
Citation: Parraga, M.; Vuelvas, J.;

González-Díaz, B.; Rodríguez-Urrego,

L.; Fajardo, A. A Systematic Review of

Isolated Water and Energy Microgrids:

Infrastructure, Optimization of

Management Strategies, and Future

Trends. Energies 2024, 17, 2864.

https://doi.org/10.3390/en17122864

Academic Editor: Ahmed Abu-Siada

Received: 7 May 2024

Revised: 31 May 2024

Accepted: 4 June 2024

Published: 11 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Systematic Review of Isolated Water and Energy Microgrids:
Infrastructure, Optimization of Management Strategies, and
Future Trends
Manuel Parraga 1,2 , José Vuelvas 1 , Benjamín González-Díaz 3,* , Leonardo Rodríguez-Urrego 3

and Arturo Fajardo 1

1 Department of Electronic Engineering, Pontificia Universidad Javeriana, Bogotá 110311, Colombia;
manuel.parraga@javeriana.edu.co (M.P.); vuelvasj@javeriana.edu.co (J.V.); fajardoa@javeriana.edu.co (A.F.)

2 Faculty of Mechanical, Electronic and Biomedical Engineering, Universidad Antonio Nariño,
Bogotá 111321, Colombia

3 Departamento de Ingeniería Industrial, Escuela Superior de Ingeniería y Tecnología, Universidad de La
Laguna (ULL), Camino San Francisco de Paula S/N, 38206 La Laguna, Spain; lrodriur@ull.edu.es

* Correspondence: bgdiaz@ull.edu.es; Tel.: +34-922-316-502 (ext. 6252)

Abstract: Isolated water and energy microgrids (IWEMGs) serve as vital solutions for enhancing
the well-being of remote and rural communities, particularly in areas where water and energy re-
sources are scarce. This has spurred research into the interdependence between the water and energy
sectors (water–energy nexus), a field that has grown in response to technological advancements.
Through a systematic optimization framework, this review critically evaluates the integration of
various technologies within IWEMGs, encompassing infrastructure, management, and strategic
planning, while considering economic and social impacts. IWEMGs incorporate diverse technologies
for the infrastructure, management, and strategic planning of water and energy resources, integrating
economic and social considerations to inform decisions that affect both immediate and long-term
sustainability and reliability. This article presents an exhaustive review of the literature on IWEMG
management, employing an approach that synthesizes existing studies to enhance the understanding
of strategic IWEMG management and planning. It introduces a structured taxonomy for organizing
research trends and tackling unresolved challenges within the field. Notably, the review identifies
critical gaps, such as the lack of comprehensive data on water demand in isolated locations, and un-
derscores the emerging role of game theory and machine learning in enriching IWEMG management
frameworks. Ultimately, this review outlines essential indicators for forthcoming research, focusing
on the optimization, management, and strategic planning of IWEMG resources and infrastructure,
thereby setting a direction for future technological and methodological advancements in the field.

Keywords: water–energy microgrid; optimization; water–energy nexus; planning; management

1. Introduction

Sustainable development of rural and remote communities is crucial. Isolated water
and energy microgrids (IWEMGs) are fundamental solutions to address the challenges in
providing these services, promoting sustainable development in these communities. The
coordinated interaction between these two domains can ensure the water and energy security
necessary for the progress and well-being of marginalized areas, further fostering overall
sustainability [1]. United Nations’ studies reveal that the potable water supply has become a
significant issue due to its limited availability and exponentially increasing demand [2]. Con-
sequently, global water distribution systems are compelled to explore alternative sources such
as seawater, groundwater, and precipitation. In efforts to replace diminishing potable water
sources, entities often resort to energy-intensive processes like desalination or groundwater
pumping [3,4]. As a result, renewable energy technologies such as solar photovoltaic and
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wind power are considered viable options in non-interconnected zones (ZNIs). Integrating
sustainable sources into potable water generation and management processes is vital, and
understanding how these systems can interact optimally is essential [3], highlighting the need
for rational and efficient management and planning strategies [5].

In addition to these benefits, IWEMGs also stand out for their ability to provide a more
reliable source of energy and water in remote areas where traditional infrastructure may
be lacking. These microgrids enable communities to rely less on external energy sources,
thereby improving their energy security and independence. By reducing dependence
on costly energy imports and extensive infrastructure, isolated microgrids can result in
significant cost savings for communities in isolated areas [6]. Implementing renewable
energy technologies in these systems not only promotes environmental sustainability but
also enhances access to clean and safe water sources [4]. Disaster resilience is another
key benefit, as isolated microgrids can maintain the supply of essential services even in
emergency situations [7]. This capacity to empower local communities to take control
of their energy and water resources not only fosters self-sufficiency but also supports
sustainable economic development [8]. The flexibility and scalability of these systems allow
them to adapt to the specific needs of each community and expand as demand grows,
promoting innovation and sustainable development in remote regions [9].

The published literature underscores the significance of certain developments imple-
mented as management and planning tools in IWEMGs. However, a noticeable gap exists
in the lack of models to optimize long-term water supply system planning while consider-
ing renewable energies [6]. Additionally, challenges and opportunities in integrated tool
development are presented, addressing the high complexity and variable dimensionality
in decision-making problems for optimal management [10]. The use of mathematical pro-
gramming to develop and solve these issues is highlighted [6], with recent years witnessing
the emergence of new techniques related to reinforcement learning, artificial intelligence,
and machine learning, notably in smart electrical grids [9].

The primary challenges in generating and demanding water and energy resources lie
in management, planning, and sizing approaches. Complications such as natural stochastic
fluctuations, variability, and uncertainties are challenging to mitigate (e.g., noisy data or
inaccurate measurements) [11]. Data from measuring variables related to water and energy
generation and usage are crucial for forecasting, management, and planning tasks. Modern
smart meters and remote sensors facilitate data acquisition with precision and acceptable
resolution, while communication technologies enable the storage of large data volumes [12,13].
However, the limited data can pose challenges, such as accurately determining probability
distributions; thus, obtaining historical data becomes relevant [14]. These databases, from
which statistical parameters can be extracted, are instrumental in resource disaggregation and
are a crucial decision-making tool when IWEMG infrastructure and resources are optimally
allocated over planning horizons [15].

In this context, IWEMGs have been studied in recent years as a flexible and cost-effective
method of supplying resources that generate welfare for remote communities [8]. This ap-
proach is particularly advantageous in various application environments sharing the challenge
of accessing water and energy networks. Isolated, desert, and jungle communities exemplify
these issues [7,16]. Therefore, cooperation between water and energy infrastructures is crucial
for IWEMG operation, as for any study objective the two microgrids must be viewed as a
single entity, necessitating the integration of all models, elements, conditions, properties, and
constraints [17].

Our primary aim with this document is to apply a systematic methodology to analyze
the recent literature about the key components, architectures, technological advances, and
management and planning methods of IWEMGs. We propose a structured taxonomy
to efficiently organize the existing literature and facilitate understanding of the current
dynamics and challenges in this field. This approach intends not only to shed light on
IWEMG management and planning strategies but also to encourage microgrid designers
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to integrate water–energy nexus considerations into their projects using an optimization
framework. This study significantly contributes to the existing literature by:

1. Utilizing the water–energy nexus in IWEMGs to structure and synthesize the current
state of knowledge in this field.

2. Introducing a simplified taxonomy covering:

• Fundamental elements constituting the infrastructure of an IWEMG.
• Formulation of optimization problems in management and resource planning

models, as well as in the sizing of IWEMG infrastructure.
• Solution methods applied to optimization problems formulated specifically for

IWEMGs.

3. Assessing the most common computational design tools and examining their potential
in the IWEMG context.

The document is organized as follows: The methods used in the document review are
described in Section 2, the relevant elements and definitions in an IWEMG are located in
Section 3, the types of optimization problems used in an IWEMG are explored in Section 4,
the solution methods for an IWEMG’s optimization problems are discussed in Section 5,
and finally, in Section 6, conclusions are drawn, gaps in the state of the art of IWEMGs are
raised, and future work is proposed.

2. Review Methods

In recent years, academia and industry have shown increasing interest in the rela-
tionship between water and energy via IWEMGs. Similarly, many research efforts have
focused on management, planning, and sizing techniques. This paper performs full-text
searches and standard summaries of the published literature over the past 10 years in order
to conduct a comprehensive review and present the state of the art in this field. In this
manner, the most pertinent research studies are compiled. For this research, the Web of
Science (WOS) databases Science Citation Index Expanded (SCIE), Social Sciences Citation
Index (SSCI), and Conference Proceedings Index Science (CPI-S) were selected. Similar
information was obtained from Google Scholar; the data provided by these tools were use-
ful for directing the search in other massive databases such as IEEE Xplore, ScienceDirect,
SpringerLink, Taylor & Francis, and others.

Initially, we performed a targeted search of the aforementioned databases using terms
such as “water and energy microgrids”, “energy and water microgrids”, “water-energy
nexus”, “isolated energy and water microgrids”, and “isolated microgrids of energy and
water”. As a result, 322 articles were extracted from the databases. Figure 1 depicts the
trend in the number of publications during the specified time interval. The number of
publications increases up to the year 2020, after which it remains stable or even decreases.
This effect may have been caused by the COVID-19 pandemic. After obtaining the basic
information from the initial articles, we read the summaries to determine if they focus
on water and energy microgrids that are isolated from the rest of the grid. Consequently,
documents containing scant information on water and energy microgrids are removed.
Due to their similarities with IWEMGs, articles containing information on water and energy
microgrids connected to the electricity grid are not discarded. After this stage of filtering,
the final sample consists of 94 articles published between 2014 and 2024.
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Figure 1. Research trend in water–energy nexus from 2012 to 2024.

The selected articles underwent a comprehensive review to distill the key concepts
within the realm of water–energy microgrids. Based on their most significant character-
istics, these articles were methodically classified into various categories for an in-depth
examination. This document outlines Section 3 (description, elements, and concepts of an
IWEMG), Section 4 (formulation of optimization problems in IWEMGs management and
planning), and Section 5 (methods for solving IWEMG optimization problems) using the
most relevant classification criteria established in our research. Following this rigorous
selection methodology, our focus was exclusively on articles pertaining to isolated water
and energy networks. As a result, 16 articles, published between 2014 and 2024, were
identified as relevant to our study.

Additionally, Table 1 contains a list of references, the article type, and the principal
contributions of each of the 16 publications. Sections 4 and 5 also use the information
deposited there. Furthermore, it is important to note that among the chosen samples,
only one review article pertaining to IWEMG was discovered. Therefore, in light of the
challenges posed by the Sustainable Development Goals of the UN 2030 Agenda for
Sustainable Development [1], it is anticipated that the number of publications concerning
IWEMGs will increase in 2024.
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Table 1. Main research studies in the area of planning and resource management in IWEMGs.

Ref Year Type Optimization Method Key Findings Application Area Contributions/Impact Experimental Platforms

[3] 2021 Journal Mixed-integer nonlinear
programming

Integration of a desalination module reduces peak demands
by >30% with renewable sources and saline water.

Desalination, isolated
microgrids

Proposes an optimization framework integrating
desalination into microgrids. Yes—Physical implementation

[8] 2018 Technical Report Not specified Identification of opportunities for water–energy microgrids
and analysis of energy and water efficiency.

Water–energy microgrids,
research

Detailed analysis at a test site, setting a model for future
research. Yes—Physical implementation

[17] 2020 Journal Mixed-integer linear
programming

Optimization of energy consumption in water–energy
microgrids through the scheduling of tanks and pumps. Water distribution systems Develops an optimization model for energy efficiency in

water systems. Yes—Physical implementation

[18] 2011 Conference Particle swarm
optimization

Technical and economic evaluation of polygeneration
microgrids to supply energy, water, and fuel.

Remote areas,
polygeneration microgrids

Proposes and evaluates a microgrid design to meet
diverse needs in isolated areas. Yes—Physical implementation

[19] Conference Linear optimization Optimal management model for water–energy microgrids
with the goal of minimizing operational costs.

Isolated communities,
microgrids

Management model optimizing operational costs in
water–energy microgrids. No—Simulation

[20] 2020 Journal Multi-objective
optimization

Cost evaluation for hybrid energy systems with integrated
desalination using game theory.

Hybrid systems,
desalination

Multi-objective approach to determine costs and
optimize hybrid systems with desalination. Yes—Physical implementation

[21] 2021 Conference Mixed-integer quadratic
programming

Joint optimization of water and power distribution
networks to minimize energy consumption and losses.

Water and power
distribution networks

Co-optimization of interdependent networks,
improving efficiency and reducing losses. No—Simulation

[22] 2020 Journal Mixed-integer nonlinear
programming

Co-optimization of water demand and energy consumption
to maximize efficiency in isolated microgrids.

Isolated microgrids, energy
efficiency

Co-optimization strategy to improve energy efficiency
in water–energy microgrids. No—Simulation

[23] 2017 Journal Game theory with
decentralized agents

Application of game theory to energy management in
autonomous polygeneration microgrids.

Polygeneration microgrids,
energy management

Uses game theory to improve management and
cooperation in polygeneration microgrids. Yes—Physical implementation

[24] 2018 Journal Mixed-integer convex
programming

Optimal demand management in the water–energy nexus
using quasi-convex hull relaxation.

Water–energy nexus,
demand management

Demand management model leveraging the
water–energy relationship to optimize resources. No—Simulation

[25] 2020 Journal Mixed-integer nonlinear
programming

Microgrid optimization through virtual electricity storage
and deferrable power-driven demands. Microgrids, virtual storage Innovative approach to microgrid scheduling using

virtual storage and deferrable demands. No—Simulation

[26] 2017 Journal Mixed-integer nonlinear
programming

Modeling a micro-nexus of water and energy for
co-optimization of water and energy networks. Smart cities, micro-nexus Proposes an integrated model of water and energy for

applications in smart cities and buildings. No—Simulation

[27] 2023 MIMO—
predictive control

Predictive control for
demand management Interconnected microgrids, predictive control.

Control for management of
interconnected water–energy
microgrids.

Simulate environment, MATLAB. No—Simulation

[28] 2023 Conference MIMO-based predictive
control

Predictive control strategy for demand management in
isolated water–energy microgrids.

Isolated microgrids,
predictive control

Applies predictive control for optimized management
of isolated water–energy microgrids. No—Simulation

[29] 2022 Conference Stochastic
programming

Stochastic optimization in water–energy microgrids for
applications in arid zones.

Arid zones, stochastic
optimization

Implements stochastic optimization for microgrids in
arid zones, focusing on La Guajira, Colombia. No—Simulation

[30] 2024 Journal Game theory with
decentralized agents

Integrated model composed of consumer agents, generator
agents, and prosumer agents in IWEMs

Arid zones, water and
power distribution

Use of game theory in the management of hydro-energy
resources over a time horizon in an IWEMG. No—Simulation
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3. Description, Elements, and Concepts of an IWEMG

The main objective of an IWEMG is to meet water and energy demands while adhering
to the system’s inherent constraints. To achieve this, an IWEMG can be composed of several
components that must be optimally integrated, including water and/or energy storage
systems, multiple power generation systems (renewable and non-renewable), water genera-
tion systems (depending on needs and location), communication technologies, inter-system
processing, and resource management methods [16,31]. The synergy between these diverse
components emphasizes the critical nature of their interconnected functionality. Table 1
highlights the use of various experimental platforms in the study of IWEMGs. Several
studies have implemented physical solutions, such as the integration of desalination mod-
ules and the technical and economic evaluation of polygeneration microgrids, allowing
models to be validated under real conditions. These experiments provide valuable data and
establish models for future research. On the other hand, some studies rely on simulations to
test and optimize their models, using tools such as mixed-integer nonlinear programming
and game theory. These simulations are crucial for developing and refining solutions before
physical implementation. The combined use of both physical and simulated experimental
platforms is essential for advancing the efficiency and sustainability of IWEMGs. The
elements, systems, and units that can be part of an IWEMG are illustrated in Figure 2. Fol-
lowing this introduction, we will delve into the detailed descriptions of the main elements
and explore the most important definitions and configurations of an IWEMG, along with a
bibliographical review of the most relevant works presenting IWEMG topologies.

PV System Wind System
Battery Energy 

Storage System

Conventional 

Generator

Energy Microgrid

Water Microgrid

Reservoir
Water 

Generator

Tank

Tank

Figure 2. Schematic description of an integrated water–energy network.

3.1. Energy–Water Nexus

The nexus between water and energy is defined as a set of systems composed of
two infrastructures: one with the necessary elements to form a complete energy value
chain (activities necessary to create a service) and the other a water one [32]. Recently, the
energy–water nexus has gained attention as a single interlinked system from policy, systems
engineering and technical perspectives. This increasing focus underscores the importance of
examining how energy and water infrastructures not only coexist but enhance each other’s
operational efficiency. While some works have developed holistic engineering system
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models [33,34], the primary focus of the literature has been to analyze and design individual
energy–water couplings. The greatest attention has been given to the cross-interactions
of energy supply with water demand or vice versa. Moreover, energy management has
emerged as a crucial concern for utilities, particularly those that use electrical pumping
energy to deliver water for residential, industrial, and irrigational purposes [32]. On the
demand side, the residential commercial, and industrial use of electric heating and cooling
for water consumption presents a major coupling [35]. The subsequent sections will build
on this foundation, exploring how these interactions influence the design and functionality
of IWEMGs.

The number of studies on the water–energy nexus has clearly increased, as has the
scientific community’s ability to productively assess water–energy interrelationships at
higher resolution. Many studies aim to develop new methods for thoroughly assessing
the interactions of water, energy, and other elements. Similarly, much research is in the
“understanding” stage, with a focus on quantitative analysis of the water–energy nexus [36].

3.2. Energy Storage Systems for IWEMGs

Commonly, an IWEMG is powered by non-traditional renewable energy sources. The
majority of these sources are intermittent, which presents a significant challenge in terms
of power generation and load balance maintenance in order to ensure the stability and
reliability of an electrical microgrid [37]. This intermittency necessitates robust solutions
that can maintain consistent power and water supplies, highlighting the pivotal role of
energy storage systems. Great efforts have been made to find viable solutions, such as
electrical energy storage (EES), load switching via demand management, interconnection
with external networks, and so on. EES has been identified as one of the most promising
approaches among all possible solutions [37–39], providing a reliable buffer that enables
the continuous operation of both power and water generation systems. A classification
takes into account its primary energy source, so it is divided into five categories: electrical,
mechanical, thermal, electrochemical, and magnetic [40].

At present, the most famous ESS in the world is the battery energy storage system
(BESS) [41,42]. It is an electrochemical ESS that produces or absorbs electrical energy by
means of a chemical reaction [43,44]. In addition to BESSs, some hydrogen-based generating
units, such as some types of fuel cells, can be classified as chemical ESSs. In this case, the
existence of the hydrogen reservoir offers the possibility of generating electricity when
needed [39,45]. Pumped hydro storage power plants can be considered as energy-intensive
ESSs that have been used in the power system for decades [37,46–48]. The flywheel energy
storage system, FESS, is an electromechanical ESS that stores electrical energy in mechanical
form. A round, low-friction moving disk stores electrical energy in kinetic form. There
are two types of FESS: low speed and high speed [49–51], with high and low inertia disks,
respectively. The compressed air ESS (CAESS) is a large-capacity ESS used in power
systems [52,53]. This ESS stores air at times of low energy demand in large tanks. An ESS
that stores heat in an insulated tank is called a thermal energy storage system (TESS) [54–56].
The stored heat can be used in the power generation process. Another solution for storing
electrical energy is its storage in a magnetic field. Superconducting magnetic energy storage
(SMES) stores electrical energy in a magnetic field generated by direct current [57,58].

Water storage systems, such as elevated tanks and reservoirs, play a crucial role in
ensuring a stable water supply in IWEMGs. These systems can store excess water generated
during periods of low demand or high availability, which can then be utilized during peak
demand times or when water generation is low. Elevated water tanks, in particular, provide
the added benefit of utilizing gravitational force to supply water without the need for
additional energy input, thus enhancing the overall efficiency of the system [59,60]. This
approach not only stabilizes the water supply but also integrates seamlessly with renewable
energy sources, making it an ideal solution for remote and isolated communities.

Hydropumps and elevated tanks can also be integrated into IWEMGs as a form of
mechanical energy storage. During periods of excess energy production, water can be pumped
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from a lower elevation to an elevated tank using renewable energy sources such as solar or
wind power. This stored water can later be released through turbines to generate electricity
when renewable energy production is low or when there is a high demand for power [61,62].
This method of energy generation not only provides a reliable backup power source but
also helps in balancing the load and maintaining grid stability. Additionally, the use of
hydropumps and elevated tanks leverages the natural topography and gravitational potential
energy, making it a cost-effective and sustainable option for isolated microgrids [37,38].

These water and energy storage solutions, combined with advanced energy management
systems, enhance the resilience and sustainability of IWEMGs, ensuring reliable access to
essential resources in remote and isolated communities. By integrating these technologies,
IWEMGs can achieve a higher degree of self-sufficiency and operational efficiency, which are
critical for the long-term success and sustainability of these systems [37,40].

3.3. Drinking Water Generators in an IWEMG

Every year, new techniques for producing water that are more efficient, economical,
and portable are introduced [6,63]. As we transition from discussing energy storage, it
becomes clear that these innovations in water generation are equally essential. In general,
seawater sweetening, polluted water treatment, wastewater recycling, and water produc-
tion from air and fog are all water supply solutions that can be applied to an IWEMG [64].
This section will explore these technologies in detail, particularly focusing on how they
integrate within the broader framework of IWEMGs to address the unique challenges of
remote and isolated communities.

A desalination device essentially separates saline water into two streams: one with a low
concentration of dissolved salts (the freshwater stream) and the other containing the remaining
dissolved salts (the concentrate or brine stream) [65]. The device requires energy to operate
and can use several different technologies for separation. Two basic technologies are used
to remove salts from ocean water: thermal distillation and membrane separation. Industrial
desalination technologies use semi-permeable membranes to separate the solvent or some
solutes, or involve phase changes [66]. All processes require chemical pretreatment of the raw
brackish water to prevent scaling, foaming, corrosion, biological growth, and fouling, and
also require chemical post-treatment of the processed water [65,67]. Commercial desalination
processes or conventional technologies for the treatment of water of impaired or marginal
quality consist of separation of freshwater from saline water, simple sedimentation, and disin-
fection with chlorine or iodine. These include multi-stage flash (MSF), multiple effect (ME),
vapor compression (VC), which can be thermal (TVC) or mechanical (MVC), reverse osmosis
(RO), ion exchange, electrodialysis, phase change, and solvent extraction [67]. For optimal
operation, the implementation of the aforementioned techniques necessitates the massive use
of energy. The application of sustainable/renewable energy for water production is linked
to the nexus between water and energy in desalination systems [64]. On the other hand, it is
estimated that energy consumption accounts for 50% of the cost of desalination systems [68].
The advantages of desalination include its ability to provide large quantities of potable water
from abundant sources like the ocean and the potential for integration with renewable energy
sources to improve the sustainability of the process [64]. However, the disadvantages include
high energy consumption and the environmental challenges associated with managing the
concentrated brine byproduct [67]. Although it promises an inexhaustible source of water,
operational and environmental costs can be prohibitive, limiting its applicability in certain
regions. Additionally, reliance on external energy sources can increase the vulnerability of
these systems during emergencies or energy infrastructure failures.

Wastewater recycling is a technique that allows for the treatment and reuse of used
water for various applications, including agricultural irrigation, aquifer recharge, and
industrial use. This process involves a series of treatment stages that may include filtration,
disinfection, and biological treatment to remove contaminants and pathogens from the
wastewater [66]. The benefits of wastewater recycling include reducing the demand on
freshwater sources, improving water sustainability, and decreasing pollution of natural
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water bodies [65]. However, the challenges include high initial costs for the implementation
and maintenance of treatment plants, as well as the need for constant monitoring to ensure
the quality of the treated water [67]. While it reduces pressure on freshwater sources,
negative public perception and high costs can hinder its large-scale adoption. Furthermore,
the treatment of wastewater requires advanced technology and skilled personnel, which
may not be available in all regions, especially in rural or developing areas.

Water production from air and fog is an innovative technique that utilizes devices such as
atmospheric water generators (AWGs) to condense water vapor by cooling the air below its dew
point [69]. These systems can be particularly useful in regions with high humidity and limited
surface water resources. The benefits of this technique include its portability and the ability to
generate potable water in remote locations without a pre-existing water source [70]. However,
the challenges include high energy consumption, which can be a barrier in areas without reliable
energy sources, and the variability in the amount of water generated depending on weather
conditions [71,72]. Additionally, it is crucial to implement additional filtration stages to ensure
the potability of the generated water [73]. Despite offering an innovative solution for remote
areas, the reliance on favorable weather conditions and its high energy demand can limit its
long-term viability. Moreover, the initial investment in advanced technology can be substantial,
which could impede its implementation in communities with limited financial resources.

3.4. Renewable Energy for Desalination

Water generation technologies have seen tremendous improvements, but their widespread
use remains limited, mainly because of the high energy needs that are currently met by fossil
fuels [74]. Alternative energy sources are essential to meet the growing demand for water
desalination [67]. In recent decades, many efforts have been made in the use of different
renewable energy (RE) sources to run desalination processes [66]. However, most of these
plants are connected to the power grid to ensure a continuous supply of energy for stable
operation [75].

It is not easy to determine the most suitable renewable energy source (RES) for a
water generation method, considering the efficiency and varieties of both RESs and water
generation methods. According to [76], the choice of RES depends on several variables,
such as the size of the plant, its location, the pressure and characteristics of the feed, and
the expected cost of freshwater [77]. Limitations to the use of RESs are the inherent low
intensity and intermittent characteristics of some of them [76,78]. These difficulties can be
minimized or even eliminated by integration with the grid, hybridization, and the use of
energy storage systems or batteries. Although [77] shows the potential integration of RES
with desalination systems, no studies have been conducted to determine which renewable
energy source is best for atmospheric water generation systems.

3.5. Topologies Proposed for IWEMGs in Research Articles

In this subsection, we present selected research papers that discuss the proposed
general topology for an IWEMG. Table 2 provides information on relevant works that share
similar elements and topologies with an IWEMG. These studies offer valuable insights into
potential topologies that can be explored in future research. However, given the scope of
this review, there is a predominant focus on articles that present topologies aligned with
the structure of an IWEMG.

In [3], a topology is presented which includes a reservoir, two water storage tanks,
40 nodes, and six pumps that make up the water system, a hybrid electrodialysis–reverse
osmosis desalination module, two battery storage units, two wind turbines, two sets of
photovoltaic plants, and a conventional alternating current generator.

A similar topology is presented in [17], with the exception that a water generation
system is not modeled. The behavior of the BESS is modeled as a bidirectional element,
which can be computed as a load to provide a response to demand, and is also capable
of storing excess energy to support demand peaks. The hydraulic network is made up of
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seven nodes, a tank, a pump, a reservoir and five home nodes, which fulfill the function of
supplying the water demanded by each of the homes.

A comparable study is presented in [22]; the system consists of a microgrid, energy
storage elements, conventional diesel, and natural gas electricity generators, plus renewable
energy generators such as wind and solar, and a combined heat and gas plant. The water
microgrid is made up of a water tank, six distribution nodes, and two pumps; a diurnal
profile of water demand is also taken into account. In [79], the same author proposes the
same topology above.

As a solution for supplying energy and drinking water in isolated microgrids, an
energy polygeneration system in isolated microgrids is proposed in [18]. Photovoltaic
panels, a wind turbine, a battery bank, a proton exchange membrane (PEM) fuel cell, a PEM
electrolyzer, a metal hydride tank, and an energy recovery reverse osmosis desalination
unit are all part of the microgrid.

The coupling between two networks is proposed in [21]; the networks are composed
of pumps, photovoltaic panels, photovoltaic inverters in the power distribution networks,
water storage tanks, and reservoirs.

A physical structure of two networks is considered in [24]. A distribution network,
or microgrid, is integrated with renewable energy and a BESS on the electricity side. A
network of pipes, pumps, utility-owned and customer-owned tanks, and irrigation systems
comprise the water side. Water treatment facilities, including desalination, and electric
vehicles (EVs) are among the loads considered.

The virtual electricity storage provided by distributed thermal/water demands is high-
lighted in [25]. The storage and distribution of drinking water using tanks and pumps are
modeled. The system is made up of renewable energies in various nodes and conventional
and flexible electrical loads. The microgrid includes battery storage.

A micro water–energy nexus is presented in [26]. Storage elements such as batteries,
renewable energies, diesel generators, and energy demands are taken into account, along
with water tanks and pumps.

The authors of [19,29] propose a scheme for a standalone water and energy microgrid
composed of renewable energies, a water generator, a water and energy storage element
via a hydro pump, and water and energy demands.

The authors of [20] propose a topology that is composed of a hybrid energy system
that includes seawater desalination, as well as a diesel generator (DG) coupled to photo-
voltaic/thermal panels (PVTs) that provides electricity to the houses and the desalination
system in this system (DS). The PVT panels also supply thermal energy, necessary to meet
the cooling demand, through an absorption chiller (AC), which acts as an energy converter
in the system. An electric chiller (EC) serves as a backup cooling system. The electrical
storage system (ESS) and the thermal storage system (TSS) store excess electricity and
thermal energy, respectively.

In [23], a topology of polygeneration networks is analyzed, composed of: electrolyzers,
fuel cells, which are capable of interacting with each other, photovoltaic solar energy, a
wind turbine, a proton exchange membrane fuel cell (PEM), a 48 V deep discharge solar
lead–acid battery bank, and a water tank. In addition, household electrical consumption
(e.g., lighting, refrigeration, kitchen appliances, etc.), and a reverse osmosis desalination
unit are considered.

The analysis of research on integrated water and energy microgrids (IWEMGs) shows
a wide range of system configurations that integrate renewable energy with water manage-
ment to enhance efficiency and sustainability. This integration is crucial for improving the
resilience of microgrids in isolated areas. The studies highlight the challenge of needing
more advanced control mechanisms and smarter grid integration to manage the variability
in renewable resources and water demands.

Future research should focus on developing advanced predictive algorithms and
machine learning to dynamically manage system demands. Exploring new technologies
like IoT sensors and blockchain could lead to more robust and autonomous IWEMGs.
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Expanding these systems to larger grids or urban settings could increase their impact across
different regions and socio-economic backgrounds.

Table 2 summarizes key elements from significant studies on IWEMGs, showing diverse
configurations that reflect the integration of water and energy systems. It underscores the
shift towards renewable solutions for long-term sustainability, marking progress in managing
and optimizing these resources and pointing towards developing more efficient technologies.

Table 2. Elements present in the most relevant works related to IWEMGs.

Reference Year Isolated Water Water–Energy Desalination Water Energy Renewable Energy
Microgrids Microgrids Nexus Storage Storage Energy Microgrids

[80] 2018 ✓ ✓ ✓ ✓ ✓

[32] 2014 ✓ ✓ ✓ ✓ ✓ ✓

[81] 2014 ✓ ✓ ✓ ✓

[82] 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[83] 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[84] 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[85] 2019 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[86] 2019 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[87] 2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[88] 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[31] 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[89] 2014 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[90] 2016 ✓ ✓ ✓ ✓ ✓

[16] 2014 ✓ ✓ ✓ ✓ ✓

[91] 2020 ✓ ✓ ✓ ✓ ✓

[92] 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[93] 2020 ✓ ✓ ✓ ✓ ✓ ✓

[94] 2012 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[95] 2017 ✓ ✓ ✓ ✓ ✓

[8] 2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[17] 2020 ✓ ✓ ✓ ✓ ✓ ✓

[96] 2020 ✓ ✓ ✓ ✓ ✓ ✓

[97] 2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[21] 2021 ✓ ✓ ✓ ✓

[22] 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[24] 2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[25] 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[3] 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[23] 2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[79] 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[18] 2011 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[19] 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[20] 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[26] 2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[30] 2024 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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4. Formulation of Optimization Problems in IWEMG Management and Planning

This section addresses various methodological approaches for formulating optimiza-
tion problems applied to resource management, scheduling, and planning in IWEMGs.
The selected documents detail procedures that facilitate system modeling and subsequent
problem formulation, aimed at maximizing resource use efficiency within an IWEMG.
Given the dynamic, nonlinear, and stochastic nature of water and energy supplies and
demands in an IWEMG, integrated planning and management pose a significant challenge
in optimization problem formulation. These problems critically depend on data related
to the physical processes of the system, including generation and demand aspects [11].
System component modeling is particularly challenging due to distribution links involv-
ing interdependent water and energy variables and parameters within the framework of
integrated management.

In the formulation of optimization problems for IWEMGs, it is feasible to consider
multiple generation and storage technologies. This allows various parameters and control
variables to define the degrees of freedom of the optimization problem, aimed at managing and
planning the resources of the microgrid and its energy and water subsystems. The methods
used must be interpretable and replicable, regardless of location constraints, to develop
optimization models that generalize the performance of specific components within integrated
multi-source power and water systems. On the other hand, considering characteristics
observed in real-world applications, such as the use of binary variables and bilinear terms,
there is a need to explore methods that effectively solve optimization problems and promote
integrated management of water and energy systems [98]. Section 5 will address these
methods in detail.

Within the context of the water–energy nexus applied to IWEMGs, addressing nexus
issues could be achieved by formulating optimization problems independently for each
sector. However, the specific formulation of these optimization problems depends on
the system characteristics, the objective function, and the operating environment [99].
Therefore, optimization problems can be classified based on various criteria, including
linearity, nonlinearity, non-convexity, mixed/integer nature, single/multiple objectivity,
and stochastic/deterministic characteristics [6].

In current research on IWEMG management and planning methods, most optimization
problems have been formulated as mixed-integer linear/nonlinear programs. However,
other techniques have been explored that allow for significant results and conclusions.
Therefore, in the subsections that follow, the formulation of an optimization problem
is initially defined, and then, the mathematical methods identified in the bibliographic
review are described, which have also been applied in the formulation of management and
planning problems for IWEMGs.

4.1. Mathematical Optimization Problem Formulation

Mathematical programming plays a pivotal role in the simultaneous assessment of
energy and water systems, facilitating their optimal integration. The design of these
integrated systems, comparable to conventional optimization challenges in the hydro-
energy sector, involves a mix of discrete and continuous variables. In both academic and
practical applications involving integrated systems, methodologies can be differentiated
based on the characteristics of the optimization problems they address. Given mathematical
complexities such as nonlinearity and non-convexity, these optimization challenges are
typically formulated using non-negative decision variables (x) in nonlinear (quasi/non)-
convex and linear constraint ( fi(x), hi(x)) and objective ( f0(x)) functions that define a
feasible set (RnX

+ xZnX
+ ), e.g., Equations (1)–(5).

minimize f0(x) (1)
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Subject to (2)

fi(x) ≤ 0, i = 1, ....m (3)

hi(x) ≤ 0, i = 1, ....p (4)

x ∈ RnX
+ xZnX

+ (5)

Using the aforementioned standard model, a range of mathematical optimization
techniques can be approached to address common problems. These approaches encompass
mixed-integer linear programming (MILP), linear programming (LP), mixed-integer non-
linear programming (MINLP), and nonlinear programming (NLP). In the field of IWEMG
management, determining the appropriate size, management and planning of resources is
a fundamental task. Some studies have focused on optimizing the size of integrated water
and power systems. However, these studies have ignored resource allocation issues while
accentuating operational constraints, which are seen as seemingly simple but challenging
when it comes to ensuring a reliable supply of water and power. To close this gap, it
becomes imperative to incorporate resource allocation considerations into optimization
problems related to management and planning. Thus, in the field of systems engineering
and resource management, the optimization problem can be divided into two different sub-
structures within a stipulated time frame (planning). By integrating the two tasks (sizing
and allocation), the assessment tasks can be decomposed, facilitating analysis related to
optimal sizing and allocation for water and power systems [99].

4.2. IWEMG Management Based on Nonlinear Programming of Mixed Integers and
Nonlinear Programming

In the literature review related to IWEMGs, mixed-integer linear programming is the
most commonly used technique for formulating optimization, management, and sizing
problems. The nonlinear behavior of some elements that are part of an IWEMG, as well as
their number and operational states, can be modeled in detail using nonlinear functions
and binary variables.

The primary objective of the optimization problem presented in [3] is to reduce the en-
ergy consumption of the components within the water generation and distribution system,
thereby lowering the overall energy generation costs. The objective function incorporates
the cost functions of each generation unit, highlighting the use of the most economical
energy resource based on electrical load and generator availability. Moreover, the water
system model integrates fundamental constraints such as the mass conservation theorem
and the Bernoulli equation, efficiently managing flows and valve states. A nonlinear co-
optimization model is proposed that addresses optimal management in a hybrid water and
energy system, considering the energy consumption of the water system as a constant load
over 24 h, using a quadratic function for conventional energy generation, and adjusting the
limitations of renewable energy systems based on environmental variables and their uncer-
tainty, thus framing the entire system as a mixed-integer nonlinear optimization problem.
This approach could be enhanced by integrating advanced meteorological predictions to
further optimize the use of renewable resources.

In the study in [17], battery energy storage systems (BESSs) are modeled as bidirec-
tional elements that respond to demand and store excess energy to manage demand peaks.
The optimization considers the operational states of the pumps and analyzes residential
water demand, integrating this information into the overall consumption of the hydro and
energy system. The optimization strategy details the operation of pumps and tanks, taking
into account physical properties such as pipe dimensions and flow rates, resulting in a
model that optimizes energy consumption and ensures daily water demand. This model is
innovative in integrating energy storage with water management, though its applicability
may be limited in scenarios with high demand variability.

A related study in [22] delves into the modeling of pumps using quadratic functions to
assess energy consumption under various flow and speed conditions. Three optimization
scenarios are developed to compare efficiency: independent operation, integration with
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the conventional energy network without a storage element, and a fully integrated system
with an energy storage unit. This mixed-integer nonlinear programming approach aims
to minimize the energy consumption of the pumps over a full 24-h operational cycle. The
analysis is notable for its comparative approach, suggesting the potential for including
long-term cost and sustainability analyses.

The purpose in [79] is to strategically locate water pumps/turbines to maintain con-
stant pressure and maximize energy generation. Operational constraints are modeled using
quadratic functions, and both energy and mass conservation within the water network are
considered. Moreover, a co-optimization model of an integrated water and energy system
is developed, which includes conventional, solar photovoltaic, and wind generation units,
some of which are nonlinear, as well as battery storage units. This co-optimization problem
aims to minimize the costs of energy storage and generation units, thus enhancing energy
efficiency, although exploring the environmental impact of large-scale implementation
would be beneficial.

In [18], the system is described as a multidimensional, non-convex, nonlinear, and
multimodal problem with binary variables, using data and simulations from previous
works to derive component models. The objective function, which minimizes investment
and maintenance costs over a 20-year period, identifies the most cost-effective system that
can also meet all the system’s needs at every time step. This research provides a solid
foundation for strategic financial decisions; however, it faces the challenge of computational
complexity due to the large amount of data processed.

In the work presented in [21], optimization of combined water and energy flow prob-
lems is addressed through collaborative resource management across distribution networks,
emphasizing the interaction between water and energy networks. This integrated manage-
ment aims to minimize both the energy consumption of pumps and active power losses.
The complex nature of the problem, exacerbated by non-convex constraints arising from hy-
draulic dynamics, necessitates transforming the original problem into a convex one through
successive linear approximations, ultimately formulated as quadratic programming with
quadratic constraints and mixed integers, with the goal of minimizing active power losses
in the energy distribution network. Although the study provides an innovative approach
to resource management, the practical applicability of the solutions may be limited by the
complexity of the required transformations.

The authors of [24] develop a multi-period mathematical model and design optimization
algorithms for optimal resource allocation. This model integrates nonlinear equations for
storage units and adapts assumptions for the water distribution network and its pumps,
despite their inherent quadratic behavior, proposing them as linear. Moreover, constraints
are specified to facilitate the connection between the water and energy networks, with the
ultimate goal of reducing the total cost of energy required to meet the demands for electricity
and water. The interdisciplinary approach to co-optimization is promising, but simplifying
the dynamic behaviors of the pumps may not capture all the real system dynamics.

In [25], the study explores how variable water and temperature demands provide
flexibility for adjusting significant electrical loads, enabling optimal energy distribution
and improved electrical grid planning. It is assumed that water load flows are flexible,
supported by users’ own storage capabilities, which allows for considering lossless wa-
ter storage solutions as economically viable options for optimizing the operation of the
electrical system. Battery storage modeling is conducted using nonlinear equations, and
an optimization approach is proposed to manage storage over the short and long terms,
thereby minimizing the costs of electrical energy. This work ingeniously addresses the
interaction between water demands and energy management, though it could benefit from
a more detailed analysis of the long-term efficacy of lossless storage.

In [26], the study describes integrated systems of microgrids and water distribution,
both directly connected to consumers. The models for both systems are high-fidelity
nonlinear networks that use binary variables and mixed integers to describe the interactions
and functionality of the system. The objective function of this co-optimization problem
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aims to minimize the cost of energy generated and consumed by the pumps, thereby
optimizing resource scheduling over time. Although this approach provides a detailed
and directly applicable methodology, the complexity of high-fidelity models may pose
significant challenges in terms of computation and scalability in broader implementations.

In summary, the use of mixed-integer nonlinear programming (MINLP) in formulating
optimization problems in IWEMGs is evident in the studies mentioned. This technique
is particularly prominent in planning and management applications due to its ability to
model all components of the systems with precision. However, challenges may arise in
some instances due to the time required to process a large volume of data.

4.3. IWEMG Management Based on Linear Programming

In isolated water–energy microgrids, certain components are modeled using linear
equations. It is essential to use first-order equations to establish the constraints and the
objective function in the formulations. Additionally, linearization techniques are employed
to determine operational points or to segment nonlinear equations, thus facilitating the
management of the inherent complexity of these systems. However, while useful, lineariza-
tion techniques may oversimplify the models of IWEMGs, potentially omitting critical
system dynamics.

According to the studies in [19,29], the elements of IWEMGs are modeled using linear
equations based on the principle of conservation of mass and the physical constraints of
the components. In [19], water and energy demands are treated as constants, while the
hydro-pump storage element serves as a link between the water and energy networks. The
objective function in [19] aims to minimize the operational costs of producing water per
cubic meter and the costs of its storage, managing resources within a seven-day framework.
In contrast, [29] assesses two scenarios, one deterministic and the other stochastic, both
structured in two stages. The objective function aims to minimize the installation of
renewable energies in the first stage and the amount of water generated in the second stage,
considering variations in demand and renewable energy generation. The comparison of
deterministic and stochastic approaches in [29] provides valuable insight into uncertainty
management, though further exploration of the interactions between the optimization
model stages could deepen our understanding.

In [20], a linear programming technique is introduced for the multidimensional anal-
ysis of preferences. Two objective functions are defined: the first aims to minimize the
economic costs of capital, fuel, and maintenance, while the second focuses on enhancing
environmental protection. The conflicting nature of these objectives drives the need for
multi-objective optimization to effectively balance both goals. This multidimensional ap-
proach highlights the complexity of balancing economic costs with environmental benefits,
a key challenge in sustainability.

The use of linear programming in IWEMGs, due to the simplicity of the models and
their rapid simulation, emerges as an appealing solution for system design and testing.
However, although these systems can be developed and tested quickly, the final results
often lack accuracy, which is crucial in contexts with high uncertainty. The speed and
simplicity of linear programming are beneficial, but the compromised precision may limit
its utility in critical applications where uncertainty plays a fundamental role.

4.4. IWEMG Management Based on Game Theory

This formulation method provides a mathematical framework for modeling and
analyzing scenarios with multiple decision-makers, where each participant aims to achieve
their objectives through strategic decisions [100]. Therefore, this technique is well-suited
for management and planning models in IWEMGs. However, the formulation must be
carefully customized to capture the complexity of real interactions.

In [23], the components are modeled using linear and quadratic equations, as seen
with batteries or desalination agents. One objective function seeks to maximize the input
from fuel cell and battery agents. Game theory is employed to formulate the energy
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management problem, simulating the array of strategies used by two players/agents in
either a cooperative or non-cooperative power control game. To achieve optimal energy
management and control of the microgrid’s operations, the model relies on the level of
energy produced by renewable sources and the energy stored in the battery bank. Nash
equilibrium is utilized to reconcile the agents’ objectives by maximizing their preferences,
making the application of game theory in this context innovative. However, the complexity
and computational requirements may limit its practical application.

The study presented in [30] explores the integration of renewable energies into water
systems in isolated communities using an IWEMG model based on game theory. Con-
sumers, producers, and prosumers engage in a non-cooperative game (Cournot competi-
tion) to optimize resource allocation. Implemented in Ranchería, La Guajira, Colombia,
the model has proven effective in meeting local water and energy demands, supported
by quantitative results that facilitate informed decision making. Despite its proven effec-
tiveness, the model faces challenges in adaptability to dynamic changes, highlighting the
need to explore its scalability and adaptability in different cultural contexts to ensure its
global effectiveness. This approach represents a significant advancement in sustainable
resource management and proposes a viable path for the development of policies and
strategies for global implementation. The model is promising for the sustainability of
isolated communities but must be better adapted to local and global variable contexts.

The advantages of the game theory approach to energy management are utilized
to investigate the optimal solutions of games using Nash equilibrium. However, due to
its complexity and high computational demands, it is a technique that has not yet been
sufficiently explored in IWEMGs. While promising, the application of game theory in
IWEMG management requires further exploration and simplification for broader adoption.

5. Methods for Solving IWEMG Optimization Problems

Mathematical models and algorithms are crucial for optimizing resource allocation,
sizing, and scheduling decisions in isolated water–energy microgrids. Beyond conventional
mathematical programming, heuristic and metaheuristic algorithms provide versatile
alternatives for addressing IWEMG optimization challenges. Techniques such as genetic
algorithms, particle swarm optimization, simulated annealing, and ant colony optimization
are particularly adept at managing complex and nonlinear problems where exact solutions
are elusive due to their capability to explore vast solution spaces effectively.

Given the inherent uncertainties in water and energy supply and demand, stochastic
programming techniques are instrumental in IWEMGs. These techniques leverage proba-
bility distributions or scenario-based approaches to accommodate uncertainties, thereby
facilitating the development of solutions that are both robust and reliable. This approach is
particularly beneficial in planning under conditions of uncertainty, ensuring that solutions
remain viable under various possible future scenarios.

IWEMG optimization frequently entails navigating through multiple conflicting objec-
tives, including cost minimization, system reliability, and environmental impact. Multi-
objective optimization methods, such as multi-objective evolutionary algorithms and Pareto
optimization, are employed to discover trade-off solutions that balance these goals. These
methods allow stakeholders to explore a spectrum of optimal solutions, aiding in decision-
making processes that consider a broader range of outcomes.

The selection of an optimal method for solving an IWEMG problem depends heavily
on the specific characteristics of the system, the defined objectives of the optimization
problem, and the quality and quantity of available data. Understanding the computational
tools, solution procedures, and algorithms used is essential due to the complexity of these
problems. Table 3 outlines these aspects along with other pertinent characteristics of
research in the field of IWEMG management and planning. The following subsections will
delve deeper into each of these methods, examining their applications and benefits in the
context of optimizing IWEMG operations.
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Table 3. Summary of relevant characteristics in the selected articles on optimization for IWEMGs.

Ref Problem
Formulation Procedure Algorithm/

Solver Tool Objective

[3] MINLP Mathematical
programming BONMIN MATLAB®, OPTI

Toolbox
Minimize the costs of electricity generation
from dispatchable distributed generation units.

[8] MILP Mathematical
programming

Coordinated operation, maximum economic
efficiency.

[17] MINLP Mathematical
programming BONMIN MATLAB®, OPTI

Toolbox
Minimize energy consumption and daily
energy costs in WEMG.

[18] MINLP Heuristic PSO
TRNSYS® 16,
GenOpt® 2.0,
TRNOPT®

Minimize the cost of investment and
maintenance for a period of 20 years.

[19] LP Mathematical
programming CPLEX GAMS Studio®

1.16.4
Minimize operating and production costs.

[20] MINLP Evolutive
Genetic
algorithm
(NSGA-II)

MATLAB® Maximize environmental protection
performance and minimize its economic cost.

[21] MINLP Mathematical
programming

SDPT3,
SeDuMi,
MOSEK

MATLAB®, CVX
Toolbox.

Minimize active power losses and energy
consumption.

[22] MINLP Mathematical
programming BONMIN MATLAB®, OPTI

Toolbox
Minimize energy consumption.

[23] MINLP Game theory—
intelligent agents PSO

TRNSYS®,
MATLAB®,
GenOpt® 3

Maximize profits and achieve optimal energy
management and control of the microgrid
operation.

[24] MINLP Mathematical
programming

Branch and
Cut Gurobi®

Minimize the total energy cost for meeting the
demands of both electricity and water
microgrids.

[25] MINLP Mathematical
programming BONMIN Minimize costs and maximize the use of

renewable energy.

[26] MINLP Mathematical
programming

Minimize the energy consumption and total
energy cost.

[79] MINLP Mathematical
programming BONMIN MATLAB®, OPTI

Toolbox

Maximizes the energy generation of
pumps-as-turbines. Minimize the cost of
energy generation in WEMG systems.

This section aims to clarify the methodologies and their applications within the scope
of IWEMG, providing a comprehensive overview that may assist academics and practi-
tioners in selecting the most appropriate optimization techniques based on specific project
needs and constraints.

5.1. Exact Mathematical Methods

Mathematical algorithms based on exact and precise techniques, commonly referred to as
standard mathematics, are routinely applied to resolve optimization issues in water and energy
systems. These techniques typically start by calculating a lower bound and proceed by solving
a convex relaxation of the original problem at each iteration. Simultaneously, an upper bound
is calculated, and the relaxed variables are rounded to determine the optimal points of the
original problem; this process is known as the branch and limit technique [101]. Mathematical
procedures often delve into the structure of the optimization problem, incorporating common
heuristics, pattern exploration, and robust statistical estimates based on empirical data [102].

Decomposition methods segment complex optimization tasks into manageable sub-
problems [102,103], traditionally termed as master/slave [104] and primal/dual [105]



Energies 2024, 17, 2864 18 of 28

structures. Classical decomposition approaches like primal/dual [106] and mathematical
techniques such as Benders decomposition [101] are employed to derive global bounds on
objective values. Iterative algorithms such as branch and limit [101], cutting plane [107],
and other reformulation-based mathematical algorithms are essential for optimizing the
water–energy system. Additional solution methodologies include interior point [108,109]
and Newton methods [110], which provide precise or nearly optimal solutions [111] for
master–slave problems [112] and previously decomposed subproblems. Conventional
solvers in mathematical programming frequently utilize iterative algorithms, like the cut-
ting plane method [113], to secure exact or near-optimal solutions [114], thus defining lower
or upper bounds that identify gaps in global optimization [115].

In [3,22,25,79], optimization problems are tackled using the BONMIN algorithm and
the OPTI toolbox in MATLAB. The Open-Source Basic Nonlinear Mixed Integer Program-
ming algorithm (BONMIN), an experimental C++ tool, addresses general mixed-integer
nonlinear constraint problems. When dealing with convex objective functions and con-
straints, BONMIN provides precise solutions [116]. The BONMIN suite includes vari-
ous algorithms:

• B-BB is an algorithm that uses the branch and bound technique and is based on NLP.
• B-QG is an implementation of the Quesada and Grossmann branch and cut algorithm.
• B-Hyb is a hybrid branch and cut algorithm based on an external approximation.
• B-OA is an algorithm that uses external approximation decomposition.

In [17], models are initially linearized to transform the MINLP problem into an MILP
problem using the piecewise linear approximation for univariate functions [117] and the Big M
method for bivariate functions. As model complexity increases, so does the number of binary
variables and the arbitrary value of M [118], enhancing model accuracy but also extending
computation time. All models are solved using the “OPTI” solver in the MATLAB® software.

Similarly, in [21], an MINLP problem is approached initially via monomial approxima-
tion [119] followed by the Big M method for modeling pump head loss constraints. The
optimization is executed using a convex optimal water power flow (C-OWPF) algorithm
designed for non-convex co-optimization, with solutions processed using the MATLAB®

CVX-based optimization toolbox in conjunction with the Gurobi mixed-integer solver [120].
Gurobi Optimizer is renowned for its advanced capabilities in mathematical programming,
optimized to leverage modern computing architectures and multicore processors with the
latest algorithmic implementations [121].

5.2. Dual Derivation and Reformulation Methods

The quasi-convex hull relaxation method, recognized for its computational efficiency, is
frequently employed to address the challenges posed by computationally intractable mixed-
integer nonlinear programming (MINLP) problems. This method simplifies optimization
tasks by replacing non-convex constraints with their convex or quasi-convex hulls, as
detailed in [24,122]. The appeal of the convex hull lies in its ability to encompass the
endpoints of the original non-convex set, facilitating the location of optimal solutions,
typically at the extreme points of the convex hull, particularly when the objective function
exhibits monotonic convexity within this region [123,124].

However, accurately determining the convex hulls for many non-convex sets remains a
formidable challenge. In such scenarios, constructing a convex internal approximation of a
non-convex set presents a viable alternative [125]. In the realm of MINLP, integer variables
are typically confined to linear constraints. When dealing with intractable issues such
as optimal water–power flow [126], the relaxation of quasi/non-convex constraints and
objectives—either weakly or strongly—allows for the derivation of approximate solutions
based on semi-definite mathematical properties. Moreover, for complex optimization
problems that involve discrete and/or continuous variables along with bilinear terms, non-
convex and nonlinear model equations are effectively handled by incorporating auxiliary
variables and additional constraints.
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Dual formulations derived from primal optimization problems facilitate the reframing
of nonlinear multi-stage programs, aiming to enhance the robust operation of systems
and interconnecting components within energy and water distribution networks [122]. In
instances where technoeconomic or environmental objectives diverge significantly between
primal and dual formulations, the dual function may exhibit non-differentiability at its
optimum [127]. Utilizing Lagrange multipliers to reconceptualize an original non-convex
problem helps uphold convexity properties under weak/strong duality theorems [128],
which proves indispensable for critical sizing and scheduling tasks in power and water
systems. For complex nonlinear optimization issues related to the capacity expansion
planning of integrated power and water systems, leveraging convex relaxations not only
enhances computational efficiency but also ensures solution accuracy [112,129]. This
transformation of intractable optimization problems into manageable convex programs,
such as mixed-integer programs [130], facilitates robust and multi-objective optimization
strategies that adeptly manage the inherent uncertainties in water and energy supply and
demand [131].

In [24], it is proposed that transforming a mixed-integer problem within the MINLP
framework into a more computationally manageable mixed-integer configuration can
significantly improve efficiency. Here, integer variables only appear in linear constraints.
The Gurobi solver is employed to effectively address this problem. Furthermore, the
relaxation method is also utilized in [25], where the system is modeled with differential
equations incorporated into constraints, and the direct Euler method is applied to discretize
these differential equations into linear equations due to constant parameters. Both BONMIN
and Gurobi solvers were deployed in this investigation, illustrating a comprehensive
approach to handling complex computational tasks.

The use of advanced dual derivation and reformulation methods in optimizing
water–energy systems significantly enhances the handling of complex optimization tasks
in mixed-integer nonlinear programming (MINLP). Techniques like the quasi-convex hull
method simplify these challenges by transforming non-convex constraints, improving
computational efficiency and solution feasibility. Despite progress, modeling accuracy and
system complexity remain as challenges. The integration of sophisticated solvers and ro-
bust optimization strategies continues to advance the management of supply and demand
uncertainties, driving towards more sustainable and reliable infrastructure solutions.

5.3. Stochastic Optimization

The deterministic and stochastic linear programming problems discussed in [19,29] were
effectively resolved using the general algebraic modeling system (GAMS) with the CPLEX
algorithm. CPLEX is adept at solving LP problems by employing a variety of algorithms, with
the dual simplex algorithm often being the most efficient for most LP scenarios. Depending
on the specific problem characteristics, alternative algorithms like the primal simplex, network
optimizer, barrier, or sieve algorithms may be utilized. CPLEX also offers a concurrent mode,
which leverages multiple algorithms simultaneously to solve problems, with the solution
from the fastest algorithm being adopted. One notable challenge in solving large linear
programming problems is the substantial memory requirement. Although CPLEX is designed
to manage memory efficiently, physical memory limitations can still pose issues, leading to
automatic adjustments that might compromise performance [132].

As computational resources continue to evolve, the efficiency of algorithms like CPLEX
is increasingly enhanced through improvements in parallel processing and memory manage-
ment techniques. These advancements allow for the handling of larger datasets and more
complex model formulations without compromising computational speed or accuracy. Fur-
thermore, ongoing developments in algorithmic strategies are aimed at reducing the memory
footprint and improving the scalability of solutions to accommodate the growing size and
complexity of linear programming problems in diverse fields such as logistics, finance, and
engineering. These enhancements ensure that modern solvers not only provide accurate
solutions but also adapt to the constraints of contemporary computing environments.
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5.4. Heuristic and Evolutionary Methods

These algorithms represent advanced techniques employed to derive approximate yet
feasible solutions for complex mathematical optimization problems, notably in domains such
as integrated planning of water and energy systems [122,133]. Inspired by natural processes
and competition, algorithms like evolutionary strategies [134], artificial bee colonies [135],
colonial competition [136], particle swarm optimization [137], and non-dominated genetic
classification [138] prove effective for such tasks. These techniques yield feasible and nearly
optimal solutions, beneficial for both original and reformulated problems aimed at optimizing
integrated energy and water systems. While traditional mathematical programming has its
merits, these heuristic techniques offer robust alternative solutions and support comprehensive
decision-making frameworks for energy and water system optimization [139].

The particle swarm optimization (PSO) metaheuristic algorithm, renowned for its
global optimization efficiency for both continuous and discrete variable problems, is em-
ployed to solve problems as indicated in [18,23]. PSO is celebrated for its simplicity, minimal
parameter tuning, and adaptability to constraints via penalty methods, yet it remains highly
sensitive to parameter settings [140]. The system’s design integration between TRNSYS®,
a dynamic simulation software ideal for handling complex systems through FORTRAN
subroutines, and GenOpt®, an optimization software that minimizes cost functions us-
ing external simulations, exemplifies a synergistic approach enhancing both simulation
and optimization [18]. This integrated approach not only optimizes computational re-
sources but also enhances the accuracy and efficiency of solving complex multi-variable
optimization problems.

NSGA-II, a prominent metaheuristic optimization algorithm, is utilized for multi-
objective optimization challenges, as demonstrated in [20]. An evolution from its predeces-
sor NSGA [141], NSGA-II incorporates improvements such as elitism and the elimination of
the need for a diversity-preserving sharing parameter, optimizing diversity via the crowd-
ing distance operator [142]. This makes NSGA-II not only computationally efficient but also
effectively addresses the limitations of the original NSGA, maintaining a computational
complexity of at most (MN2). The utilization of NSGA-II within MATLAB’s optimization
toolbox for co-generation system design illustrates its capacity to identify optimal solutions
efficiently, showcasing its viability for complex engineering applications.

6. Discussion and Future Perspectives

This section analyzes the prevalent methodologies in resource management and the
optimal planning of microgrids, emphasizing the elements that integrate an IWEM and the
inherent characteristics of the environment. As outlined in the problem formulation seg-
ment, the predominant approach involves mixed-integer nonlinear programming (MINLP).
This technique models microgrid components using nonlinear functions, such as pumps,
with binary variables indicating operational states and integer variables assigned for com-
ponent initiation or installation. Although some studies leverage linear programming due
to its simpler problem formulation, it remains instrumental in resource management, strate-
gic planning, and estimating system capacities. Additionally, it adeptly handles uncertain
parameters or distinct probability distributions, with processing speed contingent upon the
volume of parameter data and the designated planning horizon.

The linkage between management systems and water storage systems, such as elevated
tanks and reservoirs, with renewable energy sources like solar photovoltaic and wind power,
is vital for IWEMGs. This integration not only improves efficiency and sustainability but
also addresses resource management and strategic planning more holistically. These
systems provide reliable water and energy supplies, leveraging gravitational force for
efficient water distribution, and enhancing the overall sustainability of the system. This
synergy not only stabilizes the water supply but also integrates seamlessly with renewable
energy sources, making it an ideal solution for remote and isolated communities. The
combined use of both physical and simulated experimental platforms is essential for
advancing the efficiency and sustainability of IWEMGs.
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A prominent trend in solving optimization challenges within microgrids involves exact
methods, traditionally known as mathematical methods. These approaches are favored for
their capability to reliably secure global solutions for convex problems (linear or quadratic)
within a limited series of iterations. They achieve convergence without substantial reliance
on convergence constants. Moreover, the termination criteria of these methods provide an
optimality certificate by iteratively pinpointing exact or near-optimal solutions, gauging
the global disparity between the lower and upper bounds of the objective values. While
exact methods depend on the convex nature of mathematical properties for computationally
feasible solutions within polynomial time, they face limitations in addressing non-convex
(discrete/mixed-integer) challenges where computational demands may surge exponentially
in large-scale implementations. Nonetheless, the diverse models available for each component
of an integrated water and energy microgrid system (IWEMG) make these methods valuable
for strategic management and planning. The efficacy, benefits, and limitations of these
methods in the context of IWEMGs have been comprehensively documented.

To address intractable optimization issues, this paper introduces heuristic and evolu-
tionary methods. These approaches manage non-convexities (e.g., bilinear terms) through
practical reformulations, such as introducing binary auxiliary variables, facilitating the
discovery of global solutions akin to those obtained using non-heuristic, exact methods.
These strategies enable quicker convergence to optimal conditions within a finite num-
ber of iterations and are particularly effective for complex optimization challenges with
combinatorial elements, offering computationally efficient, approximate, or nearly optimal
solutions. However, when addressing scalable real-world scenarios, meticulous analysis
of mathematical properties is crucial to achieve tight bounds on target values for optimal
global convergence. Despite the feasibility of solutions derived from heuristic methods,
including metaheuristic techniques like evolutionary algorithms that methodically avoid
local optima, these approaches do not guarantee global optimization.

Additionally, the integration of game theory with intelligent agents is proposed as an
innovative framework for addressing management and planning challenges in IWEMGs.
This novel approach, although explored in limited studies, underscores the potential for
integrating advanced machine learning techniques and new computational methodologies
in optimizing IWEMG-specific issues, paving the way for future research and applications
in this field.

7. Conclusions

The analysis of methodologies in resource management and optimal planning within
microgrids predominantly relies on mixed-integer nonlinear programming (MINLP). This
method utilizes binary and integer variables to dynamically model microgrid elements,
demonstrating its effectiveness, especially when combined with linear programming. Al-
though linear programming offers less detailed formulations, it remains crucial for integrating
uncertain or probabilistic parameters, effectively managing resources and planning capacities.

Building on this foundation, exact methods enhance the modeling framework by lever-
aging the mathematical properties of convexity. These methods provide reliable solutions
for convex problems and effectively address non-convex issues, albeit potentially increasing
computational demands in large-scale scenarios. The comprehensive documentation and
widespread use of these methods in IWEMGs highlight their significant role in strategic
management and planning.

The transition from traditional to innovative approaches sees heuristic and evolu-
tionary strategies emerge as robust alternatives. These strategies adeptly manage non-
convexities through tactical reformulations, enabling the discovery of global solutions
and accelerating convergence to optimal conditions. Particularly beneficial for complex
tasks involving combinatorial elements, these strategies offer computationally efficient,
approximate, or near-optimal solutions. However, their practical application in real-world
scenarios requires rigorous analysis to ensure precision and swift global convergence,
maintaining the integrity of results across scalable projects.
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The introduction of game theory combined with intelligent agents marks a novel
progression in this field. This innovative strategy, explored preliminarily, opens potential
pathways for integrating advanced machine learning techniques and emerging computa-
tional methods into optimization processes tailored for IWEMGs. This forward-looking
approach promises to enhance the strategic capabilities of microgrid management and
planning, establishing a dynamic course for future research and practical applications.

Furthermore, the integration of water storage systems, such as elevated tanks and
reservoirs, with renewable energy sources like solar photovoltaic and wind power, presents
an interesting solution for IWEMGs. These systems provide reliable water and energy
supplies, reinforcing efficient water distribution and improving overall system sustainabil-
ity. This synergy and the water–energy nexus not only stabilize the water supply but also
seamlessly integrate with renewable energy sources, making it an ideal solution for remote
and isolated communities.

In summary, the integration of sophisticated modeling techniques, including MINLP,
exact methods, heuristic strategies, and game theory, forms a robust framework for the
efficient management and planning of IWEMGs. The combination of these methodologies
ensures a comprehensive approach to addressing the complexities of resource management
in microgrids, paving the way for future advancements in the field. As research progresses,
focusing on the integration of renewable energy sources and advanced computational
methods will be crucial for achieving sustainable and efficient microgrid systems.
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IWEMG Isolated water and energy microgrid
ZNIs Non-interconnected zones
WOS Web of Science
SCIE Science Citation Index Expanded
SSCI Social Sciences Citation Index
CPI-S Conference Proceedings Index Science
MIMO Multiple input, multiple output
EES Electrical energy storage
BESS Battery energy storage system
CAESS Compressed air ESS
TESS Thermal energy storage system
SMES Superconducting magnetic energy storage
MSF Multi-stage flash
ME Multiple effect
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VC Vapor compression
MVC Mechanical vapor compression
TVC Thermal vapor compression
RO Reverse osmosis
AWG Atmospheric water generator
RH Relative humidity
TEC Thermoelectric cooler
RES Renewable energy source
PEM Proton exchange membrane
EV Electric vehicle
DG Diesel generator
PVTs Voltaic/thermal panels
DS Desalination system
AC Absorption chiller
EC Electric chiller
TSS Thermal storage system
PEM Proton exchange membrane
MINLP Mixed-integer nonlinear programming
MILP Mixed-integer linear programming
LP Linear programming
C-OWPF Convex optimal water power flow
GAMS General algebraic modeling system
PSO Particle swarm optimization
NSGA-II Non-dominated sorting genetic algorithm II
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