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Abstract: The evaluation of energy input and output processes in agricultural systems is a crucial
method for assessing sustainability levels within these systems. In this research, the investigation
focused on the input and output energies and related indices in sunflower farms in Khoy County
during the agricultural year 2017–2018. Data were collected from 140 sunflower producers through
specialized questionnaires and face-to-face interviews. Additionally, artificial neural networks
(ANNs), specifically the multilayer perceptron, were employed to predict the output energy. The
results revealed that a substantial portion of the total input energy was attributed to chemical nitrogen
fertilizer (43.98%), consumable fuel (25.74%), and machinery (8.42%). The energy efficiency (energy
ratio) in these agroecosystems was relatively low, measured at 1.57 for seed and 7.96 for seed and
straw. These values should be improved. The energy efficiency in seed production was computed at
0.06 MJ·ha−1, while, for the combined seeds and straw, it was 0.57 MJ·ha−1. In particular, seed energy
efficiency represents approximately 11% of the overall biological energy efficiency, highlighting that
a substantial 89% of the produced energy is associated with straw. The proper use of this straw is
crucial, as its improper handling could lead to a drastic decrease in overall efficiency. Furthermore,
the explanatory coefficient (R2) and the mean absolute percentage error (MAPE) to predict the output
energy with the best neural network were 0.94, and 1.77 for the training data, 0.97 and 1.55 for the test
data, and 0.9 and 2.08 for the validation data, respectively; additionally, 0.97 and 0.42 were obtained
by an ANFIS.

Keywords: ANFIS; artificial neural network; energy flow; seed; sunflower

1. Introduction

The agricultural sector is the most important driver of environmental changes in
the world and, at the same time, is highly vulnerable to these changes, often related to
various emissions and pollutants entering the soil, water, and atmosphere. Agriculture
contributes to the greenhouse effect by emitting methane (CH4), carbon dioxide (CO2), and
nitrogen oxides (NOX), leading to phenomena such as eutrophication through nitrogen and
phosphorus runoff, water pollution through washing and erosion, global phosphorus or
nitrogen pollution, climate change, air pollution, and depletion of the ozone layer [1,2].

Global agriculture is also affected by weather-related disasters such as droughts and
floods, mostly caused by agricultural pollution. Despite the adverse environmental effects,
agricultural production methods are key ways to achieve food security and end global
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hunger by improving protein and other nutrients in the diets of food-insecure individu-
als. In addition to reducing poverty through increased income, sustainable agriculture
can provide clean energy and water in low- and middle-income countries. Therefore,
smallholders, commercial farmers, and food producers worldwide need to engage in
sustainable agricultural activities to ensure secure food systems at the local, national or
regional levels [3].

The agricultural sector plays a dual role as both an energy consumer and a producer.
Investigating the factors influencing increased energy consumption (input) during agri-
cultural product production reveals potential strategies for optimizing energy utilization.
Optimizing energy consumption in agricultural production is especially important given
the need to restrict fossil fuel energy consumption, which is a key element in the energy
input spectrum, and mitigate its environmental consequences [4].

The amount of energy consumed in different agricultural production systems depends
not only on the type of crop being cultivated, but also on the materials used in crop
production and the prevailing climatic conditions of the region.

Different agricultural systems exhibit different behaviours in terms of energy resource
utilization, resulting in varying energy efficiencies in each production system. This effi-
ciency is typically not universally applicable to other production systems. Therefore, it
is necessary to comprehensively examine the specific energy levels for each region and
crop to accurately assess and optimize energy consumption. On the other hand, energy
consumption in the agricultural sector is on an upward trajectory. Therefore, producers face
an urgent need to enhance overall production by optimizing inputs rather than expanding
cultivable land.

Energy efficiency is a crucial issue in the context of sustainable agricultural develop-
ment. The analysis of energy flow is an accepted method for calculating energy indices.
Consequently, the flow of materials, chemicals, and fuel used in the production of a specific
quantity of food can be expressed in a standardized unit, such as the joule, to facilitate
energy calculations [5]. Therefore, exploring the level of energy consumption in agriculture
has become a fundamental question [6].

In regard to the total equivalent energy input in the agricultural sector, diesel fuel,
chemical fertilizers, and pesticides account for 54%, 24%, and 13%, respectively [7]. Consid-
ering the scale and size of Iran’s food system production (total energy input of 31 gigajoules
per hectare) [8], even small improvements can provide significant benefits.

Sunflowers, among crop plants, have global significance, being cultivated in diverse
geographical latitudes and climatic conditions and playing a crucial role in energy pro-
duction [9]. Iran, the main sunflower producer with an output exceeding 4380 tons, has a
cultivated area of 5686 hectares. In particular, the West Azerbaijan province, specifically
Khoy County, contributes 303 hectares to the extensive cultivation areas of this crop.

Despite the considerable potential for sunflower cultivation in the West Azerbaijan
province and Khoy County, the economic value of this crop remains relatively low due to
its modest yield (1461 and 984 kg h−1 in irrigated and rainfed cultivation, respectively) [10].
Consequently, there is a pressing need to explore solutions to increase productivity.

In recent years, intelligent systems such as ANNs and Adaptive Neuro-Fuzzy Infer-
ence Systems (ANFISs) have demonstrated successful applications for complementary
calculations. The emergence of new techniques, classified as soft computing or computa-
tional intelligence, has found versatile applications across various fields, encompassing
classification, pattern recognition, prediction, and modeling processes in diverse scientific
disciplines. The distinctive advantage of these methods lies in their ability to directly learn
from data, avoiding the necessity to estimate statistical characteristics [11].

An ANN is considered one of the most prominent novel modeling methods used in
various research studies [12]. An ANFIS is capable of predicting the relationship between
the output and input sets without considering initial knowledge and assumptions, mod-
eling the relationships between the parameters under study and predicting the output
related to the desired input [13].
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Successful applications have been achieved in resolving problems in natural processes
using ANFIS and ANN models. ANNs and ANFISs do not impose limitations on predicted
values, unlike linear regression models. These focus on the average, effectively preserving
the real variability present in the data [14].

Predictive models for crop yield involve preparing for potential deficiencies and
storing additional input, considering managerial and technical factors. This helps optimize
the production units, minimizing energy consumption and increasing overall efficiency.
Furthermore, this model could easily predict the yield based on enabling us to estimate the
optimal consumption model and level of energy consumption [15]. The machine learning
approach enables us to identify multiple direct and indirect factors for predicting energy
consumption in crop production. A long-term energy performance study can also help in
predicting crop production and greenhouse gas emissions based on energy inputs [7].

Numerous studies have been conducted on energy analysis, calculation of energy
indices, and prediction of these indices with intelligent systems for various products, such
as citrus fruits [16], rice [17], oilseed [18], sugar beets [19], pomegranates [20], wheat [21],
cumin and fennel [12], button mushrooms [22], microalgae cultivation [23], and almonds
and walnuts [24]. However, to our knowledge, few studies have been performed on the
analysis of energy flow in sunflower fields globally.

In other words, the prediction of sunflower output energy using intelligent networks
has not been performed yet. Given the importance of oilseed-derived products, particularly
sunflower seeds, in the diet of Iranian households, and recognizing the imperative to
improve production efficiency from both economic and energy consumption perspectives,
it is necessary to evaluate the energy efficiency of sunflower farms in this province. This
evaluation, particularly in Khoy County, a key production center for this crop, is crucial for
informed planning and policy-making geared towards optimizing sunflower production.

Therefore, the objective of this research is to analyze the energy input and output
models and predict the production of sunflower oil seeds using ANN systems and ANFISs,
providing the best model.

2. Materials and Methods
2.1. Geographic Characteristics of the Research Area

Khoy County, which covers an area of approximately 2000 km2, is located in the
northwestern region of Iran, specifically in the northwest sector of the West Azerbaijan
province (38◦45′ N, 45◦15′ E). It shares borders with Maku to the north, Marand to the
east, Salmas to the south, and Turkey to the west (Figure 1). Furthermore, this county is
organized into four districts, including five cities, 11 rural districts, and a total of 222 villages
within its limits.
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2.2. Data Collection Method

The data essential for this research were collected through a combination of direct
visits and the completion of questionnaires by sunflower farmers in Khoy County (Figure 2).
The research methodology employed a two-stage method of simple random sampling. In
the first stage, farmers were randomly chosen from the pool of rural residents within the
study area. The appropriate sample size was determined using the Cochran formula [25],
as follows;

n =
Nt2s2

Nd2 + t2s2 (1)

where ‘n’ represents the sample size (140 in this study), ‘N’ is the statistical population
size of sunflower farmers in the region, ‘t’ is the acceptable confidence coefficient obtained
from the table assuming a normal distribution of the desired property, ‘s2’ is the estimated
variance of the study property in the population (in this case the variance of energy
balance in the study area) and ‘d’ is the acceptable margin of error for the proportion being
estimated.
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After collecting the data, the mean of each variable was calculated, and, based on the
energy equations collected from various sources (Tables 1 and 2), they were converted to
MJ·ha−1. Notably, human labor input was calculated from the total hours of labor spent on
various agricultural operations, including plowing, disking, leveling, fencing, seed sowing,
fertilizing, pesticide application, irrigation, harvesting, and transportation.

Additionally, the input of machinery and equipment included the working hours
of the machinery and tools used from planting to harvesting and transport in the field.
Furthermore, fuel input was the amount of gasoline and diesel used for various operations,
such as plowing, planting, irrigation, fertilizing, harvesting, and transportation per hectare.

Chemical fertilizer is one of the essential inputs in agriculture, and it was considered
as pure amounts in the study area. Pesticide input includes the consumption of herbicides,
fungicides, and insecticides used in the study area and was evaluated under the variable of
chemical poisons.

Table 1. Basic status of farms.

Average Farm Area

Experience
(Years)

Land Preparation Method Irrigation

Total (ha) Sunflower
(ha)

Power
Source

Primary
Tillage

Secondary
Tillage

Water
Supply
Source

Method
Average

Irrigation
Frequency

4.47 3.02 15 Tractor Reversible
plow

leveler or
disc plow Water Well Flood 6.83
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Table 2. Energy equivalents for input and output values in sunflower fields.

Variable Unit Required Energy
(MJ·ha−1) Reference

Input Energy

Workers h 1.96 [26]
Tillage, fertilizer, and pesticide spraying machines h 62.70 [27,28]

Product transfer h 29.80 [29]
fuel L 56.31 [27,28]

Nitrogen fertilizer kg 75.40 [26]
Phosphate fertilizer kg 10.90 [26]
potasium fertilizer kg 9.90 [26]

Manure kg 0.3 [27,30]
Other fertilizers (micronutrients) kg 120 [31]

Pesticides L 237 [32]
Fungicides L 196 [32]
Herbicide L 288 [32]

Water m3 0.63 [26]
Seed kg 3.6 [30]

Water input was assessed using the conversion coefficient of the amount of irrigation
water to the energy input per MJ·ha−1 (Table 1). This variable was considered to be an
independent one. The seed input was recorded for each hectare of sunflower cultivation
and, after multiplying by the conversion factor, it was calculated in MJ·ha−1 (Table 2). In
addition, crop yield and residues were recorded as the output energies of various farms.

2.3. Energy Indices

Energy indices, energy efficiency, and net energy gain were obtained using the formula
reported in [26], as presented in Table 3.

Table 3. Coefficient of energy indices.

Indices Definition Unit

Direct input energy Fuel and workers MJ·ha−1

Indirect energy input Machines, fertilizers, poisons, etc. MJ·ha−1

Input energy from renewable sources Human power and seeds MJ·ha−1

Input energy from non-renewable sources Fuel, machinery, fertilizers, poisons, etc. MJ·ha−1

Total input energy The sum of direct and indirect energy input MJ·ha−1

Seed output energy The energy of harvested seeds MJ·ha−1

Biological output energy Energy of harvested seeds and straw (biological) MJ·ha−1

The input to output energy ratio Total energy output/energy input MJ·ha−1

Energy efficiency Total performance/energy input MJ·ha−1

Net addition of energy Energy output-total energy input MJ·ha−1

2.4. Neural Network

Using the data obtained from the questionnaires, the ANN model was implemented
using Matlab 2016a software. The structure of the employed model aimed to predict the
output energy in the cultivation of oil sunflowers in Khoy County based on the energy of
the input factors. To achieve this, all data were divided into three sets: training (50% of the
data), testing (25% of the data), and validation (25% of the data).

A multilayer perceptron neural network was used in the backpropagation algorithm.
The network consisted of an input layer with eight neurons (representing input energies)
and an output layer with one neuron (representing output energy). Additionally, one
and two hidden layers were employed at five different levels of neuron count (2, 4, 6,
8, and 10). Figure 3 illustrates the structure of the multilayer perceptron. In this study,
the Levenberg–Marquardt algorithm was used for weight adjustment in the ANN. This
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algorithm was chosen for its quick network training and minimizing of the error level,
making it one of the most widely used algorithms in this field.
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2.5. Adaptive Neuro-Fuzzy Inference System (ANFIS)

To manage cognitive uncertainty, a novel approach has emerged by integrating neural
networks with fuzzy logic, giving rise to a scientific term known as Neuro-Fuzzy. In a typical
ANFIS, the network processes 2, 3, or 4 input variables to generate a model [33]. However, the
conventional ANFIS is constrained by a maximum of 5 input variables, as expanding beyond
this threshold results in an increased rule number and computational time. This limitation
poses a challenge in effectively modeling outputs based on an increased number of inputs [18].

To address this constraint, innovative techniques such as data clustering can be em-
ployed [33]. In this study, the input variables, as shown in Figure 4, were combined
pairwise, and each pair entered a standard ANFIS. In the second stage, ANFIS 5 combined
the predicted values of ANFIS 1 and 2, and ANFIS 6 combined the predicted values of
ANFIS 3 and 4. Finally, the predicted values of ANFIS 5 and 6 were combined as input
for ANFIS 7, and the output of ANFIS 7 represented the predicted energy value of the
oil seed sunflower production. All ANFIS structures were evaluated and examined with
triangular (trimf), bell-shaped (gbellmf), and Gaussian (gaussmf) membership functions
using MATLAB 2017 software with two and three inputs.
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For reasons of uniformity of the ANFIS structure and the presence of eight inputs,
the input energy of the fertilizers was divided into two parts: chemical fertilizers and
animal manure.

2.6. Evaluation of Model Performance

To assess the predictive capabilities of the models developed in this study, statistical
indices such as the coefficient of determination (R2) and the mean absolute percentage error
(MAPE) were used (Equations (2) and (3)).

Formulas for R2 and MAPE are commonly used in regression analysis to assess how
well a model predicts the observed results. They provide insights into the goodness of fit
and the accuracy of the model predictions.

R2 = 1 − ∑n
i=1(ti − Zi)√

∑n
i=1 t2

i

(2)

MAPE =
1
n

n

∑
t=1

(
|(ti − Zi)|

Zi
)× 100 (3)

Here, Zi and Ti represent the actual and predicted values, respectively. The smaller the
value of R2 and MAPE, the better the model predicts the relationship between independent
and dependent variables [17].

2.7. Data Analysis

For data analysis and the visualizations, Excel 2017 and MATLAB 2017 software
were used.

3. Results and Discussion
3.1. Energy Flow

The input and output energies in the production of sunflowers in the study area
and their energy equations are presented in Table 4. Furthermore, each input and output
contribution to the energy values is illustrated in Figure 5.
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The total energy required for cultivation was 31,001.61 MJ·ha−1. Among various
inputs, chemical fertilizers had the highest contribution, constituting 16,369.83 MJ·ha−1

(52.8%). Furthermore, nitrogen fertilizers, in particular, contributed the most to the total
energy input, with 13,635 MJ·ha−1 (43.98%).

The second largest input was fuel, accounting for 145.16 L·ha−1, representing 25.74%
of the total energy consumption in sunflower farms. Taking into account the significant use
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of machinery in sunflower cultivation in the region, machinery constituted the third most
consumed input at 2610.20 MJ·ha−1 (8.42%).

Table 4. Amounts of inputs and outputs in Sunflower fields of Khoy County.

Energy Sources Input Energy Quantity Used per
Hectare

Total Energy
(MJ·ha−1)

Human labor

260.08 509.76
Land preparation 6.92 13.56

Planting 7.17 14.5
Fertilization 1.17 2.27

Spraying 1.5 2.94
Harvesting 201.67 395.27
Separating 23.33 45.73

Transportation 18.33 35.93

Machinery

51.25 2610.20
Land preparation 6.92 433.68

Fertilization 1.17 73.15
Spraying 1.5 94.05

Separating 23.33 1463
Transportation 18.33 546.33

Fuel

145.16 7980.28
Land preparation 70.67 3979.24

Fertilization 20.28 1142.15
Spraying 10.14 571.08

Separating 20.28 1142.15
Transportation 20.28 1142.15

Fertilizers

532.17 16,369.83
Nitrogen Fertilizer 225 13,635

Phosphorus Fertilizer 141.67 1572.50
Potassium Fertilizer 133.33 893.33
Farmyard manure 30 9

Other fertilizers
(micronutrient) 2.16 260

Pesticides

5.5 1425.67
Insecticide 1 237
Fungicide 1.17 228.67
Herbicide 3.33 960

Water for irrigation 3271.2 2060.86

Seed 12.5 45

Output energy

Grain 1950 48,750
Straw 15,833.33 197,916.67

Sunflower cultivation in the Khoy region was completely irrigated, requiring an aver-
age of 3271.2 L·ha−1 of each growing season, equivalent to 6.65% of the total energy input.
Furthermore, pesticides contributed 1425.67 MJ·ha−1 (6.65%) to the total energy input in
sunflower cultivation. Among pesticides, herbicides (mostly Paraquat) with an average
of 3.33 L·ha−1 (3.10%) had the highest share among various pesticides. Furthermore, hu-
man labor accounted for 509.76 MJ·ha−1, representing 1.64% of the total energy input in
sunflower cultivation. Harvesting operations had the highest share of labor energy use,
contributing 1.27% to the total. Furthermore, based on questionnaire data analysis, the
average energy production in sunflower farms in Khoy was 246,666.67 MJ·ha−1. Approxi-
mately 11% of this energy was associated with seeds, and the remaining 89% was related to
the stalks and husks produced (Figure 6).
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3.2. Energy Indices

The share of each energy category from the total energy produced is presented in
Table 5. The results indicate that direct and indirect energy shares from total energy
consumption in sunflower production are 27.39% and 72.61%, respectively.

Table 5. Classification of the type of energy consumption and the share of each in the production of
sunflower oil.

Type Input Energy (MJ·ha−1) %

Total input energy 31,001.61 100
Renewable energies 554.76 1.79

Non-renewable energies 30,446.85 98.21
Direct energies 8490.04 27.39

Indirect energies 22,511.56 72.64

Only 1.64% of the total input energy in sunflower cultivation is supplied by renewable
resources, while the remaining 98.36% comes from non-renewable energy sources. These
findings reveal that fossil fuels, machinery, and chemical pesticides constitute a significant
portion of the energy consumption, which is non-renewable. In contrast, human labor and
seeds contribute a relatively small share of renewable energy sources.

The overconsumption of non-renewable energy resources in conventional agricultural
systems and their long-term physical, chemical, and biological effects on the soil can lead to
the instability of these agricultural systems. Therefore, it is essential to develop technologies
and design new agricultural systems, considering the specific policies of policy makers, to
create more efficient and environmentally friendly production systems [34].

The energy indices for sunflower production have been calculated in two distinct
states, namely seed and biological (comprising both seed and straw) (Table 6). The energy
ratio, indicative of energy efficiency, was determined to be 1.57 for seed production and
7.96 for the combined production of seeds and straw.

Table 6. Energy indices of sunflower oil production in Khoy County.

Indices Seed Biological (Seed + Straw)

Energy ratio (energy efficiency) 1.57% 7.96%
Energy efficiency 0.06% 0.57%

Net addition of energy 17,748.39 MJ·ha−1 215,665.06 MJ·ha−1

Energy efficiency in sunflower seed production was calculated as 0.06 MJ·ha−1, and the
total energy for seeds and straw was calculated at 0.57 MJ·ha−1. This means that, for every
MJ of energy consumption, 0.06 kg of sunflower seeds are produced. The energy efficiency
was approximately 11%, indicating that approximately 89% of the energy produced was
related to the straw.
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In the absence of proper utilization of this straw, energy efficiency would decrease
significantly. In other studies on various products, the energy efficiency for cumin and
fennel was 0.66 and 0.52 MJ·ha−1, respectively [12], and for button mushrooms, it was
0.01 MJ·ha−1 [22]. The net energy added for seeds and seeds + sprout was 17,748.39 MJ·ha−1

and 215,665.06 MJ·ha−1, respectively. In particular, the results of this study are specific
to sunflower production in a particular research context and may not be generalizable to
other fields or agricultural products. Considering the limitations of the study is important
when interpreting the results.

It is essential to take into account broader concepts in the findings. Although energy
consumption efficiency and environmental impacts are crucial considerations, other factors
such as economic viability, social effects, and nutritional value may also be important when
deciding on product production [12]. Therefore, a comprehensive and holistic approach
that considers multiple factors may be necessary to ensure sustainable and responsible
product production.

3.3. Prediction of Output Energy
3.3.1. Neural Network

To predict the output energy in oilseed sunflower production, this study employed
ANN models; specifically, multilayer artificial neural networks utilizing the error backprop-
agation learning method were utilized.

The optimization process involved exploring various network structures, including
those with one and two layers and featuring two, four, six, eight, and ten neurons in
the hidden layer. These structures were systematically trained, tested, and validated to
determine the most effective artificial neural network configuration for modeling the output
energy in oilseed sunflower production.

The results are presented in Table 7. Based on the modeling results, the model with
eight inputs, one hidden layer with six neurons, and one output was identified as the best
structure. Tanh sigmoid activation functions in the hidden layers and linear activation in
the output layer were employed for the optimal network. The chosen model, which shows
determination coefficients (R2) of 0.97, 0.94 and 0.90 together with MAPE values of 1.55%,
1.77% and 2.08% for testing, training, and validation data, respectively, has been identified
as the optimal configuration. This model is proven to be the most reliable for accurately
predicting the output energy of sunflower oil based on the input energy variables used in
the study. Figure 7 shows the distribution of actual and predicted data by the model for
both training and testing data.

Table 7. ANN error parameters with different structures to predict sunflower output energy.

Hidden Layers
Number

Neurons
Number

R2 MAPE

Test Training Validation Test Training Validation

2 6 0.97 0.94 0.90 1.55 1.77 2.08

Previously, Nabavi-Pelesaraei et al. [17] reported the prediction of output energy
and greenhouse gas emissions in rice production using an ANN. They identified the
ANN model with a 12-6-8-1 structure as the best for predicting output energy, achieving
an R2 range of 0.524 to 0.999 for energy input and environmental effects in training the
ANN models. Similarly, Nabavi Belouz et al. [35] used an ANN to predict output energy
and greenhouse gas emissions in greenhouse tomato production. The results indicated
that a network with an input layer comprising 12 neurons, two hidden layers each with
34 neurons, and an output layer with 1 neuron was the optimal model. Furthermore,
Ghasemi-Mobtaker et al. [21] estimated the output energy and greenhouse gas emissions
in wheat production. They noted that the best results for performance estimation were
obtained using a multilayer perceptron network with two hidden layers, with an R2 of
0.520 and 0.962, respectively.
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3.3.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

To model the output energy of the sunflower oilseed, various membership functions,
including trimf, gbellmf, and gaussmf, were used. The specifications of the best model for
modeling with an ANFIS are presented in Table 8, and the correlation between predicted
and calculated values for the final ANFIS is depicted in Figure 8. The results indicated
that the statistical indices R2 and MAPE for the final ANFIS were 0.97 and 4.2, respectively.
This shows the high capacity of the multilevel ANFIS in predicting the energy produced
through oilseed sunflower cultivation in Khoy County. Similar results have been reported
for predicting output energy in the cultivation of rapeseed [18], wheat [21], and cumin and
fennel [12]. These findings highlight the great potential of multilevel ANFISs in predicting
energy consumption in various agricultural crops.

Table 8. Error parameters for predicting sunflower output energy using a three-level ANFIS.

Model
Membership Function Type Membership Function Number

Optimization Method R2 MAPE
Input Output Input Epoch

ANFIS 1 Bell Linear 3-3 20 Hybrid 0.60 1.17
ANFIS 2 Bell Linear 3-3 20 Hybrid 0.24 1.58
ANFIS 3 Bell Linear 3-3 20 Hybrid 0.80 0.80
ANFIS 4 Bell Linear 3-3 20 Hybrid 0.83 0.79
ANFIS 5 Bell Linear 3-3 20 Hybrid 0.93 0.51
ANFIS 6 Bell Linear 3-3 20 Hybrid 0.93 0.57
ANFIS 7 Bell Linear 3-3 20 Hybrid 0.97 0.42
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3.3.3. Comparison between ANNs and ANFISs

Based on the indicators evaluated in Tables 6 and 7, as well as Figures 7 and 8,
the predicted R2 values of the ANFIS model are higher than those of the ANN model.
Accordingly, it seems that, compared to the ANN, the predicted values by the ANFIS have
a better correlation with the actual output energy values. However, considering another
parameter used for model performance comparison (MAPE), the ANFIS predicts values
with a lower error percentage compared to the artificial neural network.

Another important factor in selecting the best model is the computational time during
the learning phase. The overall computational time of the ANFIS is significantly less than
that of the ANN, especially when compared to the multilayer artificial neural network [17].
Therefore, it is evident that the ANFIS exhibits a superior efficiency in predicting energy
output in oilseed sunflower cultivation.

As mentioned in previous sections, the main inputs in the energy consumption of
oilseed sunflower farms are chemical fertilizers and diesel fuel, which significantly impact
production costs and environmental damage. Hence, it is recommended to reduce the
consumption of these inputs through appropriate substitution.

Using the proposed models, it becomes possible to predict the effects of reducing fuel
and fertilizer consumption in regard to sunflower oil seeds. In the prediction of energy
production, the impact of reducing fuel and fertilizer consumption is readily apparent.

The results offer valuable information for future farm planning efforts, enabling the
optimization of energy consumption and subsequently improving economic efficiency and
overall performance. Furthermore, given the high credibility of these models, there is a
reduction in the risk associated with long-term planning, providing an additional assurance
to farm planners in making informed decisions.

4. Conclusions

Examining the energy dynamics in oilseed sunflower cultivation in Khoy County re-
veals that the input and output energy for these ecosystems were 31,001.61 and
246,666.67 MJ·ha−1, respectively. Key contributors to total input energy include chem-
ical nitrogen fertilizers, consumed fuel, and machinery. Notably, indirect energy surpasses
direct energy, and non-renewable resources outweigh renewable resources. This indicates a
significant reliance on non-renewable energy sources in the region. This emphasizes the
imperative to transition to renewable energy sources to improve sustainability in oilseed
sunflower production. The seed energy efficiency of approximately 11% highlights the sub-
stantial energy contribution of straw. Energy efficiency, which constitutes approximately
11% of the overall efficiency of biological energy, highlights that a significant 89% of the
energy produced energy was associated with the straw component. The proper utilization
of this straw is paramount, as neglecting its use could lead to a drastic decrease in overall
energy efficiency. In comparison between ANNs and ANFISs, the latter stands out for
its notable speed and accuracy, reflected in a high-correlation coefficient (R2 = 0.97). This
could make a multilevel ANFIS a valuable tool for managers, offering the capability of
accurately predict the energy output of large-scale agricultural production systems within
the agricultural sector.
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