Progress in Corrosion Research on Alternative Liquid Fuels
Abstract
:1. Introduction
2. Bibliometric Analysis of Studies on Corrosion in Alternative Liquid Fuels
3. Current Status of Corrosion in Alternative Liquid Fuels
3.1. Corrosion Study of Single Fuels
3.2. Blending of Liquid Fuels
4. Corrosion Mechanism in Alternative Liquid Fuels
4.1. Corrosive Components in Liquid Fuels
4.2. Sour Corrosion and Sweet Corrosion
5. Standard and Analytical Methods
5.1. Copper Strip Test
5.2. Weight Loss Measurements
5.3. Potentiodynamic Galvanostatic Polarization
5.4. Electrochemical Impedance Spectroscopy (EIS)
5.5. Electrochemical Noise Method
5.6. Surface Analytical Methods
6. Corrosion Inhibitors
6.1. Inorganic Inhibitors
6.2. Imidazole Compounds
6.3. Other Organic Corrosion Inhibitors
6.4. Inhibitors in Acidic Environments
6.5. Green Inhibitors
7. Prospects
- (1)
- The addition of alcohols to conventional fossil fuels offers significant advantages in terms of reducing corrosion problems. Biofuels, however, urgently need further research due to their high potential for causing corrosion. If researchers can creatively solve the corrosion issues associated with biofuels, it could lead to an epoch-making breakthrough in the energy industry.
- (2)
- There is a lack of systematic exploration of material selection for specific corrosive environments. For example, it is unclear what materials or coatings are best suited for environments containing reactive sulfides, which materials are most resistant to corrosion in humid environments, and whether certain materials are sensitive to specific components while being resistant to others.
- (3)
- The mechanism of the microbial corrosion of metals deserves in-depth study. While it is known that the presence of microorganisms intensifies corrosion, the detailed processes and mechanisms of microbial corrosion are not fully understood. Researchers in the biological field could make significant contributions to other disciplines by uncovering specific roles of certain microorganisms or discovering new mechanisms of microbial metabolism that impact corrosion.
- (4)
- From an electrochemical perspective, a quantifiable corrosion criterion should be developed. By establishing standardized calibration and measurement conditions, researchers could accurately determine and express the “standard corrosion value” of a material in a specific solution.
- (5)
- Solving the corrosion problem by developing new materials and transforming the production, transportation, and use processes of fuel is challenging. Significant progress has been made in controlling water and sulfur contents in fuels, leading to substantial results. However, further reducing these indicators is currently difficult. In the future, corrosion control will likely focus on the development and use of corrosion inhibitors.
- (6)
- The ideal corrosion inhibitor of the future will likely be an additive that provides multiple benefits to fuel oil, such as reducing corrosion, enhancing oxidation resistance, improving anti-wear properties, and adjusting viscosity and calorific value. Collaborative research and development across different additive fields should be strengthened to identify intersections and synergies, striving to create multifunctional additives that can address various challenges simultaneously.
- (7)
- Organic corrosion inhibitors remain the first choice for addressing fuel corrosion problems. However, their toxicity and environmental impact present new challenges. Currently, there are no products that can replace them entirely. It is important to identify environmentally friendly alternatives or to improve the environmental performance of mainstream organic corrosion inhibitors.
- (8)
- Green corrosion inhibitors are an important research direction, but their corrosion inhibition efficiency and economic cost remain significant challenges. Currently, most efforts are focused on confirming that natural extracts can reduce corrosion. However, there is a lack of further research on the interactions and mechanisms between different green corrosion inhibitors. This gap limits the potential for improving their corrosion inhibition efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Rosado, P.; Roser, M. Energy. 2022. Available online: https://ourworldindata.org/energy (accessed on 10 April 2024).
- De Castro, C.; Mediavilla, M.; Miguel, L.J.; Frechoso, F. Global wind power potential: Physical and technological limits. Energy Policy 2011, 39, 6677–6682. [Google Scholar] [CrossRef]
- De Castro, C.; Mediavilla, M.; Miguel, L.J.; Frechoso, F. Global solar electric potential: A review of their technical and sustainable limits. Renew. Sustain. Energy Rev. 2013, 28, 824–835. [Google Scholar] [CrossRef]
- Lu, T.; Dong, L.; Wang, Q. Considerations on Strategies of Developing Biomass Liquid Fuel. J. Jilin Agric. Univ. 2002, 24, 98. [Google Scholar]
- Araújo, K.; Mahajan, D.; Kerr, R.; da Silva, M. Global Biofuels at the Crossroads: An Overview of Technical, Policy, and Investment Complexities in the Sustainability of Biofuel Development. Agriculture 2017, 7, 32. [Google Scholar] [CrossRef]
- Koch, G.; Varney, J.; Thompson, N.; Moghissi, O.; Gould, M.; Payer, J. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study; NACE International: Houston, TX, USA, 2016; Volume 216, pp. 2–3. [Google Scholar]
- Torsner, E. Solving corrosion problems in biofuels industry. Corros. Eng. Sci. Technol. 2013, 45, 42–48. [Google Scholar] [CrossRef]
- Lotero, E.; Liu, Y.; Lopez, D.E.; Suwannakarn, K.; Bruce, D.A.; Goodwin, J.G. Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 2005, 44, 5353–5363. [Google Scholar] [CrossRef]
- Khan, A.A.; de Jong, W.; Jansens, P.J.; Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Srivastava, V. An evaluation of desulfurization technologies for sulfur removal from liquid fuels. Rsc Adv. 2012, 2, 759–783. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels—significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Marshall, A.G.; Rodgers, R.P. Petroleomics: Chemistry of the underworld. Proc. Natl. Acad. Sci. USA 2008, 105, 18090–18095. [Google Scholar] [CrossRef]
- Pang, C.L.; Lindsay, R.; Thornton, G. Chemical reactions on rutile TiO2 (110). Chem. Soc. Rev. 2008, 37, 2328–2353. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Robbins, W.K.; Hughey, C.A.; Cooper, H.J.; Rodgers, R.P.; Marshall, A.G. Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2001, 15, 1505–1511. [Google Scholar] [CrossRef]
- Su, F.; Guo, Y. Advancements in solid acid catalysts for biodiesel production. Green Chem. 2014, 16, 2934–2957. [Google Scholar] [CrossRef]
- Rashid, U.; Anwar, F. Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 2008, 87, 265–273. [Google Scholar] [CrossRef]
- Dameron, A.; Davidson, S.; Burton, B.; Carcia, P.; McLean, R.; George, S. Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J. Phys. Chem. C 2008, 112, 4573–4580. [Google Scholar] [CrossRef]
- Askari, M.; Aliofkhazraei, M.; Ghaffari, S.; Hajizadeh, A. Film former corrosion inhibitors for oil and gas pipelines—A technical review. J. Nat. Gas Sci. Eng. 2018, 58, 92–114. [Google Scholar] [CrossRef]
- Zarasvand, K.A.; Rai, V.R. Microorganisms: Induction and inhibition of corrosion in metals. Int. Biodeterior. Biodegrad. 2014, 87, 66–74. [Google Scholar] [CrossRef]
- Mahdavian, M.; Ashhari, S. Mercapto functional azole compounds as organic corrosion inhibitors in a polyester-melamine coating. Prog. Org. Coat. 2010, 68, 259–264. [Google Scholar] [CrossRef]
- Madden, S.B.; Scully, J.R. Inhibition of AA2024-T351 Corrosion Using Permanganate. J. Electrochem. Soc. 2014, 161, C162–C175. [Google Scholar] [CrossRef]
- Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability. Renew. Sustain. Energy Rev. 2011, 15, 1314–1324. [Google Scholar] [CrossRef]
- Juteau, F.; Masotti, V.; Bessiere, J.M.; Dherbomez, M.; Viano, J. Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia 2002, 73, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Zhang, N.; Zhang, D.; Xu, D.; Wu, W. Determination of chemical components of extractives from Santalum album L. leaves by means of Py-GC/MS. J. South China Univ. Technol. 2008, 36, 38–44. [Google Scholar]
- Graham, L.A.; Belisle, S.L.; Baas, C.L. Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmos. Environ. 2008, 42, 4498–4516. [Google Scholar] [CrossRef]
- Cusano, C.M.; Wang, J.C. Corrosion of copper and lead containing materials by diesel lubricants. Lubr. Eng. 1995, 51, 89–95. [Google Scholar]
- Govindharajan, S.; Raman, S.; Shanmugam, V.; Rathanasamy, R.; Palaniappan, S.K. Corrosion of brass subjected to cast-off cooking oil blended with diesel. Mater. Test. 2021, 63, 1032–1040. [Google Scholar] [CrossRef]
- Li, B. Analysis of off-specification of gasoline copper corrosion and countermeasures. Pet. Process. Petrochem. 2014, 45, 77. [Google Scholar]
- Soares, M.; Berbel, L.O.; Vieira, C.; Oliszeski, D.; Furstenberger, C.B.; Banczek, E. Study of Corrosion of AA 3003 Aluminum in Biodiesel, Diesel, Ethanol and Gasoline Media. In Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2020. [Google Scholar]
- Starosvetsky, J.; Armon, R.; Ratzker, M. Investigation of sever corrosion of aluminum parts in stored diesel engine cooling systems. Mater. Perform. 2005, 8, 44. [Google Scholar]
- Huang, S. Corrosion and Corrosion Control Measures for Hydrodesulphurized Diesel Tank. 2004. Available online: https://www.semanticscholar.org/paper/Corrosion-and-Corrosion-Control-Measures-for-Diesel-Shumin/4e88397d02f14e934eecd312507433e830632e35 (accessed on 4 June 2024).
- Fadali, O.A. The corrosion rate of a zinc/steel rotating cylinder in a saline water and saline water-alcohol environment. Anti-Corros. Methods Mater. 2005, 52, 47–51. [Google Scholar] [CrossRef]
- Muthukumar, N.; Maruthamuthu, S.; Mohanan, S.; Palaniswamy, N. Oil Soluble corrosion inhibitor on microbiologically influenced corrosion in diesel transporting pipeline. Port. Electrochim. Acta 2007, 25, 319–334. [Google Scholar] [CrossRef]
- Liu, X.; Xian, G.; Dong Liang, Y.; Zhou, G.; Wang, J.; Han, E. Corrosion behavior of X60 pipesteel steel in diesel oil. Mater. Prot. 2016, 49, 60–61+72+7. [Google Scholar]
- Xu, J.; Xia, Q.; Zhang, F.; Wu, Z.; Technology, P. A Study of Lead Corrosion of Diesel Engine Oil. China Pet. Process. Petrochem. Technol. 2018, 20, 71–78. [Google Scholar]
- Santini, R. Effect of Natural Filler on the Characterization of Natural Rubber. Bachelor Thesis, Universiti Malaysia Pahang, Pahang, Malaysia, 2010. [Google Scholar]
- Abnisa, F.; Daud, W.M.A.W. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manag. 2014, 87, 71–85. [Google Scholar] [CrossRef]
- Singh, B.; Korstad, J.; Sharma, Y.C. A critical review on corrosion of compression ignition (CI) engine parts by biodiesel and biodiesel blends and its inhibition. Renew. Sustain. Energy Rev. 2012, 16, 3401–3408. [Google Scholar] [CrossRef]
- Kamisnki, J.; Kurzydlowski, K.J. Use of Impedance Spectroscopy on Testing Corrosion Resistance of Carbon Steel and Stainless Steel in Water–Biodiesel Configuration; Project KBN-3T08C00428, 02-507; Worsaw University of Technology, Faculty of Materials Science and Engineering: Warsaw, Poland, 2009. [Google Scholar]
- De Almeida Souza Torres, C.E.; Costa, C.G.F.; Pereira, A.P.; de Castro, M.d.M.R.; de Freitas Cunha Lins, V. Corrosion failure analysis in a biodiesel plant using electrical resistance probes. Eng. Fail. Anal. 2016, 66, 365–372. [Google Scholar] [CrossRef]
- Cabrini, M.; Lorenzi, S.; Pastore, T.; Pellegrini, S.; Burattini, M.; Miglio, R. Study of the corrosion resistance of austenitic stainless steels during conversion of waste to biofuel. Materials 2017, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Oni, B.; Sanni, S.; Ezurike, B.; Okoro, E. Effect of corrosion rates of preheated Schinzochytrium sp. microalgae biodiesel on metallic components of a diesel engine. Alex. Eng. J. 2022, 61, 7509–7528. [Google Scholar] [CrossRef]
- Lee, J.S.; Ray, R.I.; Little, B.J. An assessment of alternative diesel fuels: Microbiological contamination and corrosion under storage conditions. Biofouling 2010, 26, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Nantha Gopal, K.; Raj, R.T.K. Effect of pongamia oil methyl ester–diesel blend on lubricating oil degradation of di compression ignition engine. Fuel 2016, 165, 105–114. [Google Scholar] [CrossRef]
- Kumar, N.; Varun; Chauhan, S.R. Evaluation of endurance characteristics for a modified diesel engine runs on jatropha biodiesel. Appl. Energy 2015, 155, 253–269. [Google Scholar] [CrossRef]
- Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. Investigation of friction and wear characteristics of palm biodiesel. Energy Convers. Manag. 2013, 67, 251–256. [Google Scholar] [CrossRef]
- Chandran, D.; Ng, H.K.; Lau, H.L.; Gan, S.; Choo, Y.M. Investigation of the effects of palm biodiesel dissolved oxygen and conductivity on metal corrosion and elastomer degradation under novel immersion method. Appl. Therm. Eng. 2016, 104, 294–308. [Google Scholar] [CrossRef]
- Amaya, A.; Piamba, O.; Olaya, J. Corrosiveness of palm biodiesel in gray cast iron coated by thermoreactive diffusion vanadium carbide (VC) coating. Coatings 2019, 9, 135. [Google Scholar] [CrossRef]
- Amaya, A.; Piamba, O.; Olaya, J. Improvement of corrosion resistance for gray cast iron in palm biodiesel application using thermoreactive diffusion niobium carbide (NbC) coating. Coatings 2018, 8, 216. [Google Scholar] [CrossRef]
- Deb, B.K.; Chakraborti, P. An investigation on corrosion behaviour and mechanical properties of aluminium in diesel palm kernel biodiesel and ethanol environments. Trans. Indian Inst. Met. 2024, 77, 595–605. [Google Scholar] [CrossRef]
- Cursaru, D.; Brănoiu, G.; Ramadan, I.; Miculescu, F. Degradation of automotive materials upon exposure to sunflower biodiesel. Ind. Crops Prod. 2014, 54, 149–158. [Google Scholar] [CrossRef]
- Buyuksagis, A.; Aksut, A.A. Effects of alcohols on the corrosion of aluminum alloys in 1 N HCl solution. Part II. Prot. Met. 2008, 44, 514–520. [Google Scholar] [CrossRef]
- Yu, Z.X.; Hao, S.X.; Fu, Q.S. Effects of propargyl alcohol on electrochemical behaviors of az91 magnesium alloy anode in 3.5% NaCl solution. Adv. Mater. Res. 2013, 750–752, 1137–1140. [Google Scholar] [CrossRef]
- Pleyer, O.; Matejovsky, L.; Macak, J. Testing of mixed corrosion inhibitors for steels in the presence of ethanol-gasoline blended fuels. In Proceedings of the 6th International Conference on Chemical Technology (ICCT) 2018, Mikulov, Czech Republic, 6–8 March 2018. [Google Scholar]
- Monteiro, M.; Ambrozin, A.; Santos, A.; Contri, P.; Kuri, S. Evaluation of metallic corrosion caused by alcohol fuel and some contaminants. In Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2010; Volume 636, pp. 1024–1029. [Google Scholar]
- Kwanchareon, P.; Luengnaruemitchai, A.; Jai-In, S. Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel 2007, 86, 1053–1061. [Google Scholar] [CrossRef]
- Shahir, S.A.; Masjuki, H.H.; Kalam, M.A.; Imran, A.; Fattah, I.R.; Sanjid, A. Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety and combustion. Renew. Sustain. Energy Rev. 2014, 32, 379–395. [Google Scholar] [CrossRef]
- Thangavelu, S.K.; Chelladorai, P.; Ani, F.N. Corrosion Behaviour of Carbon Steel in Biodiesel–Diesel–Ethanol (BDE) Fuel Blend. MATEC Web Conf. 2015, 27, 01011. [Google Scholar] [CrossRef]
- Thangavelu, S.K.; Ahmed, A.S.; Ani, F.N. Impact of metals on corrosive behavior of biodiesel–diesel–ethanol (BDE) alternative fuel. Renew. Energy 2016, 94, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, X.; Cheng, X.; Ma, C. The low-temperature corrosion characteristics of alcohol-based fuel combustion. RSC Adv. 2018, 8, 41237–41245. [Google Scholar] [CrossRef] [PubMed]
- Washecheck, P.H.; Liu, A. Kennedy, Methanol Fuel and Methanol Fuel Additives. United States Patent US 4,375,360, 1 March 1983. [Google Scholar]
- Surisetty, V.R.; Dalai, A.K.; Kozinski, J. Alcohols as alternative fuels: An overview. Appl. Catal. A Gen. 2011, 404, 1–11. [Google Scholar] [CrossRef]
- Joseph, O.O.; Fayomi OS, I.; Joseph, O.O.; Afolalu, S.A.; Mubaiyi, M.P.; Olotu, O.N.; Fashola, J.O. A comparative study on the corrosion behaviour of welded and un-welded API 5L X70 steel in simulated fuel grade ethanol. Cogent Eng. 2022, 9, 2009091. [Google Scholar] [CrossRef]
- Karthick, C.; Kasianantham, N. Experimental assessment of biobutanol degradation exposed to automotive components: A material compatibility approach. Process. Saf. Environ. Prot. 2023, 170, 215–228. [Google Scholar] [CrossRef]
- Baroš, P.; Matějovsky, L.; Macák, J.; Staš, M.; Pospišil, M. Corrosion Aggressiveness of ethanol–gasoline and butanol–gasoline blends on steel: Application of electrochemical impedance spectroscopy. Energy Fuels 2022, 36, 2616–2629. [Google Scholar] [CrossRef]
- Kumar, B.R.; Saravanan, S. Use of higher alcohol biofuels in diesel engines: A review. Renew. Sustain. Energy Rev. 2016, 60, 84–115. [Google Scholar] [CrossRef]
- Lapuerta, M.; García-Contreras, R.; Campos-Fernández, J.; Dorado, M.P. Stability, Lubricity, Viscosity, and Cold-Flow Properties of Alcohol Diesel Blends. Energy Fuels 2010, 24, 4497–4502. [Google Scholar] [CrossRef]
- Liao, C.; Xiong, Z. Automotive Fuel Tank and Water-Repellant Agent Comprises Metal Corrosion Inhibitor, Solvent, Solubilizer, and Emulsifier Comprising Fatty Alcohol Polyoxyethylene Ether, Alkylphenol Polyoxyethylene Ether, and/or Triethanolamine Oleate; Shenzhen Chepu Automobile Supplies DEV: Shenzhen, China, 2013; Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/DIIDW:2013A61036 (accessed on 4 June 2024).
- Lu, D.; Lu, J.; Lu, Y. Alcohol Ether Fuel for Vehicle, Comprises Ether Stabilizer, Antioxidant and Anti-Gum Inhibitor, Metal Deactivator, Corrosion Inhibitor, Catalytic Combustion Improver, Antistatic Agent, Antiknock Stabilizer and Purification Dispersant. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/DIIDW:2013V48916 (accessed on 4 June 2024).
- Liu, T. Coal-Based Alcohol Ether Fuel Comprises Gasoline, Methanol, Methanol Gasoline Composite Additive, Where Methanol Gasoline Composite Additive Comprises Cosolvent, Corrosion Inhibitor, Vapor Pressure Adjusting Agent and Antioxidative Stabiliz. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/DIIDW:201638738R (accessed on 4 June 2024).
- Pan, R.; Lu, Y.; Lu, X. Ether-Based Fuel Comprises Ether-Based Fuel Base Material, Gasoline, a Catalytically Active Agent, Combustion Propellant, Anti-Knock Stabilizer and Corrosion Inhibitor; PAN R. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/DIIDW:201938576W (accessed on 4 June 2024).
- Song, J.; Wei, Q. Fuel properties and exhaust emissions of low blending rate soybean oil methyl esters blended with diesel fuel. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 1311–1317. [Google Scholar] [CrossRef]
- Eiadtrong, S.; Maliwan, K.; Prateepchaikul, G.; Kattiyawan, T.; Thephsorn, P.; Leevijit, T. Preparation, important fuel properties, and comparative use of un-preheated palm fatty acid distillate-diesel blends in a single cylinder diesel engine. Renew. Energy 2019, 134, 1089–1098. [Google Scholar] [CrossRef]
- Fedie, R.L.; McNeff, C.V.; McNeff, C.V.; McNeff, L.C.; Greuel, P.G.; Yan, B.; Hoye, T.R. Hydrothermal catalysis of waste greases into green gasoline, jet, and diesel biofuels in continuous flow supercritical water. Biofuels Bioprod. Biorefining 2021, 16, 349–369. [Google Scholar] [CrossRef]
- Jiang, D.Y. The Preparation and Characterization of a Novel Biodiesel Named Curcas Oil Diethylene Glycol Ether Ester. Adv. Mater. Res. 2012, 535–537, 2112–2115. [Google Scholar] [CrossRef]
- Suiuay, C.; Sudajan, S.; Katekaew, S.; Senawong, K.; Laloon, K. Production of gasoline-like-fuel and diesel-like-fuel from hard-resin of Yang (Dipterocarpus alatus) using a fast pyrolysis process. Energy 2019, 187, 115967. [Google Scholar] [CrossRef]
- Wang, H.; Gross, A.; Liu, J. Influence of methanol addition on bio-oil thermal stability and corrosivity. Chem. Eng. J. 2022, 433, 133692. [Google Scholar] [CrossRef]
- Norouzi, S.; Hazeri, K.; Wyszynski, M.L.; Tsolakis, A. Investigation on the effects of temperature, dissolved oxygen and water on corrosion behaviour of aluminium and copper exposed to diesel-type liquid fuels. Fuel Process. Technol. 2014, 128, 220–231. [Google Scholar] [CrossRef]
- Lee, S.; Kim, T.; Kang, K. Performance and emission characteristics of a diesel engine operated with wood pyrolysis oil. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 228, 180–189. [Google Scholar] [CrossRef]
- Hensley, J.E.; Lovestead, T.M.; Christensen, E.; Dutta, A.; Bruno, T.J.; McCormick, R. Compositional Analysis and Advanced Distillation Curve for Mixed Alcohols Produced via Syngas on a K-CoMoSx Catalyst. Energy Fuels 2013, 27, 3246–3260. [Google Scholar] [CrossRef]
- Qin, J.; Xin, Y.; Ma, D. Separation mechanism and application of oil-water microemulsion. J. Chem. Ind. Eng. 2013, 64, 1797–1802. [Google Scholar]
- Qin, J.; Xin, Y.; Ma, D. Preparation and performance improvement of methanol and palm oil/palm kernel oil blended fuel. Fuel Process. Technol. 2021, 223, 106996. [Google Scholar]
- Mei, Z. Electrical conductivity and stability of O/W emulsions. Acta Pet. Sin. 2008, 24, 592. [Google Scholar]
- Guzenkova, A.S.; Artamonova, I.V.; Guzenkov, S.A.; Ivanov, S.S. Steel corrosion in hydrogen sulfide containing oil field model media. Metallurgist 2021, 65, 517–521. [Google Scholar] [CrossRef]
- Jacobs, S.; Reiber, S.; Edwards, M. Sulfide-induced copper corrosion. J. Am. Water Work. Assoc. 1998, 90, 62–73. [Google Scholar] [CrossRef]
- Xie, X.; Du, L.; Pan, L.; Cao, S.; Yan, M.; Yang, W. Effect of sulphide in water on corrosion of copper alloys. Anti-Corros. Methods Mater. 2007, 54, 34–36. [Google Scholar] [CrossRef]
- Liu, L.; Lue, H.; Qian, J.; Xing, J. Progress in the Technology for Desulfurization of Crude Oil. China Pet. Process. Petrochem. Technol. 2010, 12, 1–6. [Google Scholar]
- Sadare, O.; Obazu, F.; Daramola, M. Biodesulfurization of Petroleum Distillates—Current Status, Opportunities and Future Challenges. Environments 2017, 4, 85. [Google Scholar] [CrossRef]
- Wu, B.C.; Zhu, J.H. Identification of petroleum acids in Liaohe super-heavy oil. Pet. Sci. 2009, 6, 433–437. [Google Scholar] [CrossRef]
- Wang, Y.; Chu, Z.; Qiu, B.; Liu, C.; Zhang, Y. Removal of naphthenic acids from a vacuum fraction oil with an ammonia solution of ethylene glycol. Fuel 2006, 85, 2489–2493. [Google Scholar] [CrossRef]
- Williamson, C.H.; Jain, L.A.; Mishra, B.; Olson, D.L.; Spear, J.R. Microbially influenced corrosion communities associated with fuel-grade ethanol environments. Appl. Microbiol. Biotechnol. 2015, 99, 6945–6957. [Google Scholar] [CrossRef] [PubMed]
- Little, B.; Wagner, P.; Mansfeld, F. Microbiological influenced corrosion of metals and alloys. Int. Mater. Rev. 1991, 36, 253–272. [Google Scholar] [CrossRef]
- Pusparizkita, Y.M.; Harimawan, A.; Devianto, H.; Setiadi, T. Effect of Bacillus megaterium biofilm and its metabolites at various concentration biodiesel on the corrosion of carbon steel storage tank. Biointerface Res. Appl. Chem. 2022, 12, 5698–5708. [Google Scholar]
- Anandkumar, B.; Rajasekar, A.; Venkatachari, G.; Maruthamuthu, S. Effect of thermophilic sulphate-reducing bacteria (Desulfotomaculum geothermicum) isolated from Indian petroleum refinery on the corrosion of mild steel. Curr. Sci. 2009, 97, 342–348. [Google Scholar]
- Sancy, M.; Abarzúa, A.; Azócar, M.I.; Blamey, J.M.; Boehmwald, F.; Gómez, G.; Páez, M. Biofilm formation on aluminum alloy 2024: A laboratory study. J. Electroanal. Chem. 2015, 737, 212–217. [Google Scholar] [CrossRef]
- Chiciudean, I.; Mereuta, I.; Ionescu, R.; Vassu, T.; Tanase, A.M.; Stoica, I. Jet A-1 bacterial contamination: A case study of cultivable bacteria diversity, alkane degradation and biofilm formation. Pol. J. Environ. Stud. 2019, 28, 4139–4146. [Google Scholar] [CrossRef] [PubMed]
- Aktas, D.F.; Lee, J.S.; Little, B.J.; Duncan, K.E.; Perez-Ibarra, B.M.; Suflita, J.M. Effects of oxygen on biodegradation of fuels in a corroding environment. Int. Biodeterior. Biodegrad. 2013, 81, 114–126. [Google Scholar] [CrossRef]
- Slomczynski, T.; Lebkowska, M. Role of micro-organisms present in diesel fuel in the microbiological corrosion of carbon steel St3S. Desalination Water Treat. 2016, 57, 1388–1398. [Google Scholar] [CrossRef]
- McNamara, C.J.; Perry, T.D.; Leard, R.; Bearce, K.; Dante, J.; Mitchell, R. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks. Biofouling 2005, 21, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Dirk, W.J.; Geesey, G.G. Effect of bacterial biofilm on corrosion of galvanically coupled aluminum and stainless steel alloys under conditions simulating wet storage of spent nuclear fuel. Corrosion 1999, 55, 924–936. [Google Scholar] [CrossRef]
- Stamps, B.W.; Bojanowski, C.L.; Drake, C.A.; Nunn, H.S.; Lloyd, P.F.; Floyd, J.G.; Stevenson, B.S. In situ linkage of fungal and bacterial proliferation to microbiologically influenced corrosion in B20 biodiesel storage tanks. Front. Microbiol. 2020, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Rajasekar, A.; Ting, Y.P. Microbial corrosion of aluminum 2024 aeronautical alloy by hydrocarbon degrading bacteria bacillus cereus ACE4 and serratia marcescens ACE2. Ind. Eng. Chem. Res. 2010, 49, 6054–6061. [Google Scholar] [CrossRef]
- Sowards, J.W.; Mansfield, E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria. Corros. Sci. 2014, 87, 460–471. [Google Scholar] [CrossRef]
- Yang, S.S.; Lin, J.Y.; Lin, Y.T. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system. J. Microbiol. Immunol. Infect. Wei Mian Yu Gan Ran Za Zhi 1998, 31, 151–164. [Google Scholar] [PubMed]
- Liang, R.; Aktas, D.F.; Aydin, E.; Bonifay, V.; Sunner, J.; Sufllita, J.M. Anaerobic biodegradation of alternative fuels and associated biocorrosion of carbon steel in marine environments. Environ. Sci. Technol. 2016, 50, 4844–4853. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.C.; Hill, G.C. Microbial contamination and associated corrosion in fuels, during storage, distribution and use. Adv. Mater. Res. 2008, 38, 257–268. [Google Scholar] [CrossRef]
- Okoro, C.; Ekun, O.A.; Nwume, M.I.; Lin, J. Molecular analysis of microbial community structures in Nigerian oil production and processing facilities in order to access souring corrosion and methanogenesis. Corros. Sci. 2016, 103, 242–254. [Google Scholar] [CrossRef]
- Little, B.J.; Lee, J.S. Microbiologically influenced corrosion: An update. Int. Mater. Rev. 2014, 59, 384–393. [Google Scholar] [CrossRef]
- Liang, R.; Aydin, E.; Le Borgne, S.; Sunner, J.; Duncan, K.E.; Suflita, J.M. Anaerobic biodegradation of biofuels and their impact on the corrosion of a Cu-Ni alloy in marine environments. Chemosphere 2018, 195, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, N.; Rajasekar, A.; Ponmariappan, S.; Mohanan, S.; Maruthamuthu, S.; Raghavan, M. Microbiologically influenced corrosion in petroleum product pipelines—A review. Indian J. Exp. Biol. 2003, 41, 1012–1022. [Google Scholar] [PubMed]
- Racicot, R.J.; Crouch, C.D.; Rauch, M.E. Microbial influenced corrosion studies of Bacillus licheniformis on AA2024 aluminum alloys. Corros. Rev. 2007, 25, 97–106. [Google Scholar] [CrossRef]
- Mohanan, S.; Rajasekar, A.; Muthukumar, N.; Maruthamuthu, S.; Palaniswamy, N. The role of fungi on diesel degradation, and their influence on corrosion of API 5LX steel. Corros. Prev. Control 2005, 52, 123–130. [Google Scholar]
- Floyd, J.G.; Stamps, B.W.; Goodson, W.J.; Stevenson, B.S. Locating and quantifying carbon steel corrosion rates linked to fungal B20 biodiesel degradation. Appl. Environ. Microbiol. 2021, 87, e0117721. [Google Scholar] [CrossRef]
- Kuna, M.; Miszczyk, A. Risks caused by microbiologically influenced corrosion in diesel fuel storage tanks. Ochr. Przed Korozją 2024, 3, 60–67. [Google Scholar] [CrossRef]
- Cai, H.; Wang, P.; Chen, X.; Wang, Y.; Zhang, D. Sulfide ions-induced release of biocides from a metal-phenolic supramolecular film fabricated on aluminum for inhibition of microbially influenced corrosion. Corros. Sci. 2020, 167, 108534. [Google Scholar] [CrossRef]
- Nesic, S. Key issues related to modelling of internal corrosion of oil and gas pipelines—A review. Corros. Sci. 2007, 49, 4308–4338. [Google Scholar] [CrossRef]
- Ren, C.; Liu, D.; Bai, Z.; Li, T. Corrosion behavior of oil tube steel in simulant solution with hydrogen sulfide and carbon dioxide. Mater. Chem. Phys. 2005, 93, 305–309. [Google Scholar] [CrossRef]
- Moiseeva, L.J.P.O.M. Carbon dioxide corrosion of oil and gas field equipment. Prot. Met. 2005, 41, 76–83. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Quraishi, M.A.; Qurashi, A. Recent trends in environmentally sustainable sweet corrosion inhibitors. J. Mol. Liq. 2021, 326, 115117. [Google Scholar] [CrossRef]
- Singh, A.; Lin, Y.; Obot, I.B.; Ebenso, E.E.; Ansari, K.R.; Quraishi, M.A. Corrosion mitigation of J55 steel in 3. 5% NaCl solution by a macrocyclic inhibitor. Appl. Surf. Sci. 2015, 356, 341–347. [Google Scholar]
- ASTM D130-18; Standard Test Method for Corrosiveness to Copper from Petroleum Products by Copper Strip Test. ASTM: West Conshohocken, PA, USA, 2018.
- GB/T 5096-2017; Test Method for Corrosiveness to Copper from Petroleum Products by Copper Strip Test. The Standardization Administration of the People’s Republic of China: Beijing, China, 2017.
- Mu, Z.; Zhu, Z.; Chen, D.; Zhang, F. Research on corrosion fractal character of LY12CZ aluminum alloy based on image processing technique. Adv. Mater. Res. 2011, 152, 1691–1695. [Google Scholar] [CrossRef]
- Galvele, J.R. Tafel’s law in pitting corrosion and crevice corrosion susceptibility. Corros. Sci. 2005, 47, 3053–3067. [Google Scholar] [CrossRef]
- McCafferty, E. Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci. 2005, 47, 3202–3215. [Google Scholar] [CrossRef]
- Chira, A.; Bucur, B.; Radu, G.L. Electrodeposited organic layers formed from aryl diazonium salts for inhibition of copper corrosion. Materials 2017, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Montemor, M.; Simoes, A.; Salta, M.; Composites, C. Effect of fly ash on concrete reinforcement corrosion studied by EIS. Cem. Concr. Compos. 2000, 22, 175–185. [Google Scholar] [CrossRef]
- Alves, V.A.; Brett, C.M.J.E.A. Characterisation of passive films formed on mild steels in bicarbonate solution by EIS. Electrochim. Acta 2002, 47, 2081–2091. [Google Scholar] [CrossRef]
- Khaled, K.F.; Abdel-Rehim, S.S.; Sakr, G.B. On the corrosion inhibition of iron in hydrochloric acid solutions, Part I: Electrochemical DC and AC studies. Arab. J. Chem. 2012, 5, 213–218. [Google Scholar] [CrossRef]
- Ferreira, D.L.; Alves, E.M.; Sousa, G.R.; Ferreira PH, B.; Figueiredo JM, A.; Leite, N.B.; Moreto, J.A. Electrochemical impedance spectroscopy: Basic principles and some applications. Rev. Virtual De Química 2022, 3, 162–193. [Google Scholar] [CrossRef]
- Papavinasam, S. Monitoring—Internal Corrosion, Corrosion Control in the Oil and Gas Industry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 425–528. [Google Scholar]
- Papavinasam, S.; Doiron, A.; Revie, R.W. Industry survey on techniques to monitor internal corrosion. Mater. Perform. 2012, 51, 34–38. [Google Scholar]
- Ramezanzadeh, B.; Arman, S.; Mehdipour, M.; Markhali, B. Analysis of electrochemical noise (ECN) data in time and frequency domain for comparison corrosion inhibition of some azole compounds on Cu in 1.0 M H2SO4 solution. Appl. Surf. Sci. 2014, 289, 129–140. [Google Scholar] [CrossRef]
- Tan, Y. Sensing localised corrosion by means of electrochemical noise detection and analysis. Sens. Actuators B Chem. 2009, 139, 688–698. [Google Scholar] [CrossRef]
- Obot, I.B.; Onyeachu, I.B.; Zeino, A.; Umoren, S.A. Electrochemical noise (EN) technique: Review of recent practical applications to corrosion electrochemistry research. J. Adhes. Sci. Technol. 2019, 33, 1453–1496. [Google Scholar] [CrossRef]
- Durham, R.A.; Durham, M.O. Corrosion impact of cathodic protection on surrounding structures. In Proceedings of the 50th Annual Petroleum and Chemical Industry Conference, Houston, TX, USA, 11–14 November 2003. [Google Scholar]
- Caldona, E.B.; Smith, D.W.; Wipf, D.O. Protective action of semi-fluorinated perfluorocyclobutyl polymer coatings against corrosion of mild steel. J. Mater. Sci. 2019, 55, 1796–1812. [Google Scholar] [CrossRef]
- Li, L.F. Corrosion-resistant alloys for tubings and casings and alloy material selection in oil and gas wells. Adv. Mater. Res. 2013, 690, 276–279. [Google Scholar] [CrossRef]
- Kumar, V.; Rao, P.P.; Patwardhan, A.K. New development in corrosion-resistant alloys for marine applications. Mater. Perform. 1991, 30, 72–74. [Google Scholar]
- Obot, I.B.; Solomon, M.M.; Umoren, S.A.; Suleiman, R.; Elanany, M.; Alanazi, N.M.; Sorour, A.A. Progress in the development of sour corrosion inhibitors: Past, present, and future perspectives. J. Ind. Eng. Chem. 2019, 79, 1–18. [Google Scholar] [CrossRef]
- Tiu, B.; Advincula, R.C.J.R.; Polymers, F. Polymeric corrosion inhibitors for the oil and gas industry: Design principles and mechanism. React. Funct. Polym. 2015, 95, 25–45. [Google Scholar] [CrossRef]
- Dorman, S.E.G. The Effect of corrosion inhibitors on environmental fatigue crack growth in Al-Zn-Mg-Cu. In Proceedings of the 11th International Fatigue Congress, Melbourne, Australia, 2–7 March 2014. [Google Scholar]
- Sanni, S.E.; Ewetade, A.P.; Emetere, M.E.; Agboola, O.; Okoro, E.; Olorunshola, S.J.; Olugbenga, T.S. Enhancing the inhibition potential of sodium tungstate towards mitigating the corrosive effect of Acidithiobaccillus thiooxidan on X-52 carbon steel. Mater. Today Commun. 2019, 19, 238–251. [Google Scholar] [CrossRef]
- Joseph, O.O.; Sivaprasad, S.; Fayomi, O.S.I. Comparative study on the effect of NaNO2 in corrosion inhibition of micro-alloyed and API-5L X65 steels in E20 simulated FGE. In Proceedings of the International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability (TMREES), Beirut, Lebanon, 14–17 April 2017. [Google Scholar]
- Cho, Y.; Han, S.; Seo, H.; Shin, M.; Woo, S.; Jeong, S. Corrosion and inhibition process of carbon steel in LiBr-H2O solution. J. Mech. Sci. Technol. 2019, 33, 2995–3000. [Google Scholar] [CrossRef]
- Schroeder, S.; Becker, D.; Kuever, J.; Rabenstein, A.; Kaune, M.; Wilke, Y.; Geistbeck, M.; Gerlach, C.; Gerlach Carmen Pietzker, T. Composition, Useful e.g., as a Corrosion Protection Agent for Metals or Metal Alloys, Preferably Aluminum or Aluminum Alloys, Comprises a Binder, Hardener, Corrosion Inhibitor and a Quaternary Ammonium Compound. Airbus Deut Gmbh (EADS-C); et al. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/DIIDW:2009L96397 (accessed on 4 June 2024).
- Ranade, D.R.; Dighe, A.S.; Bhirangi, S.S.; Panhalkar, V.S.; Yeole, T.Y. Evaluation of the use of sodium molybdate to inhibit sulphate reduction during anaerobic digestion of distillery waste. Bioresour. Technol. 1999, 68, 287–291. [Google Scholar] [CrossRef]
- Streitwieser, A. Progress in Physical Organic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ramesh, S.; Rajeswari, S.J.C.S. Evaluation of inhibitors and biocide on the corrosion control of copper in neutral aqueous environment. Corros. Sci. 2005, 47, 151–169. [Google Scholar] [CrossRef]
- Gusmano, G.; Labella, P.; Montesperelli, G.; Privitera, A.; Tassinari, S.J.C. Study of the inhibition mechanism of imidazolines by electrochemical impedance spectroscopy. Corrosion 2006, 62, 576–583. [Google Scholar] [CrossRef]
- Rivera-Grau, L.M.; Casales, M.; Regla, I.; Ortega-Toledo, D.M.; Ascencio-Gutierrez, J.A.; Gonzalez-Rodriguez, J.G.; Martinez-Gomez, L. H2S corrosion inhibition of carbon steel by a coconut-modified imidazoline. Int. J. Electrochem. Sci. 2012, 7, 12391–12403. [Google Scholar] [CrossRef]
- Izquierdo, J.; Santana, J.J.; Gonzalez, S.; Souto, R.M. Scanning microelectrochemical characterization of the anti-corrosion performance of inhibitor films formed by 2-mercaptobenzirnidazole on copper. Prog. Org. Coat. 2012, 74, 526–533. [Google Scholar] [CrossRef]
- Trachli, B.; Keddam, M.; Takenouti, H.; Srhiri, A. Protective effect of electropolymerized 2-mercaptobenzimidazole upon copper corrosion. Prog. Org. Coat. 2002, 44, 17–23. [Google Scholar] [CrossRef]
- Frija, L.M.T.; Pombeiro, A.J.L.; Kopylovich, M.N. Coordination chemistry of thiazoles, isothiazoles and thiadiazoles. Coord. Chem. Rev. 2016, 308, 32–55. [Google Scholar] [CrossRef]
- Khalifa, M.E. Recent developments and biological activities of 2-Aminothiazole derivatives. Acta Chim. Slov. 2018, 65, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Antonijevic, M.M.; Milic, S.M.; Petrovic, M.B. Films formed on copper surface in chloride media in the presence of azoles. Corros. Sci. 2009, 51, 1228–1237. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Zhou, F.; Feng, D.; Xia, Y.; Liu, W. Tribological and corrosive properties of ionic liquids containing triazole functional groups. Ind. Lubr. Tribol. 2015, 67, 210–215. [Google Scholar] [CrossRef]
- Ramesh, S.; Rajeswari, S. Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives. Electrochim. Acta 2004, 49, 811–820. [Google Scholar] [CrossRef]
- Goyal, M.; Kumar, S.; Bahadur, I.; Verma, C.; Ebenso, E.E. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. J. Mol. Liq. 2018, 256, 565–573. [Google Scholar] [CrossRef]
- Ravari, F.B.; Dadgareenezhad, A. Synergistic influence of propargyl alcohol and zinc sulfate on inhibition of corrosion of aluminum in 0.5 M H2SO4. J. Chil. Chem. Soc. 2013, 58, 1853–1857. [Google Scholar] [CrossRef]
- Bilgic, S.; Şahin, M. The corrosion inhibition of austenitic chromium–nickel steel in H2SO4 by 2-butyn-1-ol. Mater. Chem. Phys. 2001, 70, 290–295. [Google Scholar] [CrossRef]
- Hosseini, S.M.A.; Amiri, M.; Momeni, A. Inhibitive effect of L–OH on the corrosion of austenitic chromium–nickel steel in H2SO4 solution. Surf. Rev. Lett. 2008, 15, 435–442. [Google Scholar] [CrossRef]
- Şahın, M.; Bılgıç, S. The effect of crotyl alcohol on the corrosion of austenitic chromium–nickel steel. Appl. Surf. Sci. 1999, 147, 27–32. [Google Scholar] [CrossRef]
- Nugroho, G.; Pradityana, A.; Husodo, N.; Mursid, M.; Winarto, G.D.; Putrandi, F.T. Mechanism of papaya leaf as organic inhibitor in corrosion process. AIP Conf. Proc. 2018, 1983, 050017. [Google Scholar]
- Al-Juaid, S.S. Inhibition of corrosion of carbon steel 1018 in acid medium with ethoxylated aliphatic alcohols. Chem. Technol. Fuels Oils 2011, 47, 58–65. [Google Scholar] [CrossRef]
- Ziarani, G.M. Amine Dyes, in Metal-Free Synthetic Organic Dyes; Elsevier: Amsterdam, The Netherlands, 2018; pp. 19–46. [Google Scholar]
- Zhang, C.; Zhao, J. Synergistic inhibition effects of octadecylamine and tetradecyl trimethyl ammonium bromide on carbon steel corrosion in the H2S and CO2 brine solution. Corros. Sci. 2017, 126, 247–254. [Google Scholar] [CrossRef]
- Baros, P.; Matejovsky, L.; Stas, M.; Macak, J.; Vyslouzil, J.; Pospisil, M. Methods for Testing the Steel Corrosion Inhibition in Alcohol–Gasoline Blends Using Diethylenetriamine. Energy Fuels 2022, 36, 14962–14975. [Google Scholar] [CrossRef]
- Al-Baker, N.; Shawabkeh, R.; Rihan, R. Kinetic study of effect of amine based corrosion inhibitor in reducing corrosion rate of 1018 carbon steel in seawater solution. Corros. Eng. Sci. Technol. 2011, 46, 767–776. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Andreev, N.N.; Ibatullin, K.A.; Oleinik, S.V. Protection of low-carbon steel from carbon dioxide corrosion with volatile inhibitors. I. Liquid phase. Prot. Met. 2002, 38, 322–328. [Google Scholar] [CrossRef]
- Seyam, D.F.; H Tantawy, A.; Eid, S.; El-Etre, A.Y. Study of the inhibition effect of two novel synthesized amido-amine-based cationic surfactants on aluminum corrosion in 0.5 M HCl solution. J. Surfactants Deterg. 2022, 25, 133–143. [Google Scholar] [CrossRef]
- Shawabkeh, R.; Rihan, R.; Al-Baker, N. Effect of an alkyl amine-based corrosion inhibitor for 1018 carbon steel pipeline in sea water. Anti-Corros. Methods Mater. 2013, 60, 259–270. [Google Scholar] [CrossRef]
- Tripathy, D.B.; Mishra, A.; Clark, J.; Farmer, T. Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: A review. Comptes Rendus Chim. 2018, 21, 112–130. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, X.; Peng, Y.J.M.E. The adsorption behavior of surfactants on mineral surfaces in the presence of electrolytes–A critical review. Miner. Eng. 2018, 121, 66–76. [Google Scholar] [CrossRef]
- Singh, J.; Michel, D.; Chitanda, J.M.; Verrall, R.E.; Badea, I. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles. J. Nanobiotechnol. 2012, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- El Basiony, N.M.; Badr, E.E.; Baker, S.A.; El-Tabei, A.S. Experimental and theoretical (DFT & MC) studies for the adsorption of the synthesized Gemini cationic surfactant based on hydrazide moiety as X-65 steel acid corrosion inhibitor. Appl. Surf. Sci. 2021, 539, 148246. [Google Scholar]
- Abd El-Lateef, H.M.; Khalaf, M.M. Synergistic inhibition effect of novel counterion-coupled surfactant based on rice bran oil and halide ion on the C-steel corrosion in molar sulphuric acid: Experimental and computational approaches. J. Mol. Liq. 2021, 331, 115797. [Google Scholar] [CrossRef]
- Hasanov, E.E.; Rahimov, R.A.; Abdullayev, Y.; Asadov, Z.H.; Ahmadova, G.A.; Isayeva, A.M.; Autschbach, J. Counterion-coupled gemini surfactants based on propoxylated hexamethylenediamine and fatty acids: Theory and application. J. Mol. Liq. 2020, 318, 114050. [Google Scholar] [CrossRef]
- Murtaza, M.; Ahmad, H.M.; Kamal, M.S.; Hussain, S.M.S.; Mahmoud, M.; Patil, S. Evaluation of clay hydration and swelling inhibition using quaternary ammonium dicationic surfactant with Phenyl linker. Molecules 2020, 25, 4333. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Amin, K.; An, Z.; Cai, Z.; Chen, H.; Chen, H.; Tang, B.Z. Advanced functional polymer materials. Mater. Chem. Front. 2020, 4, 1803–1915. [Google Scholar] [CrossRef]
- Azghandi, M.V.; Davoodi, A.; Farzi, G.A.; Kosari, A. Water-base acrylic terpolymer as a corrosion inhibitor for SAE1018 in simulated sour petroleum solution in stagnant and hydrodynamic conditions. Corros. Sci. 2012, 64, 44–54. [Google Scholar] [CrossRef]
- Chowdhury, T.; Mohtasebi, A.; Kostina, S.; Zhang, X.R.; Kish, J.R.; Kruse, P. Interactions of different redox states of phenyl-capped aniline tetramers with iron oxide surfaces and consequences for corrosion inhibition. J. Electrochem. Soc. 2017, 164, C1013–C1026. [Google Scholar] [CrossRef]
- Marciales, A.; Haile, T.; Ahvazi, B.; Ngo, T.-D.; Wolodko, J. Performance of green corrosion inhibitors from biomass in acidic media. Corros. Rev. 2018, 36, 239–266. [Google Scholar] [CrossRef]
- Hossain, N.; Chowdhury, M.A.; Kchaou, M. An overview of green corrosion inhibitors for sustainable and environment friendly industrial development. J. Adhes. Sci. Technol. 2020, 35, 673–690. [Google Scholar] [CrossRef]
- Aliofkhazraei, M. Corrosion Inhibitors, Principles and Recent Applications. In Green Corrosion Inhibitors, Past, Present, and Future; Intechopen: London, UK, 2018; Chapter 6. [Google Scholar] [CrossRef]
- Vrsalovic, L.; Gudic, S.; Kliskic, M. Salvia officinalis L. honey as corrosion inhibitor for CuNiFe alloy in sodium chloride solution. Indian J. Chem. Technol. 2012, 19, 96–102. [Google Scholar]
- Wei, A.; Jiang, H.; Zhang, X.; Zhao, G. The experimental research on using honey to inhibit corrosion. Adv. Mater. Res. 2011, 233, 689–692. [Google Scholar] [CrossRef]
- Ayoola, A.A.; Obanla, O.R.; Abatan, O.G.; Fayomi OS, I.; Akande, I.G.; Agboola, O.; Augustine, O. Corrosion Inhibitive Behaviour of the Natural Honey in Acidic Medium of A315 Mild and 304 Austenitic Stainless Steels. Anal. Bioanal. Electrochem. 2020, 12, 21–35. [Google Scholar]
- Verma, C.; Ebenso, E.E.; Bahadur, I.; Quraishi, M.A. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J. Mol. Liq. 2018, 266, 577–590. [Google Scholar] [CrossRef]
- Ismail, N.; Mujad, S.M.; Zulkifli, M.; Izionworu, V.O.; Ghazali, M.J.; Nik, W. A review on application of marine algae as green corrosion inhibitors in acid medium. Vietnam J. Chem. 2022, 60, 409–416. [Google Scholar] [CrossRef]
- Kamal, C.; Sethuraman, M.G. Hydroclathrus clathratus marine alga as a green inhibitor of acid corrosion of mild steel. Res. Chem. Intermed. 2013, 39, 3813–3828. [Google Scholar] [CrossRef]
- Du, Y.T.; Wang, H.L.; Chen, Y.R.; Qi, H.P.; Jiang, W.F. Synthesis of baicalin derivatives as eco-friendly green corrosion inhibitors for aluminum in hydrochloric acid solution. J. Environ. Chem. Eng. 2017, 5, 5891–5901. [Google Scholar] [CrossRef]
- Singh, A.; Yin, C.H.; Yang, Y.C. Extract of Angelica sinensis as oilfield corrosion inhibitor for mild steel in H2SO4 media. Int. J. Electrochem. Sci. 2019, 14, 11122–11137. [Google Scholar] [CrossRef]
- Awe, I.C.; Abdulrahaman, A.S.; Ibrahim, H.K.; Kareem, A.G.; Adams, S.M. Inhibitive performance of bitter leaf root extract on mild steel corrosion in sulphuric acid solution. Am. J. Mater. Eng. Technol. 2015, 3, 35–45. [Google Scholar]
- Dakhil, R.M.; Gaaz, T.S.; Al-Amiery, A.A.; Kadhum AA, H. Inhibitive impacts extract of Citrus aurantium leaves of carbon steel in corrosive media. Green Chem. Lett. Rev. 2018, 11, 559–566. [Google Scholar] [CrossRef]
- Bhawsar, J.; Jain, P.K.; Jain, P. Experimental and computational studies of Nicotiana tabacum leaves extract as green corrosion inhibitor for mild steel in acidic medium. Alex. Eng. J. 2015, 54, 769–775. [Google Scholar] [CrossRef]
- Ejikeme, P.M.; Umana, S.G.; Menkiti, M.C.; Onukwuli, O.D. Inhibition of mild steel and aluminium corrosion in 1M H2SO4 by leavesextract of African Breadfruit. Int. J. Mater. Chem. 2015, 5, 14–23. [Google Scholar]
- Okafor, P.C.; Uwah, I.E.; Ekerenam, O.O.; Ekpe, U.J. Combretum bracteosum extracts as eco-friendly corrosion inhibitor for mild steel in acidic medium. Pigment Resin Technol. 2009, 38, 236–241. [Google Scholar] [CrossRef]
- Lopes-Sesenes, R.; Gonzalo Gonzalez-Rodruguez, J.; Francisca Dominguez-Patino, G.; Marinez-Villafane, A. Corrosion inhibition of carbon steel by extract of Buddleia perfoliata. J. Electrochem. Sci. Eng. 2012, 2, 77–90. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, J.; Cui, G.; Han, T.; Wu, Y. Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment. Colloids Surf. B Biointerfaces 2020, 194, 111150. [Google Scholar] [CrossRef]
Research Directions | Number of Publications | TP (%) |
---|---|---|
Engineering | 1012 | 38.48 |
Materials Science | 667 | 25.36 |
Chemistry | 574 | 21.83 |
Energy & Fuels | 572 | 21.75 |
Metallurgy & Metallurgical Engineering | 263 | 10.00 |
Science, Technology, and Other Topics | 220 | 8.37 |
Environmental Sciences and Ecology | 159 | 6.05 |
Physics | 148 | 5.63 |
Electrochemistry | 101 | 3.84 |
Biotechnology & Applied Microbiology | 84 | 3.19 |
Geology | 56 | 2.13 |
Thermodynamics | 54 | 2.05 |
Agriculture | 43 | 1.64 |
Polymer Science | 42 | 1.60 |
Mechanics | 40 | 1.52 |
Microbiology | 34 | 1.29 |
No. | Title | Authors | Journal | Publication Year | Total Citations | Average per Year |
---|---|---|---|---|---|---|
1 | Synthesis of biodiesel via acid catalysis | Lotero, E; Liu, YJ; et al. [8] | Industrial & Engineering Chemistry Research | 2005 | 1270 | 63.5 |
2 | Biomass combustion in fluidized bed boilers: Potential problems and remedies | Khan, AA; de Jong, W; Jansens, PJ; et al. [9] | Fuel Processing Technology | 2009 | 834 | 52.13 |
3 | An evaluation of desulfurization technologies for sulfur removal from liquid fuels | Srivastava, VC [10] | RSC Advances | 2012 | 623 | 47.92 |
4 | Chemical properties of solid biofuels—significance and impact | Obernberger, I; Brunner, T; et al. [11] | Biomass & Bioenergy | 2006 | 569 | 29.95 |
5 | Petroleomics: Chemistry of the underworld | Marshall, AG; Rodgers, RP [12] | Proceedings of the National Academy of Sciences | 2008 | 563 | 33.12 |
6 | Chemical reactions on rutile TiO2(110) | Pang, CL; Lindsay, R; et al. [13] | Chemical Society Reviews | 2008 | 458 | 26.94 |
7 | Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry | Qian, KN; Robbins, WK; et al. [14] | Energy & Fuels | 2001 | 385 | 16.04 |
8 | Advancements in solid acid catalysts for biodiesel production | Su, F and Guo, YH [15] | Green Chemistry | 2014 | 368 | 33.45 |
9 | Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil | Rashid, U and Anwar, F [16] | Fuel | 2008 | 364 | 21.41 |
10 | Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition | Dameron, AA; Davidson, SD; et al. [17] | The Journal of Physical Chemistry C | 2008 | 341 | 20.06 |
Source of Extract | Experimental Environment | Material | Mechanism |
---|---|---|---|
H. clathratus | 1.0 M hydrochloric acid and 1.0 M sulfuric acid | mild steel | physical absorption |
baicalin derivatives | 1.0 M hydrochloric acid | aluminum | physical absorption, complex formation |
angelica sinensis | 1.0 M sulfuric acid | mild steel | cathode and anode hybrid inhibitor |
bitter leaf root | 1.5 M sulfuric acid | mild steel | physical adsorption |
citrus aurantium leaves | 1.0 M hydrochloric acid | carbon steel | chemical adsorption |
nicotiana tabacum leaves | 2.0 M sulfuric acid | mild steel | physical adsorption |
ficus sycomorus leaves | 1.0 M hydrochloric acid | mild steel, aluminum | physical absorption |
combretum bracteosum | 2.0 M sulfuric acid and 5.0 M sulfuric acid | mild steel | physical absorption |
buddleia perfoliata | 0.5 M sulfuric acid | 1018 carbon steel | adsorption of tannins and Fe2+ ions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, C.; Xu, T.; Hu, J.; Ding, C.; Geng, Z.; Li, X.; Dong, J.; Liu, H. Progress in Corrosion Research on Alternative Liquid Fuels. Energies 2024, 17, 2803. https://doi.org/10.3390/en17122803
Jin C, Xu T, Hu J, Ding C, Geng Z, Li X, Dong J, Liu H. Progress in Corrosion Research on Alternative Liquid Fuels. Energies. 2024; 17(12):2803. https://doi.org/10.3390/en17122803
Chicago/Turabian StyleJin, Chao, Teng Xu, Jingjing Hu, Chenyun Ding, Zhenlong Geng, Xiaodan Li, Juntong Dong, and Haifeng Liu. 2024. "Progress in Corrosion Research on Alternative Liquid Fuels" Energies 17, no. 12: 2803. https://doi.org/10.3390/en17122803
APA StyleJin, C., Xu, T., Hu, J., Ding, C., Geng, Z., Li, X., Dong, J., & Liu, H. (2024). Progress in Corrosion Research on Alternative Liquid Fuels. Energies, 17(12), 2803. https://doi.org/10.3390/en17122803