
jcut is the active output

cutting quantity of the jth PV; PPV
jcut.max and PPV

jcut.min are the upper and lower limits of PV
active output cuts, respectively. In (19), QPV

jcut is the reactive output cutting quantity of

the jth PV; QPV
jcut.max and QPV

jcut.min are the upper and lower limits of PV reactive output
cuts, respectively.

3. Linear Decreasing Mutation Particle Swarm Optimization

The idea of particle swarm optimization comes from research on the foraging behavior
of birds, whereby the group finds the optimal destination through collective information
sharing [32].

The standard particle swarm optimization algorithm uses a particle population to
optimize the objective function, which has a fast operation speed and few structural
parameters, so it is widely used in the research of the dynamic reactive power optimization
of active distribution networks [16,19,33]. But it easily falls into the local optimal solution.
Therefore, in order to improve the solution accuracy of the algorithm, this paper proposes
a linear decreasing mutation particle swarm optimization (LDMPSO) algorithm, and the
specific steps are as follows:

(1) In order to make the particle population search more thorough, the inertia weight w is
improved in the form of a linear decrease [34].

w = wmax − (wmax − wmin)(it/Maxit) (20)

In (20), w is the inertia weight; wmax and wmin are the upper and lower limits of the
inertia weight, respectively; it is the number of current iterations; and Maxit indicates the
maximum number of iterations.

In the early stage of iteration, the large inertia weight leads the particle swarm to find
the optimal solution in the global scope. In the late iteration, the small inertia weight leads
the particle swarm to find the optimal solution in the local scope.
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(2) In order to improve the convergence speed of the population, this paper improves the
individual learning factor c1 and social learning factor c2.

c1 = c1max − (c1max − c1min)(
it − 1

Maxit − 1
) (21)

c2 = c2min + (c2max − c2min)(
it − 1

Maxit − 1
) (22)

In (21) and (22), c1 is an individual learning factor; c1max and c1min are the upper and
lower limits of individual learning factors, respectively; c2 is a social learning factor; and
c2max and c2min are the upper and lower limits of social learning factors, respectively.

(3) In order to improve the overall convergence accuracy of the population, the population
particles are arranged in ascending order according to the fitness value at each iteration.
The last 20% of particles are randomly learned from the historical best position of one
of the first 20%.

vk+1
i = wvk

i + c1r1(pk
top20 − xk

i ) + c2r2(pk
g − xk

i ) (23)

In (23), vk+1
i is the position of particle i in generation k + 1; vk

i is the position of particle
i in generation k; pk

top20 is the individual optimal position of a certain particle located in the

top 20% of generation k; and pk
g is the global optimal position of the kth-generation particle.

(4) In order to prevent the population from falling into the local optimal solution during the
iterative search, this paper randomly selected 10% of the population to mutate when the
fitness value of the global optimal particle did not change for five consecutive iterations.

xk+1
i = Zxk

i + (1 − Z)pk
top20 (24)

In (24), Z is the coefficient of variation, and the range of values is (0.3, 0.7); the value is
taken randomly in each iteration.

The pseudocode of the proposed LDMPSO Algorithm 1 is as follows.

Algorithm 1 LDMPSO algorithm.

Input: Control variable upper and lower limits: nVarmax, nVarmin (includes the highest
and lowest gears of the OLTC, the upper and lower limits of the reactive power com-
pensation capacity of the SVC and SCB, and the upper and lower limits of the output
removal of DG); population particle number: nPop; maximum number of iterations:
MaxIt.

Output: Best fitness of the population: Best f itvalue; population’s best particle position:
Bestposition.

1: Initialize the position and velocity of each particle in the population.
2: for it = 1; it < MaxIt; it ++ do
3: for i = 1; i < nPop; i ++ do
4: Calculate the particle fitness value.
5: Rank the fitness values of the particles within the population.
6: Screen the particles located in the top 20% and the bottom 20% of the population,

respectively.
7: Update the inertia weight w according to Equation (20).
8: Update the individual learning factor c1 and the social learning factor c2 accord-

ing to Equations (21) and (22).
9: Update the velocity and position of the particle; for the particles located in the

last 20% of the population, the velocity is updated by Equation (23).
10: Update the best position in the particle history and the best position in the

population history.
11: end for
12: Mutate some particles according to Equation (24).
13: end for
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4. Three-Stage Dynamic Reactive Power Optimization Decoupling Strategy for Active
Distribution Network

Aiming to solve the MINLP problem of the dynamic reactive power optimization of
an active distribution network, this paper first adopts a discrete method followed by a con-
tinuous method to implement three-stage decoupling to obtain the global optimal solution.

The core of the three-stage dynamic reactive power optimization decoupling strategy
for active distribution networks in the second stage is to convert the optimal action values
of the discrete devices to the actual action values. The specific steps are as follows.

The optimal all-day gear values/compensation values of the OLTC and SCB are taken
as the sample set, and the PAM clustering of the samples is performed as follows:

(1) Randomly select kC data as the initial clustering center point.
(2) Calculate the distance between the data of each noncentral point and the central point

of each cluster.
(3) Assign the sample of each noncentral point to the group represented by the nearest

central point, and calculate the sum of absolute errors E.

E =
n

∑
i=1

|ki − kcen| (25)

In (25), E is the sum of absolute errors; ki is sample i; kcen is the central point of the
group; and n is the number of samples in the group.

(4) Randomly select a sample with a noncentral point to replace the central point of a
certain group, and calculate the sum of absolute errors E again.

(5) Calculate the sum of absolute error differences before and after substitution △E.
If △E > 0, use the sample as the center point of the group; otherwise, do not change it.

(6) Repeat (4)∼(5) until the kC center point is no longer changed.
(7) After clustering is completed, add the category number Di of the group to which each

sample belongs.

The one-time adjustment rule is as follows: if the sample has m consecutive hours
belonging to the same group, the m hours are merged into a period, and the gear value/
compensation value of the period after fusion is as follows:

(1) If m = 2, all values in that period are replaced by the mean.
(2) If m ≥ 3, if there are two different values, all values in the period are replaced by the

value that occurs more often; if there are three different values, all values in the period
are replaced by the median; and if there are four or more different values, all values in
the period are replaced by the mean.

After one adjustment, the second phase ends if the discrete device has reached the
maximum number of adjustments/switches in the whole day; otherwise, the second
adjustment is performed.

For the OLTC, the secondary adjustment rules are as follows:

(1) If there is one sample in the it period, the sample value of the period is

k
′
it =

{
max(kit, kit+1), |kit − kit+1| ≤ 3

max(kit, kit+1)/2, |kit − kit+1| > 3
(26)

In (26), kit is the sample value in the it period; k
′
it is the sample in the it period after

the second adjustment.
If the sample value in the last period in one day is the same as the sample value in the

initial period, the sample value in the last period of that day is

k
′
it =

{
max(kit, kit−1), |kit − kit−1| ≤ 3

max(kit, kit−1)/2, |kit − kit−1| > 3
(27)

(2) If there are two or more samples in the it period, the sample value in the period
remains unchanged.
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The second adjustment is repeated until the maximum number of adjustments/switches
for the day is reached.

(3) If the maximum number of actions in the whole day still cannot be reached after many
repeated adjustments, the sample value of two or fewer samples in the it period is

k
′
it =

{
min(kit, kit+1), |kit − kit+1| ≤ 3

min(kit, kit+1)/2, |kit − kit+1| > 3
(28)

For the SCB, the secondary adjustment rules are as follows:

(1) If there is one sample in the it period, the sample value in the period is

k
′
it =

{
max(kit, kit+1), |kit − kit+1| ≤ 300

max(kit, kit+1)/2, |kit − kit+1| > 300
(29)

If the sample value in the last period in one day is the same as the sample value in the
initial period, the sample value in the last period of that day is

k
′
it =

{
max(kit, kit−1), |kit − kit−1| ≤ 300

max(kit, kit−1)/2, |kit − kit−1| > 300
(30)

(2) If there are two or more samples in the it period, the sample value in the period
remains unchanged.

The second adjustment is repeated until the maximum number of adjustments/switches
for the day is reached.

(3) If the maximum number of actions in the whole day still cannot be reached after many
repeated adjustments, the sample value of two or fewer samples in the it period is

k
′
it =

{
min(kit, kit+1), |kit − kit+1| ≤ 300

min(kit, kit+1)/2, |kit − kit+1| > 300
(31)

Compared with the current dynamic reactive power optimization research based on
the clustering partition method, the proposed method has the following advantages:

(1) The PAM clustering algorithm uses the actual value instead of the average value as the
cluster center, which is more in line with the actual operation of reactive power optimization
of an active distribution network, and the calculation steps are relatively simple.

(2) It uses more detailed optimal value adjustment rules for discrete equipment, which has
a better dynamic reactive power optimization effect than the direct simple adjustment
of the average value.

The performance of convergence characteristics determines the quality of clustering
algorithms. In order to prove the effectiveness of the PAM clustering algorithm in dealing
with the reactive power optimization-related clustering problem for an active distribution
network, this paper uses the improved PG&E69-node distribution network [35] as a case
to compare different clustering algorithms (Tables 2 and 3). Due to the randomness of the
cluster center selection, each clustering algorithm is run 5 times.

Table 2. Comparison of convergence characteristics of different clustering algorithms (OLTC).

Clustering Algorithm Average Frequency of Convergence Average Number of Actual Values (Cluster Centers)

K-Means 6.2 2.4
PAM 2.3 4

Table 3. Comparison of convergence characteristics of different clustering algorithms (SCB2).

Clustering Algorithm Average Frequency of Convergence Average Number of Actual Values (Cluster Centers)

K-Means 8.4 1.4
PAM 2.4 4
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The three-stage dynamic reactive power optimization decoupling strategy flow chart
for an active distribution network is shown in Figure 1.

Figure 1. Three-stage dynamic reactive power optimization decoupling strategy flow chart for active
distribution network.

5. Example Analysis
5.1. Introduction of Numerical Examples

This paper is based on MATLAB software (2018 b) platform programming. Computer
configuration: the CPU is i5-8250U, the main frequency is 1.6 GHz with 8GRAM, the
graphics card is NVDIA GeForce MX 150, and the operating system is a Windows 10 64-bit
operating system.

The improved IEEE33−node distribution network is adopted in the calculation ex-
ample, as shown in Figure 2. The PV and WT units are connected to nodes 10 and 17,
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respectively, the capacity is 1 MW, the power factor is 0.95, and the WT and PV spillage is
0∼30% of the total. The balance node is connected to the OLTC, its adjustable voltage range
is 0.95∼1.05 p.u., the adjustment step is 1.25%, and the total number of levels is 9. A total
of 20 and 24 nodes are connected to SVC1 and SVC2, and the reactive power compensation
capacity is 1 MVar; SCB1 and SCB2 are connected to 27 and 32 nodes, the reactive power
compensation capacity of a single group is 50 kVar, and 20 groups are installed on each
node. The maximum number of OLTC and SCB actions nKmax and nSCBmax in a day is
30 and 5, respectively; the base capacity is 10 MW, the reference voltage of the system is
12.66 kV, and a constant power load is adopted. The upper and lower limits of the per
unit voltage of each node are set at 1.05 p.u. and 0.95 p.u., respectively, according to the
medium-voltage distribution network (10 kV) standard.

Figure 2. Improved IEEE33−node distribution network structure diagram.

At the same time, in order to test the performance of the proposed strategy and
algorithm in a large-scale, complex distribution network, the improved PG&E69−node
distribution network is taken as an example, as shown in Figure 3. The PV and WT units
are connected to nodes 17 and 23, respectively; the balance node is connected to the OLTC;
32 and 63 nodes are connected to SVC1 and SVC2; and SCB1 and SCB2 are connected to
45 and 53 nodes. The parameter setting of the device is the same as that of the improved
IEEE33-node distribution network. The base capacity is 10 MW, the reference voltage of the
system is 12.66 kV, and a constant power load is adopted; the upper and lower limits of the
per unit voltage of each node are set at 1.05 p.u. and 0.95 p.u., respectively, according to the
medium-voltage distribution network (10 kV) standard.

The unit carbon emission intensities of WT and PV units [29] are shown in Table 4;
considering the uncertainty of DG output, based on the annual wind power generation and
photovoltaic power generation data sets for a certain region in East China (1 h is one point),
this paper first uses the Monte Carlo method to generate scenes and then uses a heuristic
synchronous backtracking reduction method to reduce the scenes. The active power output
curves of wind and photovoltaic power and the daily load curve of the conventional load
are shown in Figures 4 and 5.

The three−stage dynamic reactive power optimization decoupling strategy for an
active distribution network is used for reactive power optimization, and the forward and
backward generation method is used for the power flow calculation.

Table 4. Results of carbon emission intensity per unit of wind and solar power generation units.

Power Generation Mode Wind Power Generation Photovoltaic Power Generation

Carbon emissions (g/kWh) 8.6 29.2
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Figure 3. Improved PG&E69−node distribution network structure diagram.

Figure 4. All−day active power output curve of wind and photovoltaic power.

Figure 5. Daily load curve of conventional load.

5.2. Analysis of Dynamic Reactive Power Optimization Results

The LDMPSO algorithm was used to solve the model. It is very important to evaluate
the variation in the LDMPSO algorithm parameters (wmax, wmin, c1max, c2max, c1min, c2min)
for the reactive power optimization effect.

As can be seen in Tables 5 and 6, the reactive power optimization effect is best when
wmax is set to 0.8, and wmin is set to 0.2; c1max and c2max are set to 2 and c1min and c2min are
set to 0.5 in both examples.
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Table 5. Comparison of all-day reactive power optimization effects of different settings of LDMPSO
algorithm-related parameters (improved IEEE33−node distribution network).

LDMPSO Algorithm
Parameter Settings

Satisfaction All−Day Average Active
Power Loss/kW

Average Voltage Deviation
throughout the Day/kV

Average Daily
Carbon Emissions/g

wmax = 0.9, wmin = 0.3
c1max = 2.5, c1min = 1
c2max = 2.5, c2min = 1

0.8676 149.29 13.37 7965.7

wmax = 0.9, wmin = 0.3
c1max = 2.25, c1min = 0.75
c2max = 2.25, c2min = 0.75

0.8740 149.30 13.43 7930.0

wmax = 0.9, wmin = 0.3
c1max = 2, c1min = 0.5
c2max = 2, c2min = 0.5

0.8754 149.06 13.45 7938.1

wmax = 0.8, wmin = 0.2
c1max = 2.5, c1min = 1
c2max = 2.5, c2min = 1

0.8664 149.70 13.28 8252.1

wmax = 0.8, wmin = 0.2
c1max = 2.25, c1min = 0.75
c2max = 2.25, c2min = 0.75

0.8735 148.65 13.45 7971.1

wmax = 0.8, wmin = 0.2
c1max = 2, c1min = 0.5
c2max = 2, c2min = 0.5

0.8651 143.49 13.27 7912.4

Table 6. Comparison of all-day reactive power optimization effects of different settings of LDMPSO
algorithm-related parameters (improved PG&E69−node distribution network).

LDMPSO Algorithm
Parameter Settings

Satisfaction All−Day Average Active
Power Loss/kW

Average Voltage Deviation
throughout the Day/kV

Average Daily
Carbon Emissions/g

wmax = 0.9, wmin = 0.3
c1max = 2.5, c1min = 1
c2max = 2.5, c2min = 1

0.9311 225.89 19.40 7658.1

wmax = 0.9, wmin = 0.3
c1max = 2.25, c1min = 0.75
c2max = 2.25, c2min = 0.75

0.9314 226.15 19.50 7584.8

wmax = 0.9, wmin = 0.3
c1max = 2, c1min = 0.5
c2max = 2, c2min = 0.5

0.9317 225.91 19.36 7657.9

wmax = 0.8, wmin = 0.2
c1max = 2.5, c1min = 1
c2max = 2.5, c2min = 1

0.9306 226.02 19.43 7655.0

wmax = 0.8, wmin = 0.2
c1max = 2.25, c1min = 0.75
c2max = 2.25, c2min = 0.75

0.9316 225.87 19.37 7656.5

wmax = 0.8, wmin = 0.2
c1max = 2, c1min = 0.5
c2max = 2, c2min = 0.5

0.9322 225.86 19.33 7638.9

Therefore, the LDMPSO algorithm parameters are set as follows: the population size
nPop is 50; the maximum iteration number Maxit is 100; wmax is set to 0.8, and wmin is set
to 0.2; c1max and c2max are set to 2; and c1min and c2min are set to 0.5.

In order to reflect the advantages of the proposed strategy in the current dynamic
reactive power optimization research based on the clustering partition method, five groups
of controlled experiments were set up. Experiment 1 was conducted before reactive power



Energies 2024, 17, 2774 14 of 21

optimization; experiment 2 applied static reactive power optimization (the relaxation of the
maximum number of movements of the discrete device throughout the day); experiment 3
adopted the strategy based on the K-Means clustering algorithm proposed in [19]; experi-
ment 4 adopted the strategy based on the Ward clustering algorithm proposed in [23]; and
experiment 5 adopted the strategy based on the PAM clustering algorithm proposed in
this paper.

The improved IEEE33−node distribution network is illustrated as an example. The re-
sults of experiment 2 show that SCB2 already satisfies the constraint of maximum all-day
switching times in the static reactive power optimization in the first stage, so the second
and third stages are not necessary. Figures 6 and 7 (Figures 8 and 9) show the OLTC all-day
gear and SCB1 all−day compensation capacity results for each group, respectively.

Figure 6. OLTC all−day gear adjustment results (improved IEEE33−node distribution network).

Figure 7. OLTC all−day gear adjustment results (improved PG&E69−node distribution network).



Energies 2024, 17, 2774 15 of 21

Figure 8. SCB1 compensation capacity switching results throughout the day (improved IEEE33−node
distribution network).

Figure 9. SCB2 compensation capacity switching results throughout the day (improved
PG&E69−node distribution network).

In order to more intuitively adjust/switch the effects of the OLTC and SCB1 using
different strategies, the OLTC all-day gear deviation value and SCB all-day compensation
capacity deviation rate are defined as follows:

NK =
24

∑
it=1

|K′
it − Kit| (32)

DSCB =
∑24

it=1 |
Q
′
SCBit−QSCBit

QSCBit
|×100%

24
(33)

In (32) and (33), K
′
it is the actual gear value of the OLTC at the it moment; Kit is the

optimal gear value of the OLTC at it time; NK is the shift deviation of the OLTC for the
whole day; Q

′
SCBit is the actual compensation capacity value of SCB at it time; QSCBit

is the optimal compensation capacity value of the SCB at it time; and DSCB is the SCB
all-day compensation capacity deviation rate. The smaller the OLTC all-day gear deviation
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value and the SCB all-day compensation capacity deviation rate, the closer the actual
value of the discrete device in this strategy to the optimal value of static reactive power
optimization without strong time coupling; thus, the rationality of this strategy can be
reflected more effectively.

Tables 7 and 8 (Tables 9 and 10), respectively, show the results of the discrete equipment
gear/compensation capacity deviation and the comparison results of the all-day reactive
power optimization effect for each group of experiments. It can be seen in Table 7 that the all-
day adjustment times of the OLTC and the all-day switching times of SCB1 in experiment 2
are 98 and 15 times, respectively, both of which exceed the specified maximum number of
all-day movements, thus shortening their service life.

Table 7. Discrete device deviation results for each group of experiments (improved IEEE33−node
distribution network).

Experiment Number of OLTC
Adjustments in a Day

SCB1 Number
of Daily Cuts

OLTC All−Day Shift
Deviation Value

SCB1 Compensation
Capacity Deviation Rate
throughout the Day/%

Experiment 1 0 0 - -
Experiment 2 98 15 - -
Experiment 3

([19])
23 3 59 6.67

Experiment 4
([23])

23 5 42 4.38

Experiment 5
(Ours)

26 4 40 3.53

Table 8. Discrete device deviation results for each group of experiments (improved PG&E69−node
distribution network).

Experiment Satisfaction All−Day Average Active
Power Loss/kW

Average Voltage Deviation
throughout the Day/kV

Average Daily
Carbon Emissions/g

Experiment 1 - 283.09 25.44 -
Experiment 2 0.879 148.09 13.46 7830.3
Experiment 3

([19])
0.905 147.52 13.54 7859.3

Experiment 4
([23])

0.905 147.94 13.60 7852.8

Experiment 5
(Ours)

0.906 147.21 13.53 7838.1

Experiments 3 ∼ 5 reduced the number of OLTC adjustments to 23 and 26; the number
of SCB1 cuts throughout the day is reduced to 3, 5, and 4, which meets the requirements of
the regulations. Compared with experiment 3, experiment 4 reduced the OLTC all-day gear
deviation from 59 to 42; the compensation capacity deviation rate of SCB1 was reduced from
6.67% to 4.38%. This is because the strategy based on the K-Means clustering algorithm
adopted in experiment 3 adopts the data mean to calculate the new cluster center, which is
not in line with the actual situation; however, the strategy adopted in experiment 4 based
on the Ward clustering algorithm turns to the method of calculating the sum of squares
of deviations after combining two adjacent samples to classify each sample. However, it
can be seen in Table 9 that experiment 3 reduced the all-day average active power network
loss from 283.09 kW to 147.52 kW, a reduction percentage of 47.89%; the average voltage
deviation for the whole day is reduced from 25.44 V to 13.54 kV, with a reduction percentage
of 46.78%. But in experiment 4, the average daily active power network loss decreased
from 283.09 kW to 147.94 kW, with a reduction percentage of 47.74%; the average voltage
deviation for the whole day was reduced from 25.44 kV to 13.60 kV, a reduction of 46.54%. It
can be seen that the strategy based on the Ward clustering algorithm adopted in experiment
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4 reduces the deviation between the actual OLTC all-day gear and the actual SCB1 all-day
compensation capacity and their optimal values to the greatest extent, but it ignores the
improvement of the all-day average active power network loss and all-day average voltage
deviation reduction.

Table 9. Comparison results of all-day reactive power optimization effect (improved IEEE33−node
distribution network).

Experiment Number of OLTC
Adjustments in a Day

SCB2 Number
of Daily Cuts

OLTC All−Day Shift
Deviation Value

SCB2 Compensates
Capacity Deviation Rate
throughout the Day/%

Experiment 1 0 0 - -
Experiment 2 77 17 - -
Experiment 3

([19])
12 2 72 8.59

Experiment 4
([23])

27 5 53 3.13

Experiment 5
(Ours)

21 5 37 2.31

Table 10. Comparison results of all-day reactive power optimization effect (improved PG&E69−node
distribution network).

Experiment Satisfaction All−Day Average Active
Power Loss/kW

Average Voltage Deviation
throughout the Day/kV

Average Daily
Carbon Emissions/g

Experiment 1 - 364.28 33.04 -
Experiment 2 0.951 225.29 20.48 7688.97
Experiment 3

([19])
0.973 225.89 21.41 7682.4

Experiment 4
([23])

0.974 225.67 22.83 7672.5

Experiment 5
(Ours)

0.976 224.74 20.41 7668.03

The strategy based on the PAM clustering algorithm used in experiment 5 reduced
the OLTC all-day gear deviation value from 59 in experiment 3 and 42 in experiment 4
to 40, and the compensation capacity deviation rate of SCB1 was reduced from 6.67% in
experiment 3 and 4.38% in experiment 4 to 3.53%. This is because the strategy adopted
in experiment 5 based on the PAM clustering algorithm is to randomly select data as the
new cluster center, which is more in line with the actual situation than the strategy used in
experiment 3.

The average all-day active power network loss decreased from 283.09 kW to 147.21 kW;
the reduction rate increased from 47.89% in experiment 3 and 47.74% in experiment 4 to
48.00%. The average voltage deviation for the whole day was reduced from 25.44 kV to
13.53 kV, and the reduction range was increased from 46.78% in experiment 3 and 46.54%
in experiment 4 to 46.82%. At the same time, it can be seen from the average daily carbon
emissions in each group that, compared with experiment 3, experiment 4 only reduced it
from 7859.3 g to 7852.8 g, while experiment 5 reduced it to 7838.1 g, with the reduction
rate increasing from 8.3% to 27.0%. This is because the formulation of the optimal value
adjustment rule for discrete devices in this paper is more detailed, which makes up for the
shortcomings of the strategies used in experiments 3 and 4. Therefore, the effectiveness of
the proposed strategy is verified.

Figure 10 shows the statistical plot of the node voltage at 24 × 33 sampling points
throughout the day for each experiment. The number 24 represents 24 h in a day, and
33 represents the number of nodes in the distribution network. A node voltage less than
0.95 p.u. or greater than 1.05 p.u. indicates that the voltage is out of limit.
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As can be seen in Figure 10 (Figure 11), the all-day dynamic reactive power optimiza-
tion obtained with the proposed strategy in experiment 5 performs the best in terms of
reducing out-of-limit voltage at the system nodes.

Figure 10. Statistical plots of system node voltages in different experiments (improved IEEE33−node
distribution network).

Figure 11. Statistical plots of system node voltages in different experiments (improved PG&E69-node
distribution network).

In order to prove the superiority of the proposed algorithm in dealing with the optimal
power flow problem, five groups of experiments were designed under the condition
of relaxing the maximum number of actions of the discrete device for the whole day.
Experiment 1 was conducted before reactive power optimization; experiment 2 applied
reactive power optimization using PSO; experiment 3 applied reactive power optimization
using CBPSO [36]; experiment 4 applied reactive power optimization using DCPSO [37];
and experiment 5 applied reactive power optimization using the LDMPSO algorithm
proposed in this paper. Due to the randomness of the population particle’s initial position,
this study ran each experiment five times, and the results were averaged.

The improved IEEE33-node distribution network is illustrated as an example. Table 11
(Table 12) shows that the LDMPSO algorithm proposed in this paper has the best per-
formance: the average active power network loss for the whole day was reduced from
283.09 kW to 132.28 kW, and the reduction percentage was increased from 47.19% with
the PSO algorithm, 47.57% with the CBPSO algorithm, and 49.06% with the DCPSO algo-
rithm to 53.27%. The average voltage deviation for the whole system was reduced from
25.44 kV to 12.53 kV, and the reduction percentage was increased from 45.48% with the PSO
algorithm, 46.78% with the CBPSO algorithm, and 50.67% with the DCPSO algorithm to
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50.75%. The average carbon emissions for the whole day also performed the best. Therefore,
the superiority of the proposed algorithm is verified.

Table 11. Comparison of reactive power optimization effects of different algorithms throughout the
day (improved IEEE33−node distribution network).

Experiment Satisfaction All−Day Average Active
Power Loss/kW

Average Voltage Deviation
throughout the Day/kV

Average Daily
Carbon Emissions/g

Experiment 1 - 283.09 25.44 -
Experiment 2

(PSO)
0.878 146.67 13.87 7833.12

Experiment 3
(CBPSO)

0.887 148.43 13.54 8081.25

Experiment 4
(DCPSO)

0.856 144.20 12.55 9546.68

Experiment 5
(LDMPSO)

0.890 132.28 12.53 7830.40

Table 12. Comparison of reactive power optimization effects of different algorithms throughout the
day (improved PG&E69−node distribution network).

Experiment Satisfaction All−Day Average Active
Power Loss/kW

Average Voltage Deviation
throughout the Day/kV

Average Daily
Carbon Emissions/g

Experiment 1 - 364.28 33.04 -
Experiment 2

(PSO)
0.952 253.21 24.62 7862.66

Experiment 3
(CBPSO)

0.968 237.42 23.67 8453.89

Experiment 4
(DCPSO)

0.943 226.54 22.32 9053.18

Experiment 5
(LDMPSO)

0.974 223.85 21.53 7663.53

6. Conclusions

Previous research on the dynamic reactive power optimization of an active distribution
network does not consider the carbon emissions of DG, and there are many limitations
in reactive power optimization research using clustering methods. Therefore, this paper
proposes a three-level dynamic reactive power optimization decoupling strategy for active
distribution networks considering carbon emissions. At the same time, in order to prevent
the particle swarm algorithm from falling into the local optimal solution, the LDMPSO
algorithm is proposed in this paper. Comparative experiments verify the advantages of the
proposed strategy and algorithm over other methods.

In future research in the field of reactive power optimization of active distribution
networks, we will focus on what dynamic multi-objective reactive power optimization
strategy should be adopted for distribution networks with new power electronic devices
connected under extreme weather conditions.
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