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Abstract: This article presents a novel approach to the analysis of heat release in a hydrogen-fueled
internal combustion spark-ignition engine with exhaust gas recirculation (EGR). It also discusses
aspects of thermodynamic analysis common to modeling and empirical analysis. This new approach
concerns a novel method of calculating the specific heat ratio (cp/cv) and takes into account the
reduction in the number of moles during combustion, which is characteristic of hydrogen combustion.
This reduction in the number of moles was designated as a molar contraction. This is particularly
crucial when calculating the average temperature during combustion. Subsequently, the outcomes
of experimental tests, including the heat-release rate, the initial combustion phase (denoted CA0-
10) and the main combustion phase (CA10-90), are presented. Furthermore, the impact of exhaust
gas recirculation on the combustion process in the engine is also discussed. The efficacy of the
proposed measures was validated by analyzing the heat-release rate and calculating the mean
combustion temperature in the engine. The application of EGR in the range 0-40% resulted in a
notable prolongation of both the initial and main combustion phases, which consequently influenced
the mean combustion temperature.

Keywords: hydrogen; combustion; thermodynamic analysis; heat-release rate; EGR; single zone

1. Introduction

Those wishing to calculate combustion progress in an internal combustion (IC) engine
may encounter several difficulties when determining the most appropriate approach for
their calculations. According to the Energy Conservation Law, it is necessary to accept
the simplification of assuming the reacting species (fuel and oxidizer) as a non-reacting
ideal gas at the outset. As is well known, the in-cylinder combustion process is a chemical
reaction between fuel and oxidizer, which ultimately produces exhaust gases. Consequently,
the heat released during combustion originates from the internal energy change between
the products and reactants under real pressure–temperature working conditions. The
simplification of applying the ideal gas instead of a real reacting working fluid into the
thermodynamic analysis and combustion modeling of the engine work cycle is a widely
utilized approach. Therefore, under these conditions and with the intake and exhaust
valves closed, the energy balance in the engine cylinder can be described with Equation (1).
This approach is a common methodology employed in thermodynamic analysis of the IC
engine work cycle, among others proposed by Heywood, and Zeleznik and McBride [1,2].

QIn = ∆U + W + QOut + QLoss (1)

where:
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∆U—internal energy change before and after combustion;
QIn—heat released inside the engine cylinder;
QOut—heat transferred outside the engine;
W—useful work generated by the piston on the crankshaft.

Heat QOut usually is taken as QWall which stands for heat transferred to the engine
cooling system through the walls of a cylinder sleeve, a piston and a cylinder head.

QOut = QWall (2)

The heat denoted QLoss comprises three distinct components: QIC, which represents
the heat loss from incomplete combustion of fuel within the engine cylinder; QCR, which de-
notes the heat loss from crevices; and QBL, which signifies the heat loss from a combustible
mixture blow-by to the crankcase (Equation (3)). As this analysis aims to eliminate the total
heat released and concentrate on the net heat, these losses can be neglected as stated by
Goldsborough, Nande and Ihsan et al. [3–5], respectively.

QLoss = QIC + QCR + QBL (3)

where:

QIC—heat loss from incomplete combustion;
QCR—heat loss from crevices effect;
QBL—heat loss from blow-by to the crankcase.

Finally, the heat of vaporization of liquid fuel directly injected into the engine cylinder
is omitted in this research case as the fuel is hydrogen.

Heat QIn is the heat coming from combusting fuel (QF) and the heat coming from
electric spark discharge QE. This heat can also be regarded as marginal (Figure 1).

QIn = QF + QE (4)
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Figure 1. Energy distribution inside the engine cylinder. 
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Consequently, Equation (1) can be simplified to the form of Equation (5).

QF = ∆U + W + QWall (5)

Furthermore, by considering Equation (6) for the ideal gas, one can derive the formula
for the heat-release rate (HRR) dQ/dα (Equation (7)), which is a typical approach for
calculating the HRR in the IC engine.

p·V = n·Ru·T (6)

where:
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p—in-cylinder combustion pressure;
V—in-cylinder volume;
T—in-cylinder mean temperature;
N—number of moles of working fluid;
Ru—universal gas constant, Ru = 8.31 J/mol/K.

As illustrated, the combustion process can be analyzed on the basis of the in-cylinder
combustion pressure p, as demonstrated by Equation (7).

dQGross
dα

=
γ

γ − 1
p

dV
dα

+
1

γ − 1
V

dp
dα

+
dQWall

dα
(7)

where:

γ—the ratio of specific heats (cp/cv) at constant pressure and constant volume, respectively;
p—in-cylinder combustion pressure;
V—in-cylinder volume;
α—crank angle (CA) deg;
Qgross—gross heat released during combustion;
Qwall—heat losses to walls.

Here, one is faced with the first serious problem, which is the correct determination of
the heat transferred to walls QWall. Commonly used formulas by Woschni [6], Annand [7],
Hohenberg [8] and others were developed for an engine in which the combustible mixture
was gasoline premixed with air. In this case, the fuel is hydrogen, so it should be recognized
that the calculations according to those heat-transfer formulas may differ from the actual
heat flow to the walls. To circumvent this potential error, it was deemed prudent to calculate
the net heat according to Equation (8). It is acknowledged that there are known issues in
calculating heat loss to walls (Qwall), particularly in instances where the engine is fed with
a fuel other than gasoline. Consequently, it is recommended that this heat loss be omitted
and the heat be calculated as the net heat QNet.

dQNet
dα

=
dQGross

dα
− dQWall

dα
=

γ

γ − 1
p

dV
dα

+
1

γ − 1
V

dp
dα

(8)

Determination of cp/cv (γ)

Lanzafame and Messina tested several models for heat-release rate and found strong
impact of specific heat ratio cp/cv on gross cumulative heat (Qgross) from the IC engine [9].
Thus, methodology for net heat released (Qnet) is fully justified. In the case where both
p(α) and V(α) are known values, the solution of Equation (8) can be obtained with relative
ease. However, numerous studies have demonstrated that the heat-release rate is highly
sensitive to the cp/cv coefficient, as evidenced by [10–12] and others. Consequently, the
challenge arises when attempting to accurately determine the γ (cp/cv) ratio. There are
several methods for calculating γ. In general, these methods are based on empirical
results. In the available literature, one can find several models for determining γ. Gatowski
et al. [13] proposed that γ can be determined as follows (Equation (9)):

γ = 1.38 − 0.08
(T − 300)

1000
(9)

where T is the temperature of the working fluid in K.
There are also other slightly different empirical formulas for γ determination

(Equations (10) and (11)) in the [14] by Brunt et al. and [15] by Egnell, respectively.

γ = 1.338 − 6·10−5T + 10−8T2 (10)

γ = 1.38 − k1e(
−k2

T ) (11)

where k1 and k2 are constants from the range 0.2–900.
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As is evident, these equations are also functions of temperature and they deal with
gasoline combustible mixtures. Olanrevaju proposed an extension to these solutions [16].
His group proposed the calculation of γ as a function of temperature and λ (relative
equivalence ratio). Ebrahimi in his study [17] stated that specific heat ratio γ affects more
the heat-release rate in the natural gas-fueled engine in comparison to a gasoline engine.

Furthermore, γ can be determined directly, following its definition based on separate
calculation of cp and cv. In this case both cp and cv can be determined from e.g., the
NASA polynomials. During combustion, the relation between burnt and unburnt air-
fuel mixture varies, resulting in a change in γ. Thus, γ is altered from γu to γb, which
represents the unburnt and burnt mixture, respectively. To compute the final γ for the
total burnt and unburnt compounds of the working fluid, the mass-based ratio between
burnt and unburnt content has to be provided. This approach was introduced by Ceviz and
Kaymaz [18]. As the combustion progress requires the γ value for its computation, thus
both the combustion progress represented by the released heat and γ can be determined
through an iteration process. As previously stated, the total γ of the burnt and unburnt
species can be determined based on their mass fractions during the combustion process.
The mass of fuel fraction burnt (MFB) profile is required for the combustion progress.
The most well-known function for calculating Mass Fraction Burnt (MFB) is the empirical
formula developed by Rassweiler and Withrow [19]. It is presented with Equation (12).

MFBα =
∑
α

∆pα

∑
α

∆pbegin−end
(12)

where:

α—crank angle;
∆pα—corrected pressure rise concerning combustion;
begin–end—location of begin and end of combustion.

Although Equation (6) is commonly used for the determination of combustion progress
in the IC engine, it is acknowledged that there is difficulty in the proper determination of
the end of combustion, which is necessary for the MFB computation. However, there are
some shortcomings within this formula by Rassweiler and Withrow concerning determi-
nation of the end of combustion. Among others, Brunt et al. [20] assumed that the end of
combustion is located at the maximum of pV1.15. Therefore, the combustion progress Q(α)
is recommended to be determined by integrating heat-release rate dQ/dα over the crank
angle. Anyway, Rassweiler–Withrow formula as the simplest one, can be applied in the
first step for determining mass of burnt and unburnt gases for preliminary calculation of
cp/cv following recommendations by Ceviz et al. [18].

Another source of error in the dQ/dα calculation method (Equations (7) and (8)) is
the assumption of a fixed number of moles for the gases filling the engine’s combustion
chamber throughout the combustion process. As previously stated, the gases filling the
engine cylinder were assumed to be ideal gases. However, to more accurately approximate
these gases to real gases, it was assumed that cp and cv are temperature dependent. The
subsequent modification to thermodynamic analysis was to implement another approxima-
tion to real conditions. This can be made in terms of the number of moles of gases filling
the cylinder. As is well known, hydrogen and oxygen form water when burned. Although
the mass during a chemical reaction does not change, the number of moles of water as
the final product relative to the total number of moles of hydrogen and oxygen changes
(Equation (13)).

2H2 + O2 + 3.76N2 = 2H2O + 3.76N2 (13)

This modification is of particular significance for the calculation of the average com-
bustion temperature in accordance with Equation (6). Additionally, when exhaust gases
recirculation (EGR) is applied into spark-ignited engine with the strict regime of stoichio-
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metric air-to-fuel, then the in-cylinder pressure at the intake valve closure is higher; hence,
the pumping losses become lower and finally IMEP increases.

In summary, the article presents improvements to the dQ/dα calculation method for
hydrogen–air combustible mixture as follows:

• The calculation of cp/cv is based on the current composition of the amount of com-
bustible mixture and exhaust gases, with the resulting value dependent on the mean
combustion temperature;

• The calculation of the current number of moles of gases filling the engine cylinder
during combustion to compensate for the molar contraction after combustion.

The presented improvements were utilized to analyze the heat-release rate and calcu-
late the average combustion temperature inside the cylinder of a hydrogen-fueled engine
with varying the EGR ratios. As evidenced by a comprehensive literature survey, numer-
ous papers present the results of combustion tests conducted on hydrogen in IC engines.
Among these, recently published review papers demonstrate that there is a significant
interest in the implementation of hydrogen in IC engines [21,22]. Moreover, EGR strategy
is one of the effective measures to reduce combustion knock and NOx exhaust emissions
from hydrogen-fueled engines [4,23–25].

2. Methodology

The proposed methodology for thermodynamic analysis, including heat-release rate
(HRR) determination, is based on a zero-dimensional (0D) analysis of the combustion
process vs. time. This approach is well-known and is commonly used for both experi-
mental data analysis and modeling the thermodynamic cycle of the hydrogen-fueled IC
engine. This 1D approach involves various modifications to calculations of cp/cv, the Wiebe
function, and modeling EGR and lean mixtures as stated by Misul et al. [26], Lebedevas
et al. [27,28] and others [5,16,29].

The research methodology presented in this section includes formulas for calculating
cp/cv and the mean combustion temperature along the combustion process as well as a
description of the processing of combustion pressure data to calculate the heat-release rate
denoted dQ/dα.

2.1. Determination of cp/cv

The issue of calculating the cp/cv ratio (hereinafter referred to as γ is the determination
of an accurate value for this quotient, contingent on the temperature. In general, it can be
assumed that the resulting γ can be calculated according to Equation (14).

γ =
∑ (n i·γi)

∑ ni
(14)

where:

γ—final cp/cv;
γi—cp/cv for a specific gas (e.g., γu for unburnt mixture and exhaust gases γb);
ni—number of moles for a specific gas.

Hence, γu and γb for unburnt combustible mixture and exhaust gases can be deter-
mined with Equations (15) and (16), respectively.

γu(T) =
(
2·γH2

+ γO2 + 3.76·γN2

)
/6.76 (15)

γb(T) =
(
2·γH2O + 3.76·γN2

)
/5.76 (16)
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Consequently, the final γ for both gases filling the engine cylinder can be calculated
using Equation (17). It should be noted that the EGR gases have the same chemical
composition as the combustion products (exhaust gases).

γ(T) =
nu·γu(T) + (nb + nEGR)·γb(T)

nu + nb + nEGR
(17)

It can be concluded at this point that γ is not solely dependent on temperature but
also on the ratio between the mass of the unburned combustible mixture and the mass of
exhaust gases. Furthermore, if EGR is used, γ will depend on the amount of EGR, and
therefore the mass of EGR gases is included in this equation. The mass of fuel that has
undergone combustion can be determined by integrating Equation (8), which leads to
obtaining the cumulative heat released. However, as previously mentioned, there is a more
straightforward formula to determine combustion progress based on the MFB equation
(Equation (12)), which can be calculated based on the in-cylinder combustion pressure.
Therefore, there is no need to use any iterative methods to solve Equation (18).

MFBα =
mb

mu + mb
(18)

Number of moles ni can be determined from this simple Equation (19):

ni =
mi

MWi
(19)

where:

mi—mass of a specific compound;
MWi—molecular weight of a specific compound.

In case the EGR is applied, the definition (Equation (20)) for EGR introduced by
Heywood [1] is used.

EGR% =
mEGR

mAir + mFuel + mEGR
100% (20)

Assuming stoichiometric combustion, mass of air mAir required for hydrogen (mH2 )
combustion is expressed by Equation (21).

mAir = (A/F)st·mH2 (21)

(A/F)st—air-to-Fuel ratio at stoichiometric combustion. It equals 34.3 kg/kg for hydrogen.
Mass of EGR gases mEGR can be calculated with Equation (22).

mEGR =
35.3
34.3

· EGR%/100
1 − EGR%/100

mAir (22)

The number of moles in the nEGR of EGR can be determined from Equation (19).
In summary, γ as the specific heat ratio cp/cv is a function of the following: temperature,

MFB and exhaust gas-recirculation ratio (Equation (23)).

γ = f (T, MFB, EGR%) (23)

Figure 2a,b illustrate the dependence of γu and γb on temperature. The polynomials
(Equation (24)) for γu and γb are based on polynomials for hydrogen, oxygen, nitrogen and
water separately and were determined by the authors. The coefficients for the γu and γb
polynomials are presented in Table 1.

γ = a0 + a1·T + a2·T2 + a3·T3 (24)
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Table 1. CFR Engine Specifications.

γu
a0 a1 a2 a3

1.4485 −0.0001 4 × 10−8 −4 × 10−12

γb
a0 a1 a2 a3

1.4482 −0.0002 7 × 10−8 −9 × 10−12

2.2. Molar Contraction

As demonstrated by the chemical reaction equation for hydrogen combustion in air
(Equation (13)), the final number of moles of combustion products is less than the number
of moles of reactants. This phenomenon, known as molar contraction, is also observed
in the chemical reaction with the EGR reactant (Equation (25)). This phenomenon has a
significant impact on the calculation of the temperature in the engine cylinder from the
ideal gas equation of state (Equation (6)). If the same number of moles is assumed for the
reactants and the combustion products, the temperature will be underestimated.

2H2 + (O2 + 3.76N2) + EGR = 2H2O + 3.76N2 + EGR (25)

where:
EGR = k·(2H2O + 3.76N2) (26)

k—EGR molar coefficient in the range from 0 to 1. The coefficient k cannot linearly
correspond to EGR%, as k is the molar ratio and EGR% is expressed in mass units.

Under no EGR on the reactant site, there are 6.76 moles, whereas on the product site,
the total number of moles is 5.76. The classic approach assumes a fixed number of moles in
the equation of state. Thus, based on this assumption it leads to the relative error of 15%
which propagates further on temperature calculations as determined in Section 5.

Considering this molar contraction, the coefficient kMC was introduced as the ratio
between the initial number of moles ninit for reactants to the final number of moles nfinal for
products (Equation (27)).

kMC =
n f inal

ninit
(27)

Taking EGR into consideration for hydrogen combustion one can obtain the following
Formula (28):

kMC =
5.76·(k + 1)
6.76 + 5.76·k (28)
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Thus, nfinal is determined with Equation (29).

n f inal =
5.76·(k + 1)
6.76 + 5.76·k ·ninit (29)

In conclusion, the current number of moles n(α) during combustion varies from ninit to
nfinal depending on the crank angle alpha, the progress of combustion (MFB), the coefficient
of molar contraction and the EGR ratio (Equation (30)).

n(α) = f (α, MFB, kMC, k) (30)

It is, therefore, necessary to take this dependence into account when calculating the
mean combustion temperature T from the ideal gas equation of state (Equation (6)).

In summary, when hydrogen is burned, the number of moles of combustion products
decreases compared to the number of moles of reactants. The proposed molar contraction
coefficient kMC should be taken into account when calculating the combustion tempera-
ture with the equation of state of the ideal gas. The current number of moles should be
determined ongoing along with the progress of combustion based on the MFB profile. The
molar fraction k of exhaust gas recirculation affects the molar contraction coefficient kMC,
causing its increase.

3. Experimental Setup

The engine used for this research is a single-cylinder CFR (Cooperative Fuels Research)
engine manufactured by the CFR Engines Inc., Pewaukee, USA. A specialized attribute of
this engine is its capacity to alter the compression ratio without disassembling the engine.
The engine specifications and characteristics of the test bed are presented in Table 2 and
illustrated in Figure 3, respectively. Numerous modifications to the engine were made to
meet the requirements in these studies. This entailed modifying the compression ratio of
the engine by altering the piston. The range of compression ratio that could be studied is in
the range 4.5–17.5. However, the compression ratio for the conducted tests was set to 8.

Table 2. CFR Engine Specifications.

Parameter Unit Data

Compression Ratio - 8
Cylinder Bore mm 82.6

Stroke mm 114.3
Connecting Rod Length mm 254

Displacement cm3 611
Intake Valve Open CA deg aTDC 10◦

Intake Valve Closure CA deg aBDC 34◦

Exhaust Valve Open CA deg bBDC 40◦

Exhaust Valve Closure CA deg aTDC 15◦

Engine Speed rpm 900

A test bench equipped with sensors was utilized to monitor the air flowrate, intake
pressure, in-cylinder combustion pressure and the temperature of the working fluid. Addi-
tionally, the piston position of the engine was determined from an encoder mounted on
the crankshaft. The Universal Exhaust Gas Oxygen sensor (UEGO) Niterra, Nagoya, Japan
was implemented to measure the stoichiometry of the combustible air-hydrogen mixture.
Furthermore, electronic actuators incorporated a digital ignition coil, a throttle and a port
fuel injector for hydrogen. The data from the in-cylinder pressure pick-up, along with the
crank position encoder, were acquired with the NI BN-2111 analog-to-digital converter,
National Instruments Corp., Austin, USA, at a sampling frequency of 100 kHz. The data
for 300 engine cycles at 100 kSamples/second channel were acquired. The parameters
of the engine combustion tests are presented in Table 3. As can be seen, the combustible
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air-hydrogen mixture was nearly stoichiometric. Hydrogen purity was 99.995%. The EGR
percentage ratio was the only parameter that varied. The EGR ratio was measured on the
basis of λIn and λEx as depicted in Figure 3, following formulas described in detail in [30].
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Table 3. Test matrix.

No. Spark Timing
(CA Deg aTDC)

λ

(−)
EGR%

(%)

1 −5 1.00–1.03 0
2 −5 1.01–1.03 10
3 −5 1.00–1.02 20
4 −5 1.01–1.04 30
5 −5 1.01–1.03 40

4. Results and Discussion

The process of hydrogen combustion in the CFR research engine was analyzed thermo-
dynamically, with particular emphasis on proposed modifications in the calculation of HRR
and the temperature assuming a variable γ = cp/cv value and molar contraction. Adopting
the proposed modifications for thermodynamic analysis was particularly important when
testing hydrogen combustion under various EGR ratios. Figure 4a shows a part of the
CA-pressure plot focused on the combustion process. Fixed spark timing was adopted to
ensure similar initial conditions during ignition for the combustion process. It is evident
that there is a discernible difference in the location and value of the maximum pressure
with EGR change. Figure 4b presents these tests in p-v coordinates in a fully logarithmic
scale, which shows the linearity of log(p) vs. log(v). This leads to the conclusion that the γ
ratio is constant in both the compression and expansion processes.

As illustrated in Figures 4 and 5, there is little difference between the combustion
tests for EGR% = 0 and EGR% = 10%. These two courses exhibit a high degree of over-
lap, rendering the distinction between them challenging to discern visually. This small
difference can be explained when taking into account the so-called internal residue of the
remaining exhaust gases, which influences the combustion process in the same way as the
external exhaust gas recirculation. The determination of this remaining exhaust gas is a
relatively difficult issue to correctly estimate because it depends on several parameters.
These parameters among others are the following: the efficiency of emptying the cylinder
of exhaust gases, (i.e., mainly on the timings of the valves and the valve overlap, especially
the location of the exhaust valve closure and the intake valve opening). Additionally,
the pressure in the cylinder, the compression ratio, the real volume of the combustion
chamber at the top dead center (TDC) of a piston, the shape of the combustion chamber
and the shape of the piston crown are crucial factors. Based on theoretical analysis, it can be
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assumed that the remains of the exhaust gases ranged between 6.5 and 8% [31]. With this
assumption, the additional 10% of external EGR generates a smaller difference than if the
remaining of the exhaust gases were equal to 0. As depicted, Figure 5a presents heat-release
rate determined with Equation (8) as net heat rate (Qnet); hence, negative values are correct,
due to heat transfer Qwall into the cooling system. Figure 5b illustrates the maximum Qmax
of the cumulative heat released (CHR) obtained by integrating HRR for each test.
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The Qmax results in a form of the bar graph for the tests performed are presented in
Figure 6. It can be considered that Qmax is practically constant, confirming almost the same
input conditions for the tests performed. However, as one can observe, there is a slight
increase in Qmax with EGR increase. As mentioned, the heat released is calculated as Qnet,
i.e., Qgross minus the heat to the cooling system Qwall (Equation (8)). As a result of lowering
the mean cylinder temperature with increasing EGR, it is expected that the amount of heat
Qwall transferred to the cooling system will decrease and thus Qnet and Qmax will increase.
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The accumulated heat plots were converted to normalized values in the range 0–100%
as MFB and are presented in Figure 7. This is correct approach, the MFB course was counted
as the cumulative heat (CHR) after integrating HRR. Assuming that calorific value of a fuel
does not change with temperature and pressure in the cylinder, it can be assumed that MFB
is the same as CHR after its normalization to the range 0–1. Based on the MFB profiles, the
initial combustion phase CA0_10 was determined. The CA0_10 was measured from the
ignition point to the burnout of 10% of the fuel. The main combustion phase of CA10_90
was similarly determined from 10 to 90% fuel burned. The results of both combustion
phases, CA0_10 and CA10_90, are shown in Figures 8a and 8b, respectively.
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As illustrated in Figure 8a,b, as the ratio of exhaust gas recirculation increases, both
the initial CA0_10 and the main combustion phase CA10_90 lengthen. This expansion
is nearly twice as long, which corroborates the impact of EGR on the deceleration of
hydrogen combustion in the IC spark-ignited engine. As observed, with an increase in
EGR ratio both combustion phases are lengthened. This is due to the increased share of
non-combustible gases in the premixed combustible mixture. These gases contribute to
diluting hydrogen in the combustible mixture. Hence, according to Arrhenius’ law, a lower
concentration of the reactant, i.e., hydrogen, lowers the coefficient of the chemical reaction,
i.e., combustion reaction, reduces the flame propagation speed, and thus the combustion
slows down, which is reflected in the extension of both combustion phases CA0_10 and
CA10_90. Furthermore, with the increase in the EGR ratio, the mean combustion tem-
perature decreases, as shown in Figure 9. This is the result of the accumulation of some
heat in the inert gas which is additionally flown into the cylinder by i.e., exhaust gases
recirculation. The combustion temperature was determined from the equation of state of
the ideal gas (Equation (6)), assuming a change (molar contraction) in the number of moles
of the working medium treated as the ideal gas. Moreover, it is important to note that the
ideal gas equation provides the averaged combustion temperature over the space of the
entire cylinder combustion chamber.
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5. Error Analysis

The error analysis discussed here concerns the following:

• the accuracy of the analytical method for calculating the released heat,
• the accuracy of the measuring equipment.

5.1. Error in Calculating Released Heat

The derivation of the equation for dQ/dα (Equations (7) and (8)) assumes the use of
the equation of state and the assumption of the constant number of moles of the working
medium (Equation (6)). However, in the real hydrogen combustion process, there is a
change in the number of moles under Equation (25). Consequently, the inaccuracy of the
heat calculation method results from keeping the classic calculation approach, which does
not take into account the change in the number of moles. Upon rearrangement to the total
differential, Equation (6) takes the form (31):

dp
d ∝

·V + p· dV
d ∝

=
dn
d ∝

·Ru·T + n·dRu

d ∝
·T + n·Ru·

dT
d ∝

(31)

Typically, dn/dα is assumed to be 0 and this simplification leads to error in calculation,
particularly, when ninit significantly differs from nfinal. Thus, for this purpose denote
expression (32) as x1.

dn
d ∝

·Ru·T = x1 (32)
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Derivative of Universal Gas Constant Ru is obviously 0 (33).

n·dRu

d ∝
·T = 0 (33)

And denote expression (34) as x2.

n·Ru·
dT
d ∝

= x2 (34)

Now, let anyone find the relative difference x1 referred to x2 with Equation (35).

x1

x2
=

T
n
· dn
dT

∼=
T
n
·∆n
∆T

(35)

One can preliminarily evaluate the ratio x1/x2 by taking the data from the initial and
final states, respectively, before and after combustion, as follows:

• T = 1/2·(Tfinal + Tinit)—mean temperature during the combustion process;
• n = 1/2·(nfinal + ninit)—mean number of moles during combustion;
• ∆n = nfinal − ninit—change in the number of moles during combustion;
• ∆T = Tfinal − Tinit—change in temperature during combustion.
• The results of the conducted experiments, which took into account the most unfa-

vorable conditions for temperature and mole number from the test with EGR% = 0
one can obtain as follows: Tfinal = 2353 K (2080 ◦C), Tinit = 733 K (460 ◦C), nfinal = 6.76,
ninit = 5.76 and finally can obtain the result for the x1/x2 ratio (36).

x1

x2
∼= 0.15 (36)

As calculated, the expression x1, which is neglected in the classic approach stands
approximately for 0.15 fraction of x2. On the percentage scale this is 15% additional change
in the total differential of the equation of state between the initial (ignition) and final state
(after combustion).

The second inaccuracy in the calculation method arises from the assumption that
dn/dα = 0 in Equation (37), which presents the total differential of Equation (8) expressing
internal energy U.

dU
d ∝

=
d(n·cv·T)

d ∝
=

dn
d ∝

·cv·T + n· dcv

d ∝
·T + n·cv·

dT
d ∝

(37)

As previously made, x3 is expressed with Equation (38).

dn
d ∝

·cv·T = x3 (38)

With the assumption the gas filling the engine cylinder is the ideal gas; hence,
dcv/dα = 0 (Equation (39)).

n· dcv

d ∝
·T ∼= 0 (39)

And finally, define x4 with Equation (40).

n·cv·
dT
d ∝

= x4 (40)

The fraction of x3 over x4 introduced by Equation (41) is determined with the exact
correlation according to Equation (35).

x3

x4
=

T
n
· dn
dT

∼=
T
n
·∆n
∆T

∼= 0.15 (41)



Energies 2024, 17, 2833 14 of 17

In conclusion, the neglect of the hydrogen molar contraction has resulted in a discrep-
ancy of approximately 0.15 (or 15% in percentage ratio) between the expressions dU/dα and
the total differential of the equation of state of the ideal gas.

5.2. Error in Combustion Temperature Calculation

Mean combustion temperature T vs. crank angle α was determined from the equation
of state (42).

T(α) =
p(α)·v(α)
n(α)·Ru

(42)

The initial temperature Tinit at the beginning of combustion (at the ignition point) is
determined according to Equation (43).

Tinit =
pinit·vinit
ninit·Ru

(43)

The final temperature Tfinal after combustion can be expressed with Equation (44).

Tf inal =
p f inal ·v f inal

n f inal ·Ru
(44)

When applying the classic approach in the calculation method for the combustion
temperature where ninit = nfinal, one can derive the following Equation (45) for calculating
the ratio Tfinal to Tinit.

Tclassic
f inal

Tinit
=

p f inal ·v f inal

pinit·vinit
(45)

Under assuming molar contraction, one can obtain the result for Tfinal/Tinit (Equation (46)),
keeping in mind that the coefficient 1.17 comes from ninit/nfinal = 6.76/5.76 = 1.17.

Tmolar contraction
f inal

Tinit
=

p f inal ·v f inal

pinit·vinit
·1.17 (46)

To sum up, the final temperature Tfinal after combustion is nearly 17% higher when
molar contraction is taken into account in comparison to the classic approach following the
calculation with Equation (47).

Tmolar contraction
f inal

Tclassic
f inal

= 1.17 (47)

5.3. Uncertainties in Measuring Apparatus

The test engine was equipped with the requisite measurement apparatus, which
registered measurement data of in-cylinder pressure, intake temperature and crankshaft
position against time with a sampling frequency of 100 kHz. The instrumentation and the
uncertainties used in tests are presented in Table 4. The presented uncertainties concern
the statistical error relative to the measurement range and are presented as relative per-
centage errors. As can be seen, these relative percentage errors resulting directly from the
measurements are at a level acceptable for scientific research and do not constitute cardinal
errors, so on their basis, it can be concluded that the errors for the computational results
calculated based on error analysis methods will also be at an acceptable level.
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Table 4. Instrumentation of the measurement system.

Instrument Range Accuracy

Air laminar flowmeter 0.05. . .10 m3/h 0.1%

Charge amplifier Kistler
2. . .10 pC

10. . .100 pC
100. . .2,200,000 pC

<±2%
<±0.6%
<±0.3%

Pressure sensor: Kistler 6061 0. . .200 bar <±1%

Data acq. system: NI BN-2111 ±10 V ±0.07%
16 bits ± 1 LSB

Thermocouple NiCR-NiAl (K) (−40). . .1140 ◦C 1.5 ◦C
Spark timing −20 ÷ 0 CA deg aTDC uncertainty: ±0.1 CA deg

Combustion phases: CA0-10,
CA10-90

uncertainty: ±0.3 CA deg

Encoder max. 6000 rpm 0.3 deg/rev

6. Conclusions

As part of the research, improvements to the analytical method for determining the
heat-release rate and calculating the mean combustion temperature in the cylinder were
developed and tested. Then, the modified method was used for thermodynamic analysis of
the combustion process in the internal combustion, hydrogen-powered engine with various
ratios of exhaust gas recirculation. The following conclusions were obtained:

• Taking into account the change in the number of moles during combustion (molar
contraction) is the correct approach that eliminates the simplification of assuming a
constant number of moles for the equation of state and the equation for internal energy;

• The error of the classical approach resulting from the assumption of a constant number
of moles was calculated. This relative error of the method with the classic approach was
approximately 15% both for the calculation of internal energy and for the equation of
state in the case of combustion of a hydrogen–air mixture under a stoichiometric ratio;

• Furthermore, the avoidance of molar contraction during hydrogen combustion results
in a relative error of up to 17% when calculating the mean combustion temperature
inside the cylinder;

• The calculation of the resultant specific heat ratio cp/cv based on separate calculations
of cp and cv for the combustible mixture and for exhaust gases depending on the
temperature gives better computational accuracy from the HRR method because it
eliminates the simplification of assuming a constant cp/cv ratio;

• Using a new approach to the analysis of both heat release and temperature with
a single-zone, 0D computational model for a hydrogen-powered engine confirms
its usefulness;

• The results of experimental tests confirm a slowdown in the combustion process
with an increase in the exhaust gas recirculation ratio in a hydrogen-powered engine.
This implies lower combustion temperature, indicated mean effective pressure and,
finally lower NOx formation according to the thermal NOx mechanism proposed
by Zeldovich;

• The highest EGR was 40% at which the engine operated stably.
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Abbreviations

aTDC after top dead center
CA crank angle
CA0_10 initial combustion phase
CA10_90 final combustion phase
EGR exhaust gases recirculation
HRR heat-release rate
IC internal combustion
MFB mass fraction of fuel burnt
MW molecular weight
NOx nitric oxides
Q heat
T temperature
W engine useful work
U internal energy
cp specific heat at constant pressure
cv specific heat at constant volume
k coefficient for EGR share
m mass
n number of moles
p in-cylinder pressure
Subscripts
init begin of combustion
final end of combustion
b burnt
u unburnt
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