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Abstract: Offshore wind farms are growing in complexity and size, expanding deeper into maritime
environments to capture stronger and steadier wind energy. Like other domains in the energy
sector, the wind energy domain is continuing to digitalize its systems by embracing Industry 4.0
technologies such as the Industrial Internet of Things (IIoT), virtualization, and edge computing
to monitor and manage its critical infrastructure remotely. Adopting these technologies creates
dynamic, scalable, and cost-effective data-acquisition systems. At the heart of these data-acquisition
systems is a communication network that facilitates data transfer between communicating nodes.
Given the challenges of configuring, managing, and troubleshooting large-scale communication
networks, this review paper explores the adoption of the state-of-the-art software-defined networking
(SDN) and network function virtualization (NFV) technologies in the design of next-generation
offshore wind farm IIoT–Edge communication networks. While SDN and NFV technologies present
a promising solution to address the challenges of these large-scale communication networks, this
paper discusses the SDN/NFV-related performance, security, reliability, and scalability concerns,
highlighting current mitigation strategies. Building on these mitigation strategies, the concept of
resilience (that is, the ability to recover from component failures, attacks, and service interruptions)
is given special attention. The paper highlights the self-X (self-configuring, self-healing, and self-
optimizing) approaches that build resilience in the software-defined IIoT–Edge communication
network architectures. These resilience approaches enable the network to autonomously adjust
its configuration, self-repair during stochastic failures, and optimize performance in response to
changing conditions. The paper concludes that resilient software-defined IIoT–Edge communication
networks will play a big role in guaranteeing seamless next-generation offshore wind farm operations
by facilitating critical, latency-sensitive data transfers.

Keywords: IIoT-Edge; software-defined networking; network function virtualization; ETSI AI-driven
autonomous networks; IEC61850; IEC61400-25; publish/subscribe; resilience; offshore wind farms

1. Introduction

As coastal nations move to maritime environments to harness stronger and more
consistent wind energy, there arises a need for improved remote monitoring, operation,
and maintenance. The intricacies of sea environments such as unpredictable weather
patterns and the long distance from shore make manual monitoring and maintenance a
logistical and economically draining challenge [1]. The offshore wind farm operations and
maintenance (O&M) personnel use data-acquisition systems to gather real-time data on crit-
ical infrastructure, promptly identifying and resolving issues like equipment malfunctions
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or suboptimal performance [2,3]. These data-acquisition systems help minimize prolonged
wind farm downtime and maintain peak efficiency in wind farms [4].

Embracing the digital era, the energy sector is undergoing a significant transformation
that will see next-generation offshore wind farms leverage the power of technologies from
the fourth industrial revolution (Industry 4.0) such as Industrial Internet of Things (IIoT),
edge computing, and virtualization to improve their data-acquisition systems. IIoT devices
installed on wind turbines and offshore digital substations monitor critical infrastructure
in real time. These sensors record wind speed, turbine rotation, temperature, vibration,
and electrical output. The data are then transmitted to control and protection systems,
enabling automatic adjustments such as altering turbine blade pitch for optimal wind
capture or shutting down turbines during severe weather conditions such as storms [5,6].

These large-scale, complex offshore wind farms generate big data from IIoT devices,
often managed by cloud services in an IoT/Cloud-based model, as described in [7]. The tra-
ditional IoT/Cloud model encounters challenges such as high latency, substantial data
transfer, storage subscription expenses, intricate scaling processes, bandwidth limitations,
and restricted connectivity [8]. To address this, edge computing is integrated into the design
of offshore wind farm data-acquisition systems, bringing storage and computing resources
nearer to the assets to improve efficiency [9,10]. Furthermore, software-based protection
and control systems are set to replace conventional hardware to centralize management
and enable remote monitoring, streamlining fault response, and maintaining wind farm
stability [11]. These virtual solutions allow for swift adaptations, upgrades, and new
features with minimal physical intervention, cutting down on wind farm downtime
and costs [12].

A high-performance, secure, reliable, and scalable communication network is needed
to facilitate critical, latency-sensitive data transfer between communicating nodes in the
data-acquisition system [13,14]. This communication network is implemented between
the wind turbines and an offshore platform (which houses the digital substation). High
performance ensures swift data transfer with minimal latency, crucial for real-time wind
farm monitoring [15]. Security is upheld through robust encryption and vigilant net-
work monitoring, protecting against unauthorized access and cyber threats. Reliability is
achieved with failover systems and durable infrastructure, enabling consistent operation
under adverse conditions [16]. Scalability allows for future expansion, accommodating
more turbines or increased data loads without compromising network integrity. Together,
these attributes ensure that the network can effectively support critical operations of the
offshore wind farm.

Over the years, communication networks have significantly improved, adopting new
network and service management strategies. Figure 1 shows the evolution of network
automation for network and service management from 1960, the launch year of the first
network, to 2050. Conventional communication networks have a distributed architecture
where each device is managed separately in a concept known as “siloed networking”. How-
ever, configuring, managing, and troubleshooting have become increasingly challenging
as communication networks expand. To address these challenges, researchers continue to
explore the concept of software-defined networking, where the control plane of the network
is decoupled from the data plane [17,18]. This transforms conventional communication
networks into programmable, software-defined, and centrally managed architectures, im-
proving network management and agility, streamlining the deployment of new services,
and reducing reliance on vendors [19,20]. These technologies enable more efficient data
traffic routing, improved system scalability, and greater flexibility in responding to dy-
namic network demands, all while potentially lowering operational costs and simplifying
maintenance procedures [21].
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Figure 1. The evolution of network automation for network and service management (1960 to 2050
and beyond).

While these software-defined, programmable networks present myriad benefits, they
face a new set of performance, security, reliability, and scalability challenges. To tackle
these challenges autonomously while ensuring that the industrial service level agreements
are met, organizations like the European Telecommunication Standards Institute (ETSI)
and the Open Network Foundation (ONF) have introduced the concept of intent-based
networking (IBN). IBN aligns network operations to meet the specific business goals or
“intents” of the application (in this case wind farm operation), both initially and for future
changes [22]. Intents are declarations of desired outcomes or operational states. These
intents are translated into network configurations and policies using an abstraction module.
IBNs continuously monitor the current state to ensure it aligns with the defined intents [23].
Future networks will use “AI-driven autonomous networking” concepts where an AI/ML
approach is deployed in the network to predict its behavior and suggest optimization
techniques to self-configure, self-heal, and self-optimize these networks. When performance
anomalies or security breaches occur, these AI-driven autonomous networks trigger self-
healing modules to correct faults without human intervention.

1.1. Significance and Contributions

The significance of this study lies in its potential to change the design and operation
of large-scale communication networks to the offshore wind farm application scenario.
This review addresses a critical gap in the literature concerning the adoption of SDN/NFV-
based architectures in the design of offshore wind farm Operational Technology (OT)
communication networks with stringent Quality of Service (QoS) requirements. The paper
serves as a guiding beacon for practitioners seeking to understand the latest advancements
in this communication network domain. Also, it provides researchers with valuable insights
to identify and pursue promising research streams. Subsequently, this review paper:

• Conducts a comprehensive review of how Industry 4.0, IIoT, Edge computing, and vir-
tualization technologies will be integrated into next-generation offshore wind farm
data-acquisition systems design,
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• Examines the performance, security, reliability, and scalability challenges of imple-
menting software-defined networking and network function virtualization in the
design of IIoT–Edge networks,

• Discusses approaches to mitigate the highlighted challenges and build resilience in
the next-generation offshore wind farm’s software-defined IIoT–Edge networks.

1.2. Organization of the Paper

The rest of the review paper is organized as follows: Section 2 explores the integration
of Industry 4.0 IIoT and Edge computing in the design of data-acquisition systems for next-
generation offshore wind farms. Further, Section 3 discusses the adoption of SDN and NFV
in the design of the communication network that facilitates critical, latency-sensitive data
transfer in the IIoT–Edge data-acquisition system. The performance, security, reliability,
and scalability concerns of SDN/NFV-based communication networks are addressed in
Section 4. Potential mitigation strategies and self-X network and service management
approaches to build resilience in this network are discussed in Section 5. The limitations of
the study are highlighted in Sections 6 and 7 concludes the paper.

2. Leveraging Industry 4.0 IIoT and Edge Computing in Next-Generation Offshore
Wind Farms Data-Acquisition System Design
2.1. Overview

IIoT devices facilitate proactive monitoring, condition-based maintenance, automation,
alerts, scheduling, forecasting, and predictive analysis, which help the O&M team in
decision-making [5,24]. Surveys by Mustafa et al. [25] and Wisser et al. [26] show that of the
total levelized cost of energy (LCOE) in a wind farm, 49% is attributed to the wind turbine
energy generation, 29% to O&M functions, 16% to auxiliary systems, and 6% to regular
financial costs. To reduce the 29% LCOE attributed to O&M functions, wind farm operators
are gradually adopting IEC 61400-25 [27] industry-grade Internet of Things (IIoT) devices
alongside other customized IIoT devices to monitor their critical infrastructure [28,29].
In turn, this significantly reduces the high O&M costs.

Some common commercial wind turbine monitoring platforms are Windmill Manager
(WebNMS), which supports condition-based wind turbine performance monitoring and
maintenance; Cloud-based IoT Solution (Qburst), which supports wind turbine parameter
monitoring, alerts, and calendar-based maintenance management; Digital WindFarm (Gen-
eral Electric), which supports maintenance strategies, reliability, and availability assessment;
EnOS™ Wind (Envision), which supports remote regional supervision and maintenance;
and MindSphere (Siemens AG innovation), which connects IIoT devices to a cloud plat-
form, harnessing big data from offshore wind farm data-acquisition systems and enhancing
operations through the creation of digital twins [30].

2.2. Industry 4.0 IIoT, Cloud, and Edge Computing for Next-Generation Offshore Wind Farms

IIoT devices, mounted on wind turbines within the wind farm, communicate with
each other to exchange environmental data and coordinate actions in the wind farm
to prevent damage or accidents. The interaction between wind turbines and remote
control centers is crucial for efficient operation and management. Key activities in this
interaction are (i) the transmission and reception of alarms, (ii) the initiation of service
requests, (iii) the adjustment of control parameters, and (iv) the collection of turbine status
and performance data [31]. The implementation of these IIoT devices for monitoring
and maintenance significantly enhances these processes and leads to several benefits for
wind farm operators, including the prevention of extended downtime, the reduction in
operation and maintenance (O&M) costs through the early identification of faults, and the
enhancement of real-time decision-making capabilities [32]. These improvements not only
provide direct financial benefits but also contribute to indirect economic advantages. To
quantify these benefits, Zhou et al. [33] developed a maintenance cost model that showed
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up to 75% reduction in annual maintenance costs and downtime ratio in wind power
equipment’s IIoT-enabled offshore wind farms.

An IIoT system comprises IIoT devices, a communication network, and cloud storage
servers (with advanced computation capabilities). Figure 2 illustrates the seven-layer
IoT World Forum Reference Model adapted from [34], which illustrates all the layers of
an IIoT system. The reference model layers are grouped into the Data-in-Motion (DIM)
module, which comprises Layer 1 to Layer 3, and the Data-at-Rest (DAR) module, which
comprises Layer 5 to Layer 7. For an offshore wind farm application scenario, the DIM
module comprises real-time, operational technology (OT), and event-based functions of
the offshore wind farm. Here, the functions and flow of data are based on the events of
the application domain. The DAR module consists of non-real-time business applications
implemented as software. Further, the module’s end users or applications run queries
on the data to capture only data relevant to their particular interests (predictive analytics,
forecasting, trends, and visualization).

1. Real-time (Event-based) 
    operations
2. Operational Technology

1. Non-Real-time (Query-   
    based) operations
2. Information Technology

Figure 2. The seven-layer Internet of Things World Forum reference model, adapted from [34] and
classified into Data-in-Motion (Layer 1 to Layer 3) and Data-at-rest (Layer 5 to Layer 7).

The IoT World Forum reference model layers are described as two modules DIM
and DAR:

Data-in-Motion (DIM) Module: The Data-in-Motion module comprises layer 1 to
layer 3. Layer 1 (Physical Devices and Controllers): Vibration, environmental, and op-
erational IIoT devices are mounted to monitor critical components in an offshore wind
farm [35]. Considering their application environment, these IIoT devices are ruggedized
to withstand harsh environmental conditions such as extreme temperatures, humidity,
vibrations, and exposure to dust and chemicals. They are periodically recalibrated to
provide precise and reliable data consistently over time. Layer 2 (Connectivity): The IIoT
devices send the digitized measurements through communication and processing units to
the edge computing platform [36]. Several wired and wireless technologies are deployed in
this layer to facilitate latency-sensitive data transfer within short and long ranges. The com-
munication technologies adopted at this layer are either wired (such as fiber optic cable,
ethernet copper cable, and coaxial cable) or wireless (such as NB-IoT, Wi-Fi, LoRA, LTE,
WiMax, Bluetooth, SigFox, NFC) solutions [37]. Layer 3 (Edge Computing): The measure-
ments are received at the edge computing layer, which provides advanced computing and
memory resources similar to those offered by a cloud but closer to the physical devices and
controllers in layer 1 [38].

Layer 4 (Data Accumulation): The layer stores and manages the big data obtained
from the physical devices and controllers in Layer 1. The offshore wind farm’s data-
acquisition system’s attributes are variety, which “refers to the different types of structured
and unstructured data such as text, sensor data, audio, video, and graph from heterogeneous data
sources” [39]; velocity, which “refers to how quickly the data can be analyzed to make decisions or
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to obtain useful analytic information in real-time” [40]; veracity, which refers to “the reliability
and insightfulness of data” [41], and volume, which “refers to the large amount of data that grows
continuously as more data is obtained from the IIoT devices mounted on the offshore wind farm’s
critical infrastructure” [40].

Data-at-Rest (DAR) Module: The data-at-rest (DAR) module comprises Layer 5
to Layer 7. Layer 5 (Data Abstraction): This layer aggregates the data and simplifies
how the underlying data are represented, abstracting the end users from unnecessary
background details of the heterogeneous data using object-oriented programming and other
database management tools [40,41]. Layer 6 (Application): This layer comprises software
applications built on the microservices architecture that performs monitoring, visualization,
predictive analytics, forecasting, trends, and control logic using application programming
interfaces to interact with the data stored in Layer 7 [39]. Layer 7 (Collaboration and
Processes): This is the business layer, where the business objectives, key performance
indicators (KPIs), and other requirements are defined [34].

Contemporary IIoT systems use the IoT–Cloud model, where IIoT devices collect
data from the critical infrastructure under observation and send them through a wide area
network (or the Internet) to the cloud instances [42]. Then, using query-based approaches,
the data stored in the cloud storage are accessed by the O&M team for visualization,
forecasting, pattern recognition, and predictive analytics. Regrettably, this IoT–Cloud
model faces several technical, operational, and regulation challenges [43]. The continued
proliferation of these IIoT devices creates a huge data influx, testing the resilience of the
communication infrastructure by increasing the bandwidth requirements [44]. As such,
the IoT–cloud model experiences a significant response time lag between the IIoT devices
sending data to the cloud instance, the cloud processing the data, and the response being
sent to the wind farm. This response time lag is further aggravated when the data are
sent over the Internet, which is a best-effort network [8,45]. Further, adding more devices
increases the task load at the central cloud infrastructure, causing scalability concerns [46].
Additionally, many cloud servers are located in different regions and adhere to diverse
data protection and privacy regulations [47]. As such, the model faces data sovereignty
and compliance issues.

Conversely, the IIoT–Edge model enables processing data near the IIoT devices,
thereby reducing latency, conserving bandwidth, bolstering reliability, and significantly
strengthening security. Cao et al. [2] conducted an experimental simulation to demon-
strate how leveraging edge computing technology in wind farm data-acquisition systems
design eases acquisition and makes its management more efficient and accurate. Further,
Zhang et al. [9] performed structural health monitoring on offshore wind turbine towers by
measuring the acceleration response, incorporating an edge-computing framework in its
data-acquisition system. Xu et al. [10] designed a multi-sensor edge computing architecture
to identify incipient short-circuits in wind turbine electrical generators. The results from
these empirical studies quantitatively demonstrate how processing data close to the wind
farm improves offshore wind farm operations. By enabling real-time data processing and
immediate response capabilities, edge computing enhances operational efficiency, improves
safety, and reduces maintenance costs [48]. These benefits are crucial for the sustainable
operation of wind farms and underscore the growing importance of integrating advanced
computational technologies in renewable energy systems.

Designing scalable IIoT–Edge data-acquisition systems using the publish/subscribe
model allows a form of asynchronous messaging where the publishers or data producers
are decoupled from the subscribers or data consumers [49]. In this model, publishers send
messages to a message broker, which stores messages in topics [50], and the subscribers
then subscribe to these topics. Depending on the requirements of the wind farm operator,
it is likely that they may add or remove publishers or subscribers from the IIoT–Edge
data-acquisition system illustrated in Figure 3. This model excels in scalability for wind
farms’ data-acquisition systems, as it allows the number of publishers to be changed
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without impacting the subscribers, due to its non-reliance on a 1:1 publisher-to-subscriber
mapping [46].
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Figure 3. Architecture of a next-generation offshore wind farm data-acquisition system leveraging
Industry 4.0 IIoT, Edge, and virtualization technologies using a publish/subscribe model.

There are key IoT protocols that support the publish/subscribe model for machine-
to-machine communication in industrial IoT environments. Elhadi et al. [51] quantify
the adoption of these IoT protocols at the IoT-cloud platform level with MQTT at 31%,
AMQP at 19%, COAP at 13%, and OPC-UA at 6%. The choice of IoT protocol emerges
as an important challenge for application developers who must choose one of the many
lightweight communication protocols for a resource-constrained environment: ISO 19464
Advanced Message Queueing Protocol (AMQP), also known as “Internet protocol for
business messaging” is an open standard lightweight message-based protocol that assists
cross-platform application communication. It supports the publish/subscribe model along-
side the request/respond model and the store-and-forward model [52,53]. The AMQP
supports asynchronous communication by connecting its brokers and applications in a star
design. Further, it integrates quality of service (QoS) features, requiring that all applications
know the broker’s URL. Unfortunately, AMQP requires more bandwidth resources than its
counterparts and may not be suitable in resource-constrained environments.

IBM’s OASIS standard Message Queueing Telemetry Transport (MQTT) is designed with a
small code footprint with minimal bandwidth requirements, making it suitable for deployment
in low-power, resource-constrained machine-to-machine communication scenarios [54,55].
Unlike AMQP, MQTT considers multiple QoS levels (such as QoS level 1: “fire-and-forget”; QoS
level 2: “at least once”; and QoS level 3: “exactly once”) [53]. Further, it is quite scalable and
finds applications in scenarios with several small, constrained devices with more reliability
requirements than speed [56]. Common examples of MQTT in offshore wind include the use
of the MQTT Sparkplug in optimizing SCADA implementations.

Internet Engineering Task Force (IETF) RFC-7252 Constrained Application Protocol
(CoAP) is a specialized User Datagram Protocol (UDP) web transfer protocol for use with
constrained nodes and constrained networks in industrial IoT environments such as advanced
metering in digital substations in the smart energy domain and building automation [7,51,57].
Some common commercial testbeds running CoAP are InterDigital oneMPOWER, ARM
mbed, and thethings.io.

IEC 62541 Open Platform Communication Unified Architecture (OPC-UA) is a
platform-independent, broker-less, service-oriented architecture that supports pub/sub
communication modes for time-sensitive networking and UDP multicast application
scenarios. In implementation, the publish and the subscribe servers are successfully
decoupled to realize point-to-multipoint transmission [58].
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Figure 3 illustrates a data-acquisition system designed in the IIoT–Edge computing
paradigm. In the figure, IIoT sensors are mounted to measure physical quantities on critical
infrastructure. These IIoT devices collect highly granular data at different sampling rates.
The data collected from the wind turbines is sent via sub-sea ethernet-based fiber optical
cables to the offshore hub (set to house a pico data center (PDC)). A cluster of x86 servers,
with diverse computing and memory capacities, are deployed within the PDC. Using
the server cluster applications, these computing and memory resources are clustered in a
unified server resource pool [32,59] and allocated to the Edge Computing Platform (ECP)
node, virtual Protection, Automation, and Control (vPAC) node, and other IT/OT systems
needed to facilitate wind farm operations.

Table 1 denotes the data transfer performance requirements and communication
modes for different offshore wind farm services. The communication direction is based on
the IT/OT architecture of the next-generation offshore wind farm data-acquisition system
illustrated in Figure 3. These offshore wind farm services are further described in the
following two data transfer scenarios:

IIoT-to-ECP node scenario: The IEC61400-25 wind turbine and metmast sensors collect
highly granular analog measurements at a 50Hz sampling rate and send them to a local data
acquisition module [2] within the wind turbine, as illustrated in Figure 3. This local data
acquisition module pre-processes these data and facilitates actuation through the local control
ensemble in the wind turbine. Further, it sends the sensor data through short-range ethernet-
based fiber optic patch cords to the nacelle switch [4]. The nacelle switch communicates with
the tower switch, sending the data as ethernet frames to the PDC switch network through
the multiplexed subsea fiber optic cable. The PDC switch network then relays the data to the
ECP node’s MQTT broker [60]. The sensor data received at the MQTT broker are stored in
different topics. In this design, it is inferred that some topics contain sub-topics. For instance,
the “/wind-turbine/temperature“ topic contains the subtopics “/wind-turbine/temperature/gear-oil/”,

“/wind-turbine/temperature/nacelle/“, “/wind-turbine/temperature/ambient/”, and others, structured
hierarchically for efficient data categorization and retrieval. In the ECP node, IoT apps
subscribe to the data in the topics using the Apache Kafka message streaming tool to
manage high subscription rates. Additionally, the cloud instance applications and the O&M
team (enterprise network) subscribe to these data through the wide area network.

IIoT-to-vPAC node scenario: Current and voltage sensors are mounted on critical elec-
trical components in the wind turbine to collect analog current and voltage measurements
at a 20 kHz sampling rate [12]. As illustrated in Figure 3, these current and voltage sensors
are connected to differential voltage probes and current clamps. The differential voltage
probe and the current clamp send the analog current and voltage measurements to merging
units (MU) using short-range ethernet-based fiber optic cables. The MU digitizes these
analog current and voltage measurements into IEC 61850-9-2 Sampled Values (SVs) — ac-
cording to the SV protocol, as described at https://www.typhoon-hil.com/documentation/
typhoon-hil-software-manual/References/iec_61850_sampled_values_protocol.html (ac-
cessed on 4 June 2024) — and then publishes them on the process bus network. At the
vPAC node, virtual intelligent electronic device (vIED) docker-based containers, designed
using relay technology, are configured and deployed in the docker engine. The Kalkitech’s
virtual protection relay (VPR) reference system affirms that using vIEDs in a dockerized
environment meets and exceeds the vIED to vIED performance and time requirements [11].
Additionally, the environment facilitates redundancy, resiliency through container migra-
tion, and ease of deployment [61]. These vIEDs subscribe to the SVs and process the data.
The vIEDs send the processed SVs to the disturbance recorder (a containerized or VM
instance) to determine the power quality by detecting transients or short-duration voltage
variations in the electrical network under observation. Additionally, these vIEDs exchange
IEC 61850 Generic Object-Oriented Substation Events (GOOSE) messages — according
to the GOOSE protocol, as described at https://www.typhoon-hil.com/documentation/
typhoon-hil-software-manual/References/iec_61850_goose_protocol.html (accessed on
4 June 2024) — with each other through a virtual switch and with external process-level

https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/References/iec_61850_sampled_values_protocol.html
https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/References/iec_61850_sampled_values_protocol.html
https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/References/iec_61850_goose_protocol.html
https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/References/iec_61850_goose_protocol.html
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equipment such as circuit breakers through the process bus network [62]. Lastly, these
vIEDs communicate with other station-level equipment by sending IEC 61850 Manufactur-
ing Message Specification (MMS) signals to the historian database in the enterprise network
or other energy management systems in the cloud control center.

Table 1. Offshore wind farm data communication parameters between the wind turbine generators
(WTG), the offshore hub-mounted pico datacenter components, and the Internet [20].

Service Communication Direction Priority Data Rate Latency Reliability Packet Loss Rate

Protection traffic WTG → vPAC 1 76,816 bytes/s 4 ms 99.999% <10−9

Analogue measurements WTG → vPAC/ECP 2 225,544 bytes/s 16 ms 99.999% <10−6

Status information WTG → ECP 2 58 bytes/s 16 ms 99.999% <10−6

Reporting and logging WTG → ECP 3 15 KB every 10 min 1 s 99.999% <10−6

Video surveillance WTG → ECP 4 250 kb/s–1.5 Mb/s 1 s 99% No specific requirement

Control traffic vPAC → WTG 1 20 kbs/per turbine 16 ms 99.999% <10−9

Data polling ECP/vPAC → WTG 2 2 KB every second 16 ms 99.999% <10−6

Internet connection Internet → WTG/ECP/vPAC 3 1 GB every two months 60 min 99% No specific requirement

3. Software-Defined Networking (SDN) and Network Function Virtualization (NFV) for
Next-Generation Offshore Wind Farms

Central to the next-generation offshore wind farm’s IIoT–Edge data-acquisition system
(shown in Figure 3) is a communication network that leverages SDN and NFV technologies
to facilitate critical, latency-sensitive data transfer [63,64]. There is a need to model robust
communication frameworks to guarantee seamless offshore wind farm operations [65].

Conventionally, wind farm developers source their networking equipment from one or
more vendors to support various network functions [66]. These communication networks,
referred to as traditional networks in this paper, run distributed architectures to support
industrial OT network operations. While these traditional networks have dominated the
current designs of large-scale communication networks in offshore wind farms and other
industrial OT networks, they face several technical and logistical challenges. These tradi-
tional network architectures incur huge cost implications and are quite complex to manage
when more devices, users, and network traffic volumes increase [67]. Further, configuring
and managing these networks involves individual-component manual configurations of
individual devices, increasing the risk of configuration errors as the network enlarges [68].
These networks face vendor lock-in for cases where the wind farm developer relies heavily
on proprietary hardware and software from a single vendor. Additionally, this vendor
lock-in limits innovation such that network administrators cannot customize the network
functionalities to suit their business intents outside the provisions of the vendor [69,70].
Given the siloed network management approach, there is limited global network visi-
bility and control; hence, it is challenging to troubleshoot issues or optimize network
resources [71]. Most importantly, these networks have a longer convergence time, referring
to the time the network takes to recover and resume normal operations after a fault such as
a link or a device failure [67]. Table 2 shows a feature-based comparison between the tradi-
tional communication networks and the software-defined networks. Figure 4 illustrates the
distributed architecture of the traditional networks against the centralized architecture of
the software-defined networks.
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Table 2. A feature-based comparison between the traditional communication networks and the
software-defined networks.

Features Traditional Networks Software-Defined Networks

Architectural Design Distributed design with control plane and data plane coupled in
a single device Centralized design with decoupled control plane and data plane

Programmability Non-programmable;
Difficult to replace existing program as per use

Programmable;
Easy to update existing program per use

Configuring and Managing Supports static and manual configuration
Difficult to troubleshoot and report in a distributed control design

Supports reactive/proactive automated configuration
Easy to troubleshoot and report in a centrally controlled design

Cost implications High CAPEX and OPEX High CAPEX and low OPEX

TRADITIONAL COMMUNICATION NETWORKS SOFTWARE-DEFINED NETWORKS

Centralized 
Control Plane

Data Plane

Data Plane

Control Plane

Figure 4. Comparing the traditional networks with the software-defined networks applicable to both
switch and router networks.

3.1. Leveraging Software-Defined Networking (SDNs) in the Design of IIoT–Edge Networks

The term “Software-defined networking” was coined by Kate Green in MIT Technology
Review in 2009 when describing the newly created OpenFlow specifications [72] as “a net-
working approach that utilizes software-based controllers or application programming interfaces
(APIs) to manage hardware infrastructure and direct network traffic”. Other researchers have
adopted the term to represent their ideas and work around OpenFlow [73–75]. Funda-
mentally, a software-defined network (SDN) decouples the control plane from the data
plane, making the network devices (in the data plane) programmable through standardized
application interfaces. It differs from traditional networks where the control and data
planes are bundled in a single device.

The control plane makes the forwarding decisions, packages them as flow instructions,
and sends them asynchronously to the data plane that comprises ethernet switches known
as forwarding devices (FDs) [75,76]. These FDs forward the packet from source to desti-
nation. Figure 5 illustrates the SDN architecture, comprising four planes: (i) data plane,
(ii) control plane, (iii) application plane, and (iv) management plane [18,77]:

Data Plane: The data plane, at the bottom of the architecture, comprises the FDs that
forward ethernet packets or frames from source to destination. These FDs in the data
plane rely on the controllers in the control plane to determine their forwarding behavior.
As such, the data plane FDs interact with the control plane’s controllers via the Southbound
Interface (SBI) using the OpenFlow protocol [73]. At the SBI, the other protocols used
besides OpenFlow protocol are Open vSwitch Database (OVSB) [78], Protocol-Oblivious
Forwarding (POF) [79], CISCO OpFLEX [80], OpenState [81], Revised Open-Flow Library
(ROFL) [80], Hardware Abstraction Layer (HAL) [73], programmable abstraction of data
path (PAD) [82], and Forwarding and Control Element Separation (ForCES) [83].

Control Plane: To ensure that the control plane is not a single point of failure in the
architecture, (n + 1) controllers are deployed as either a flat distributed peer-to-peer or a
hierarchical-based cluster. They communicate with each other, sharing the network state of
the FDs in the data plane under their administrative domain through an east/westbound
interface [80,84]. The controller’s core functions include, but are not limited to, manag-
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ing the network topology, link discovery, collecting network-based statistics, managing
queues, and traffic flow [85]. Currently, there exists a wide array of SDN controllers such
as OpenDayLight (ODL) [86], Open Network Operating System (ONOS) [87], Python-
based SDN Openflow eXperimentation platform (POX) [88], Floodlight [89], Network
Operating System (NOX) [90], Ryu [91], Beacon [92], Maestro [92], Iris [93], MUL [84],
Runox [84], SEL-5056 SDN flow controller [94], and Lib-Fluid [84]. These SDN controllers
are designed using different programming languages (JAVA, C++, Python), are compatible
with different SBI and NBI application programming interfaces (APIs), are developed by
different industry partners, and can be used in different application scenarios (see Table 3).
Isong et al. [95] categorize common SDN controllers (both open-source and proprietary)
as (i) physically centralized (NOX, NOX-MT, POX, Maestro, Ryu, Floodlight, and Beacon),
(ii) physically flat-distributed (ONIX, HyperFlow, OpenDayLight, ONOS, DISCO), (iii)
physically hierarchically distributed (Kandoo, Orion, D-SDN, B4, Espresso), (iv) logically
centralized (POX, Ryu, ONIX, SMaRtLight, HyperFlow, Ravana, OpenDayLight, ONOS,
B4, SWAN, Espresso), and logically distributed (DISCO, D-SDN, Cardigan, SDX, ISDX,
ToulX, AtlanticWave).
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Figure 5. Software-defined networking (SDN) architecture, where SDNC is the SDN controller at the
control plane and FD is the forwarding device at the data plane.

Application Plane: The application plane hosts Representational State Transfer (REST)-
based network applications and services such as network monitoring and analytics, security
and compliance, load balancing, and traffic engineering that monitor the network’s quality
of service metrics [96,97]. The control plane’s controllers interact with these REST-based
applications via the Northbound Interface (NBI) using the RESTCONF protocol [98,99]. Other
techniques used at the NBI are RESTful APIs, OpenFlow v1.3-1.5, NETCONF, Google Remote
Procedure Call (gRPC), and custom APIs and protocols.
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Management Plane: The management plane allows the network administrators to
securely (via Secure Shell (SSH) or Telnet) access the application plane or control plane
directly to make policy and flow modifications as and when necessary.

Unlike traditional networks, vendor-agnostic SDN technology is increasingly being
adopted in the design of industrial networks with several benefits. Decoupling the control
plane from the data plane provides dynamic centralized control as the controllers deployed
in the control plane have a global view of the network [73]. Further, with a global view,
the controller can quickly detect faults in links and devices in the data plane and send
alerts to the network administrator or autonomous applications running in the application
plane [99]. Configuration and traffic engineering tasks can be automated, facilitating a
simpler configuration and management approach that can be rolled back [80]. The network
is programmable, giving the network administrators leverage to modify their networks to
meet their customized intents and achieve the industrial service level agreements (SLA)
or key performance indicators of the network [18]. There is reduced vendor lock-in as
SDN can effortlessly manage a heterogeneous data plane comprising devices from different
vendors [77]. Lastly, and most importantly, SDN achieves faster convergence times (of up
to 100 µs) than traditional networks (10–30 ms) because it can rapidly reconfigure network
paths and forwarding behavior in response to faults or changes in network conditions [67].

Table 3. Comparison of open-source SDN controllers based on common architectural and operational
design features.

Sources Controller Organization Programming Language Open Source Flow/Second Modularity Productivity Consistency Fault Architecture

[85,87] ONOS ON.Lab Java Yes 1M High Fair Weak - Strong Yes Flat-distributed

[86] OpenDayLight Linux Foundation Java Yes 106K High Fair Weak No Flat-distributed

[89] Floodlight Big Switch Network Java Yes - Fair Fair No No Centralized
Multi-threaded

[73] ONIX Nicira Networks C
Python Yes 2.2M Fair Fair Strong Yes Distributed

[92] Beacon Stanford University Java Yes 12.8M Fair Fair No No Centralized
Multithreaded

[77,100] Hyperflow University of Toronto C++ 30K Fair Fair Weak Yes Distributed

[84,85] Maestro Rice University Java Yes 4.8M Fair Fair No No Centralized
Multithreaded

[84] OpenMUL KulCloud C Yes Fair Fair No No Centralized
Multithreaded

[91] RYU NTT Python Yes Fair Fair No No Centralized
Multithreaded

[88] POX Nicira Python Yes 1.8M Low Fair No No Centralized

[90] NOX Nicira Python Yes 1.8M Low Fair No No Centralized

Choosing the best-suited SDN controller (as listed in Table 3) to deploy at the con-
trol plane has proven challenging for researchers and network administrators. Several
empirical studies used proof-of-concept simulation environments and OpenFlow Protocol
Layer frameworks, such as Cbench, to evaluate SDN controllers based on network per-
formance benchmark metrics such as latency, jitter, throughput, and packet loss. To be
specific, Cbench is a stress-testing tool from the OpenFlow Protocol Layer for Investigating
Performance of SDN (OFLIPS) framework, PktBlaster and OFNet [101]. These frameworks
and tools were used to compare the SDN controllers based on the following benchmarks.

For the latency and response time benchmark: Experimental studies evaluate the
time it takes for each SDN controller to process and respond to the network requests.
Salman et al. [84] ranked the Maestro SDN controller as the best performer, having
compared it against a wider array of SDN controllers, namely ODL, Floodlight, Beacon,
Maestro, IRIS, Ryu, POX, NOX, ONOS, MUL, and Libfluid-based controllers. Khat-
tak et al. [86] observed that ODL, despite experiencing memory leakages, had a shorter
response time than Floodlight. Mamushiane et al. [102] observed that Ryu and ODL out-
performed the ONOS and Floodlight SDN controllers. Islam et al. [103] compared Ryu,
POX, ONOS, and Floodlight in an emulated Mininet–Wifi simulation wireless network.
An analysis of the four SDN controllers revealed notable differences in performance.
Floodlight exhibited superior performance compared to the others, showcasing the low-
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est delay and jitter. Conversely, Ryu displayed the poorest results in jitter tests, while
ONOS exhibited the worst delay performance. Moreover, all controllers performed
similarly well in throughput tests. Lastly, Zhu et al. [101] qualitatively compared nine
SDN controllers, finding that multi-threaded and centralized (Floodlight, OpenMUL,
Beacon, Maestro) and distributed (e.g., ODL, ONOS) SDN controllers outperformed the
centralized and single-threaded ones (e.g., NOX, POX, Ryu).

For the throughput benchmark: Experimental studies have assessed the SDN con-
troller’s ability to efficiently handle and manage data traffic. According to Salman et al. [84],
MUL and Libfluid-based SDN controllers outperformed ODL, Floodlight, Beacon, Maestro,
IRIS, Ryu, POX, NOX, and ONOS. Further, Mamushiane et al. [102] and Singh et al. [104]
observed that Ryu and ONOS outperformed ODL and Floodlight.

For the architectural and network load benchmark: Controllers have four key ar-
chitectural features: multicore support, switch partitioning, packet batching, and packet
processing. Shah et al. [92] compared four leading open-source SDN controllers (NOX, Bea-
con, Maestro, and Floodlight), analyzing their architectural designs. They concluded that
controllers aiming for high throughput should use static switch partitioning and packet
backing. Controllers focused on delay-sensitive applications should employ adaptive
packet and task batching to minimize per-packet latencies. Additionally, sending each
control message individually can further enhance latency performance. Further, Row-
shanrad et al. [97] compared ODL against Floodlight using the Mininet emulator and
concluded with a 95% confidence interval that ODL outperforms Floodlight in low-loaded
networks and tree topologies in mid-loaded networks in terms of latency. However, they
also concluded that Floodlight can outperform ODL in heavily loaded networks for tree
topologies in terms of packet loss and linear topologies in terms of latency.

For the scalability benchmark: Mamushiane et al. [102] observed that ONOS outper-
formed ODL, Ryu, and Floodlight and were affected by increased workloads. They also
noted that SDN controller placement affects performance across various network topolo-
gies. Currently, researchers are experimenting with customized SDN controllers specific to
certain applications. Zhu et al. [85] propose deploying customized SDN controllers that
can accommodate protocol interpreters for IoT application scenarios.

Drawing upon the findings of the experimental studies discussed, the choice of an SDN
controller should be contingent upon specific application requirements, given the diverse
advantages and disadvantages observed among the SDN controllers evaluated. This
necessitates the careful consideration of trade-offs to align with the intended application
environment’s operational demands and performance expectations.

3.2. Leveraging Network Functions Virtualization (NFV) in the Design of IIoT–Edge Networks

According to the ETSI, Network Function Virtualization (NFV) transforms network
services that are traditionally implemented as hardware-based appliances [105] into Virtual
Network Functions (VNF) deployed as Virtual Machines (VMs) or containers. NFV tackles
the challenge of hardware-based appliances nearing their end of life due to accelerated
technology and innovation [105,106]. Hardware-based appliances such as firewalls, load
balancers, Virtual Private Network (VPN) gateways, Deep Packet Inspection (DPI), Session
Border Controllers (SBC), carrier-grade Network Address Translator (NAT), Quality of
Experience (QoE) monitor, and Wide Area Network (WAN) acceleration are hosted on
standard industrial server hardware [105,107]. There are several benefits of adopting ETSI
NFV in the IIoT–Edge network:

• Cost Reduction: Capital and operational expenses are reduced with reduced hardware-
based appliance deployment and reduced power consumption.

• Scalability and Flexibility: It facilitates dynamic scaling of VNF VMs or container
instances to meet the demand. Further, these VMs and containers can be instanti-
ated, decommissioned, or migrated providing flexibility to accommodate changes in
network traffic volumes and patterns.
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• Efficient Resource Utilization: NFV VMs and containers optimize resource utilization
by consolidating multiple functions onto shared industrial server hardware [108]. Fur-
ther, these VM and container instances’ resource utilization is managed by Kubernetes
or other proprietary or open-source orchestrators.

• Service Innovation: NFV enables the rapid introduction and deployment of network
services. The VNFs can be developed, tested, and deployed in the Continuous Inte-
gration/Continuous Delivery (CI/CD) approach, reducing the time-to-market of new
services and features.

• Resilience and Redundancy: Several VNF instances are deployed on industry-grade
servers in multiple locations enabled with automated failover and redundancy mecha-
nisms for load balancing and high availability.

• Vendor-Agnostic: Wind farm operators can deploy the VNFs from multiple vendors
in their OT networks. This reduces vendor lock-in challenges and fosters competition
among the vendors, driving innovation and significantly reducing costs.

3.3. SDN/NFV-Based Architectures for Industrial OT Networks

SDN and ETSI NFV are complementary technologies capable of providing one net-
work solution suited for industrial applications that need constant customization and
innovation [20,71,109]. Figure 6 illustrates a software-defined IIoT–Edge network, taking
the case of the Anholt offshore wind farm. The Anholt wind farm is a large offshore wind
farm with an installed capacity of 400 MW. The offshore wind farm has 111 Siemens SWP
3.6-120 wind turbines with a generation capacity of 3.6 MW each. Orsted Wind Power,
Denmark, operates this offshore wind farm. Each wind turbine has an access network with
a nacelle switch and a tower switch. This results in ≥222 Ethernet switches distributed
across the wind farm. These switches handle local data aggregation and transmission.
Each tower switch within a wind turbine is connected to the PDC via sub-sea fiber optic
cables. This setup ensures robust, high-speed data communication between the distributed
wind turbines and the central data-processing hub. Additionally, onsite operations and
maintenance (O&M) personnel utilize access points for Internet access, facilitating real-time
monitoring and control. The offshore hub-mounted PDC is supported by n additional Eth-
ernet switches, strategically deployed to manage and route the substantial data flow from
the wind turbines to the PDC. Considering all components, a minimum of 250 Ethernet
switches are involved in forming the IIoT–Edge network for the wind farm. Within the
PDC, NFV instances supplement network functions and enhance the security, efficiency,
and management of the network.

These SDN/NFV-based architectures are anticipated to be progressively integrated
into industrial OT networks due to their multifaceted advantages summarized into four
pillars (interoperability, efficiency, cost-benefit assessment, and security), as shown in
Figure 7. These architectures demonstrate a robust capability for interoperability with
legacy systems, ensuring seamless integration without necessitating extensive overhauls.
This capability enables a gradual phase-out or complete overhaul of legacy systems without
significant disruptions. However, the integration of SDN/NFV-based architectures can be
challenging due to the legacy infrastructure commonly found in industrial environments,
which may not be compatible with SDN protocols and architectures. Novel designs must
ensure that the new SDN/NFV systems can seamlessly integrate with the existing network
of 250 Ethernet switches and various NFV instances, thus maintaining continuity and
operational efficiency.

Further, they facilitate the customization and configuration of advanced traffic en-
gineering methodologies, which enhance network efficiency and ensure adherence to
stipulated QoS requirements. Efficiency is highlighted as a major advantage, with SDN
enabling path optimization to reduce latency and increase data transmission speed. In the
context of a wind farm, this translates to real-time and rapid response time applications,
which are essential for managing the vast amounts of data generated by 111 wind turbines.
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Enhanced efficiency ensures that the network can handle high data loads more effectively,
improving the overall operational performance.
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Figure 6. Software-defined IIoT–Edge network for next-generation offshore wind farm data-
acquisition system (see Figure 3) connecting wind turbine generator access network (nacelle and
tower access switches) to the pico data center ethernet switches.

Figure 7. Considerations for adopting software-defined networking for industrial OT networks.

The SDN/NFV solutions are recognized for their cost-effectiveness, offering a fi-
nancially viable alternative to traditional network management approaches. SDN/NFV
adoption leads to reduced operational expenditure (OPEX) with one-off capital expendi-
ture (CAPEX). This reduction in costs comes from minimizing manual reconfigurations
and physical interventions, which are often time-consuming and costly. The automa-
tion of redundant tasks, such as those managed by the PDC in the wind farm, further
reduces downtime and troubleshooting efforts, leading to significant cost savings and
increased productivity.

Lastly, these architectures allow for the implementation of specialized security poli-
cies, thereby maintaining the integrity and security of the network. Security is a critical
benefit of SDN, as it isolates network segments and controls data flows based on real-time
analysis. This capability allows the network to quickly respond to security threats or
anomalies. For industrial OT networks, such as the described wind farm, this means that
sensitive data and critical infrastructure are better protected against cyber-attacks. The de-
ployment of NFV instances within the PDC and enhances the overall security posture,
ensuring that robust defense mechanisms are in place. Collectively, these attributes under-
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score the potential of SDN/NFV-based architectures to significantly optimize industrial
OT networks.

SDN/NFV-based architectures are still being researched, with most studies reviewing
their interdependence and potential application scenarios. Several SDN/NFV-based archi-
tectures are designed for cyber-physical energy systems. Gjermundrod et al. [110] propose a
“Gridstat” communication middleware framework based on a publisher–subscriber model
to address the wide-area network-level limitations and achieve the timely and robust deliv-
ery of updates. Sakic et al. [21] proposed a middleware communication framework that
deploys a software-defined network/network function virtualization (SDN/NFV)-based
framework for the inter- and intra-domain management of wind park communication
networks in the EU H2020 project “VirtuWind”. Zopellaro et al. [111] reviewed SDN
controllers for SDN protection and control systems, describing the role that SDN plays in
transmitting delay-sensitive electrical messages such as the IEC 61850 GOOSE and SV in
digital substations. Al Mhdawi et al. [19] designed a micro cloud-software-defined network
testbed for onshore wind farm network recovery.

4. Performance, Security, Reliability, and Scalability Challenges of Software-Defined
IIoT–Edge Networks

This section addresses the performance, security, reliability, and scalability challenges
that hinder the implementation of software-defined IIoT–Edge networks in offshore wind
farms’ data acquisition systems.

4.1. Performance Concerns

There is a need to model highly performing communication networks considering
the criticality of offshore wind farm operations being dependent on data flowing through
the data-acquisition system. The software-defined IIoT–Edge communication network
performance is evaluated using metrics such as throughput, which measures the amount of
data successfully transferred from source to destination; latency, which measures the time
a packet travels from source to destination; packet loss, which measures the percentage
of packets that are sent but do not reach their destination; bandwidth utilization, which
measures how efficiently the network’s bandwidth capacity is used; and QoS compliance,
which evaluates how well the network supports the differentiated handling of packets to
meet the requirements of the wind farm operator [100,112].

A highly performing network maximizes the throughput, QoS compliance, and band-
width utilization and minimizes the latency and packet loss [113–115]. These software-
defined IIoT–Edge communication networks must meet the industry SLAs as denoted in
Table 1. To enhance performance, the implementation of redundancy strategies and failover
mechanisms is essential to handle potential network failures without disrupting the wind
farm operations. This involves deploying multiple SDN controllers and links to ensure
that there is no single point of failure, thus maintaining continuous service availability and
performance integrity.

Several standards are explored to assess the performance of such networks in offshore
wind farms and other smart grids. Wang et al. [116] assess the end-to-end communication
delay between communication devices in machine-to-machine communication application
scenarios highlighting standards such as IEEE 1646 (communication delivery times within
and external to an electrical substation), IEEE C37.1 (for wide-area situational awareness
network performance in SCADA and automation systems), IEEE 1379 (communication
protocol stack mapping for substation network functionality), and IEC 61850-5 (application
recovery delay for substation bus communication) [65].

4.2. Security Concerns

Adopting software-defined IIoT–Edge networks exposes the critical wind farm infras-
tructure to cyber threats. Cyber threats (a potential risk of exploiting a vulnerability) and
attacks (an act of exploiting a vulnerability) can either be passive or active depending on
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the objective of the intruder [117–119]. Cyber-attacks (i) allow the intruder to gain unautho-
rized access to data (passive attack) [120], (ii) modify data (such as electricity market data by
adjusting dynamic prices, energy consumption data, vPAC and ECP node data, etc.) (active
attack) [121], and (iii) trigger a loss of control over the energy system through the distributed
denial of service (DDoS) attack (active attack) [122]. The intruders who develop methods
to exploit vulnerabilities in this communication network are motivated by (i) financial,
(ii) espionage, (iii) disruption, (iv) political, and (v) retaliation reasons [120,123,124]. In the
last decade, several significant cyber incidents (in Europe and worldwide) have resulted in
financial losses to the tune of millions of euros and a loss of electricity services to consumers
for prolonged periods [125]. For example in April 2022, a large-scale communication
network serving nearly 2000 wind turbines in Germany was targeted and compromised,
paralyzing wind farm operations [126].

Intruders mainly gain access to industrial OT networks through the wide area network
or the point of connection to the IT systems. These intruders collect sensitive information
through phishing attacks, corrupted hyperlinks, and email attachments [126] and create
malicious payload in Figure 8’s ISA/IEC62443 Industrial Control System cyber kill chain
Reconnaissance (planning) and Weaponization (preparation) stages [127,128]. For instance,
intruders may gain unauthorized access to data at data centers or during transit, such as in
man-in-the-middle (MiM) attacks. While some attackers only access data without altering
them, others may modify data both in motion and at rest. They can disrupt the management
plane and switch access to the SDN controller by flooding it with requests, depleting its
memory and computing resources. Attackers may run recursive scripts on the controller
to overwhelm its resources. By studying the TTL of flow entries on switches, attackers
can divert traffic at the data plane. They may infiltrate switches to change flows, poison
caches, and delete records. By impersonating authorized users or resources, attackers
can disguise data packets, making it difficult to distinguish original data from counterfeit
packets. Additionally, they may access applications hosting the communication framework
to launch denial-of-service attacks or modify operations.

Figure 8. ISA/IEC62443 Industrial Control System Cyber-kill chain adapted from [126,127].

Next, these intruders deliver the malicious payload into the OT network and exploit
vulnerabilities in the Delivery and Exploitation stages. Thereafter, they run the malicious
software (mostly in the background to avoid detection) to collect data on the wind farm
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operations in the Installation stage. Next, the intruders take control of the offshore wind
farm data-acquisition system and cause damage by sending corrupted data to protec-
tion, automation, and control units in the Command and Control (C2) stage. Ultimately,
this leads to partial or complete wind farm downtime and denies remote access to the
O&M personnel.

To address the rising cybersecurity concern in this software-defined IIoT–Edge net-
work, robust security policies, rules, and intrusion-detection models are adopted in both
DIM and DAR modules. Presekal et al. [122] develop an attack graph model for cyber-
physical power systems using hybrid deep learning to mitigate cyber threats on a digital
substation level. Further, Mohan et al. [129] discuss the impact of a DDoS attack on the
communication network for a load frequency control case scenario in power systems.
From these two studies, novel attack models are developed to deal with cyber threats
directed to the network domain (see data plane in Figure 5) of the IoT platforms in smart
grids. Other vulnerability points besides the network domain are software domain and
access domain vulnerabilities in the control and application plane [130].

4.3. Reliability Concerns

Like traditional communication networks, the software-defined IIoT–Edge network
encounters stochastic disruptions, resulting in intermittent network service interrup-
tions [131,132]. The reliability of the software-defined IIoT–Edge network addresses
architectural robustness, failover mechanisms, and performance under stress conditions.
Given that these networks are deployed in extreme environments with unpredictable
weather, there is a need to deploy ruggedized equipment that can withstand the harsh
conditions of the offshore environment.

Failures can occur at various levels, including the data plane (like switches and
routers), the control plane (controller software or the applications running on it), and the
data links connecting different network elements [100]. The impact of such failures is
magnified in offshore wind farms due to their remote locations, harsh operating conditions,
and the critical nature of the operations they support, which include safety systems, power
generation monitoring, and environmental controls. Fast failover mechanisms are crucial
in SDN to ensure that the network services remain uninterrupted during and after failures.
SDN controllers can pre-compute alternate paths in the network, which can be quickly
activated in the event of a failure [133]. This proactive approach significantly reduces the
recovery time compared to traditional methods. Several reliability metrics are used to
evaluate how well a network performs over time [134,135], such as Failure rate, which mea-
sures the frequency with which a network component or service fails; Availability, which
measures the percentage of time that the network is operational and available for use; Mean
time between failures (MTBF), which measures the average time between inherent system
failures during operation; and Mean time to repair (MTTR), which measures the average
time required to repair a failed network component and restore it to operational status.

Industrial communication networks adhere to industrial SLAs. For example, the de-
sired communication network availability is 99.999% (5 nines), which implies only 5 min
of downtime in a year [136]. In practice, the network performance and availability are
constantly affected, and, as a result, more advanced fast failover recovery methods are
studied to tackle the availability issues by defining reliability or failure models and making
inferences from the model results to determine the availability [137].

4.4. Scalability Concerns

The SDN controller is often viewed as a central point of failure for the software-defined
IIoT–Edge network. n SDN controllers are deployed to create redundancy and improve
flow initialization computation rates. These SDN controllers are connected through East–
West interfaces to form a cluster, as illustrated in Figure 5. In practice, the SDN controller
software instances are shipped as karaf containers. This software instance runs on a virtual
machine with sufficient CPU and memory resources. These CPU and memory resources
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must be constantly monitored to ensure that they do not exceed a stipulated threshold
above which the performance and overall health of the SDN controller are degraded [48].

Furthermore, the SDN controller placement problem (CPP) has been of critical concern,
especially in designing large-scale networks where deploying a single network is not
feasible [95]. Studies solve the CPP by modeling approaches that deploy the optimal
number of controllers within a network while meeting certain performance requirements.
Studies by Saleh et al. [138], Lu et al. [139], Aly et al. [140], and Singh et al. [141] explore
heuristic and optimization algorithms to determine the ideal number of SDN controllers
for a given network size and the optimal placement in proximity to the FDs and other
SDN controllers.

Furthermore, the SDN controller must manage communication with a potentially
vast number of switches and other network devices, which can become a bottleneck
as the network grows. Scalability concerns also extend to the software layers, where
the controller’s ability to process and respond to network events in real time is vital.
To address this, SDN architectures may employ distributed controllers, hierarchical de-
signs, or clustering techniques to enhance scalability [142]. On the positive side, the pro-
grammability of SDN enables dynamic resource allocation and network adjustments,
allowing for elastic scalability that can accommodate variable workloads and changing
network topologies [143].

5. Building Resilience in Software-Defined IIoT–Edge Networks

This section reviews the resilience approaches and the self-X autonomous network
management framework proposed in the literature to build resilience and adapt these
approaches to suit software-defined IIoT–Edge networks.

5.1. Resilience in Software-Defined IIoT–Edge Networks

Madni et al. [144] developed a conceptual system recovery curve that illustrates the
system’s performance before disruption and during disruption and the gradual rise to
recovery, as illustrated in Figure 9. The system performance is denoted as, y(t), with respect
to the operational time, [0, t). Before the disruption, the system performs optimally at
y(t) = y(r f ). At the time tD, the system encounters disruptions that lower the performance
to the minimum acceptable levels, ym. At this point, recovery mechanisms and strategies
are initiated to help restore the system to full recovery (y(r f )) or partial recovery (y(rp))
at the time tR. Lastly, the time between disruption and full or partial recovery is given
as ∆t = (tR − tD). Averaging samples of ∆t over time yields the mean time to recovery
(MTTR). Poulin et al. [131] advanced this resilience curve using normalized performance
metrics and the well-known Weibull distribution bath curve to demonstrate disruption
and recovery.

Figure 9. An illustration of a system’s capacity to recover from disruptions within time [0, t) [144].
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To build resilience in the system recovery curve specifically for a communication
network, two conditions must be met: (i) the performance must not reach or exceed the
maximum drop in performance point, y(m), to meet the industrial SLAs, and (ii) the time to
recover from disruption, ∆t, must not exceed the stipulated industrial MTTR.

To meet this objective, several approaches are taken to address the disruptions, min-
imizing the drop in performance and the time taken to recover from the disruption to
improve overall resilience:

Redundancy and load balancing: The first approach is to build redundancy in the
communication network. This ensures that the failure of a controller or forwarding device
does not interrupt network service. Further, with data links, the EtherChannel link aggre-
gation technique is used in this network [145]. The technology bundles together several
physical cables running between two forwarding devices into a single logical link. Lastly,
using load balancers (as physical or network function virtualization instances) enables the
even distribution of traffic across multiple paths to prevent congestion and single points
of failure [146].

Fault detection, failover, and recovery: Application-plane-customized RestAPI ap-
plications, alongside flow monitoring tools such as NetFlow, sFlow, or IPFIX, are used to
collect flow statistics, analyze traffic patterns, and detect anomalies indicative of faults.
These applications monitor device responsiveness, detecting unreachable devices or those
performing suboptimally. Fast failure recovery within a fixed time interval is needed to
support network services [70]. Gyllstrom et al. [147] designed a link failure detection and
reporting mechanism that uses OpenFlow to detect link failures within the data plane
network topology. To facilitate failover and recovery, [147] formulated the “MULTICAST
RECYCLING” algorithm that precomputes backup multicast trees to recover from link
failure. Further, Petale et al. [148] proposed a new scheme, the Group Table Rerouting
(GTR) technique, to find the response against single link failure through the fast fail-over
(FF) group table feature provided by OpenFlow. Lastly, Miura et al. [149] introduced a
fast failure recovery mechanism based on multiple routing configuration algorithms using
programming protocol-independent packet processors (P4).

Traffic engineering and QoS policies: The SDN controller, with a global view of
the entire network, analyzes the network traffic patterns and makes decisions about how
to route traffic based on real-time conditions [100]. In practice, the network engineer
defines the traffic engineering policies based on the industrial SLAs or business objectives
(“intents”) for traffic prioritization or path optimization. These intents are translated into
flow rules that the SDN controller can implement in the network. Additionally, QoS policies
specify resource allocation, for example, bandwidth allocation, latency requirements, packet
loss tolerance, etc., for different types of traffic or applications. QoS-related policies are
configured in the SDN controller to enforce policies by applying the appropriate QoS
treatment for each QoS class [150]. Guo et al. [151] developed a reinforcement learning (RL)
traffic engineering method that trains a traffic-splitting RL agent to address the dynamically
changing traffic and achieve link load balancing. Further, Keshari et al. [152] highlighted
the implementation of QoS features in different open-source SDN controllers such as ONOS
(Java-based SetQueueInstruction functionality), ODL-Lithium (Southbound plugin for the
DOCSIS infrastructure), and the Floodlight Northbound interface (which runs the module
QueuePusher), which generates messages for queue configurations to Create, Read, Update,
and Delete flows in the openflow-enabled switches flow tables.

Network isolation and segmentation: This highlights crucial techniques adopted to
divide the network into multiple segments or zones defining security and traffic engineering
policies for each zone [153]. It reduces the attack surface because attackers may gain access
to one zone and not the other zones, making it significantly harder to attack the entire
network. This contains the security breach and prevents it from spreading to other areas
of the communication network. Additionally, the network performance is improved by
limiting broadcast traffic to specific segments and enhancing fault tolerance by isolating
failures [154]. The SDN controller defines the network segments using virtual local area
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networks (VLANs) to segregate the network traffic. Using RESTAPI-based applications
running in the application plane, the SDN controller can implement access control lists
(ACLs) and flow rules that enforce the isolation between segments.

5.2. Autonomous Networks: Self-X Network Management

Given the growing complexity of offshore wind farm networks, strict security and
performance demands, and the difficult accessibility of the offshore environment, it is es-
sential for network engineers to adopt automation and intelligence for network and service
management. This shift from manual, reactive resilience measures to proactive, automated
strategies will significantly improve operational resilience, performance, and scalability.

According to the ETSI ZSM standard group, “An autonomous network (AN) is a net-
work that self-operates according to the business goals with no human intervention beyond the
initial supply of input (e.g., intent, goals, policies, certain configuration data) by the human opera-
tor” [155,156]. The ultimate goal in network automation is to develop networks that can
operate independently, guided by high-level policies set by the provider or user. These
autonomous networks can configure, monitor, heal, and optimize themselves without
human input [157–159]. Achieving this necessitates the creation of a new architectural
framework that supports closed-loop control and is tailored for applying data-driven AI
algorithms [160]. These autonomous networks define self-X network and service man-
agement properties such as self-configuration, “this property relates to the autonomic
capability of the AN to configure and govern any parameters or settings which relate
to functions, services, or assets that make up or relate to that autonomous network”;
self-healing, and self-repair, AN’s ability to fix anomalies after detecting them and to get back
to normal fully operational mode through a process of automated steps”; and self-awareness,
“cognitive-like awareness regarding several dimensions such as context information, time, SLAs,
KPIs, environments” [23,161,162].

Figure 10 illustrates an autonomous software-defined IIoT–Edge network for an off-
shore wind farm application. In the design and implementation of the network, high-level
policies such as specific performance metrics, security policies, and traffic engineering rules
are defined as business goals [157,163]. These business goals, formulated by the O&M
team, are translated into intents that guide the autonomous operation of the network using
an abstraction module [158]. The network implements a monitoring feature at the appli-
cation plane to collect data on network performance traffic flows, device status, and link
status. The network uses a custom-based machine learning (ML) model to recommend
configuration changes or take corrective actions in the “observe-orient-decide-act” cycle (see
the application plane in Figure 10) [164–167].

In this “observe-orient-decide-act” cycle, the network-monitoring module reads the
network state and stores it in a knowledge base (such as Redis or Hadoop). Further,
it forwards the network state to the predictive analytics module for visualization and
forecasting purposes. The recommender module accesses the network state stored in the
knowledge base, which formulates traffic engineering functions to manage resources on
the network, guaranteeing network performance and availability.

To make the network fully autonomous, the AI/ML decision-maker module uses
model-based and model-free reinforcement learning approaches to assist the recommender
module in optimizing traffic routing and anomaly detection to respond to security threats or
failures. Further, the AI/ML decision-maker module updates the knowledge base with data
for future use [168,169]. These modules provide feedback to the network administrators on
the impact of the high-level policies on the network, enabling them to decide how to effect
the changes.
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Figure 10. A self-managing software-defined IIoT–Edge network tailored for next-generation offshore
wind farms (see Figure 6) by incorporating the European Telecommunication Standards Institute
(ETSI) zero-touch network and service management framework [156].

Several studies have explored reinforcement learning approaches to realize autonomous
software-defined networks across different use cases. These RL strategies deploy single or
multi-agents at the application plane to interact directly with the system, learn, and create
optimal policies to meet the stipulated intents. For example, Dake et al. [170] developed a
“multi-agent deep deterministic policy gradient (MA-DDPG)” framework that facilitates tran-
sient load (traffic burst, elephant flow, and mice flow) detection and prevention in SDN-IoT
networks. The framework uses two RL agents, where one agent ensures efficient multipath
routing optimization while the other agent ensures malicious DDoS traffic detection and
prevention. Passito et al. [171] developed “AgNOS,” an agent-based framework for the
autonomous control of software-defined networks to address the arduous task of handling
the total distribution of control between autonomous systems. The framework uses agents
to mitigate DDoS attacks on several autonomous systems. Further, Yao et al. [172] de-
signed “NetworkAI”, an intelligent network architecture for self-learning control strategies
in software-defined networks. Hu et al. [173] developed “EARS”, an intelligent, experi-
ential network architecture utilizing deep reinforcement learning (DRL) for autonomous
routing in software-defined networks. The DRL strategy integrates a closed-loop control
system with network monitoring technologies to manage network environments plagued
by link congestion and inefficient bandwidth distribution across flows. Lastly, Casas-
Velasco et al. [174] proposed “Reinforcement Learning and Software Defined Networking for
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Intelligent Routing (RSIR)”, a novel approach to SDN routing that uses a knowledge plane
to monitor the network, gather link-state data, and identify optimal paths for intelligent
routing amidst traffic fluctuations. While still a subject of ongoing research, the frameworks
proposed by [170–174] incur significant computational costs during training, complicating
the creation of an optimal AI/ML decision-maker module. Additionally, security is a major
concern in developing and deploying autonomous systems. Managing the extensive data
and network parameters knowledge base also presents challenges, particularly due to the
rapid rate at which the network monitoring module samples data.

Leveraging the power of AI and ML, these frameworks can autonomously manage
and optimize network traffic and proactively address the performance, security, reliabil-
ity, and scalability challenges before they impact network operations. Integrating such
technologies into SDNs transforms traditional networking infrastructures into intelligent,
self-optimizing systems that significantly enhance operational efficiency and reliability.
This paradigm shift toward intelligent networks is crucial for handling the increasing
complexity and scale of modern network demands, ultimately paving the way for more
resilient networking architectures.

6. Limitations of the Study

While this paper provides a comprehensive review of IIoT–Edge networks and their
potential for transforming next-generation offshore wind farms, there are several limitations
to note. The study does not delve into the ongoing standardization efforts aimed at readying
SDN/NFV solutions for widespread adoption in offshore wind farms and other industrial
OT networks. Furthermore, it does not consider the change-management requirements
critical for adopting these innovative technologies. Resistance to change and the need
for extensive testing and validation to ensure the reliability and safety of OT systems
for mission-critical applications are significant factors that could slow down the adoption
process. Addressing these areas would offer a more holistic understanding of the challenges
and readiness of SDN/NFV technologies in industrial applications.

7. Conclusions and Future Work

This review paper has explored the state of the art in IIoT–Edge networks for high-
availability, consistent-performance-demanding environments like the next-generation
offshore wind farms, or “wind farms of tomorrow”. The paper illustrated how Industry
4.0 technologies such as IIoT, Edge computing, and virtualization are integrated into
the design of offshore wind farm data acquisition systems. The paper, then examined
key protocols involved in transmitting data within these systems that support offshore
wind farm operations. Although traditional communication networks could facilitate data
transfer in next-generation offshore wind farms, they come with significant drawbacks:
high deployment costs, complex management at scale, difficulty in configuration and
maintenance due to their distributed nature, and vendor lock-in that hampers innovation
and customization.

This paper discussed two pivotal technologies—SDN (software-defined network-
ing) and NFV (network function virtualization)—that will revolutionize IIoT–Edge data-
acquisition systems by making networks more software-defined, programmable, and vendor-
neutral. Unlike traditional networks, SDN/NFV-based networks facilitate dynamic, cen-
tralized control, allowing network administrators to rapidly diagnose and rectify faults,
as well as to adapt the network to meet specific business intents, objectives, or industrial
service-level agreements. Moreover, these networks boast significantly faster convergence
times, achieving rates of 100 µs, compared to the 10–30 ms typical of traditional networks.

Despite their potential, software-defined IIoT–Edge networks face performance, re-
liability, security, and scalability challenges that may impede their implementation. This
review has addressed these challenges and highlighted various mitigation strategies such
as redundancy and load balancing, fault detection and recovery, traffic engineering with
Quality of Service (QoS) policies, network isolation, and segmentation. Finally, the paper
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reviewed AI-driven self-X (self-configuring, self-healing, and self-optimizing) approaches
that not only autonomously manage and optimize network traffic but also proactively
tackle performance, security, reliability, and scalability challenges before they affect oper-
ations. This development is increasingly vital for addressing the complex and growing
demands of software-defined IIoT–Edge networks, suggesting a pivotal direction for future
research in creating more resilient networking architectures. These strategies are vital for
fostering robust, reliable, and high-performing software-defined IIoT–Edge networks that
can fully support the sophisticated requirements of next-generation offshore wind farms.

As a main advantage, software-defined networks provide dynamic reconfiguration
capabilities, allowing the communication network to adapt to changing conditions and
demands in real time. Such flexibility will have a crucial role in supporting the anticipated
developments in offshore renewable energy systems, consisting of (multiple) large-scale
wind farms and other renewable energy generation technologies (e.g., wave and floating
solar photovoltaic power), offshore electrolyzers, electricity and hydrogen storage systems,
etc. The deployment of software-defined IIoT–Edge networks to facilitate a more resilient
and adaptable cyber-physical energy system that includes heterogeneous energy conver-
sion, storage, and transport technologies in a harsh offshore environment represents a
promising future research direction.
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