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Abstract: Ensuring the accuracy of wind power prediction is paramount for the reliable and stable op-
eration of power systems. This study introduces a novel approach aimed at enhancing the precision of
wind power prediction through the development of a multiscale hybrid model. This model integrates
advanced methodologies including Improved Intrinsic Mode Function with Ensemble Empirical
Mode Decomposition with Adaptive Noise (ICEEMDAN), permutation entropy (PE), Least Squares
Support Vector Regression (LSSVR), Regularized Extreme Learning Machine (RELM), multi-head
attention (MHA), and Bidirectional Gated Recurrent Unit (BiGRU). Firstly, the ICEEMDAN technique
is employed to decompose the non-stationary raw wind power data into multiple relatively stable
sub-modes, while concurrently utilizing PE to assess the complexity of each sub-mode. Secondly, the
dataset is reconstituted into three distinct components as follows: high-frequency, mid-frequency,
and low-frequency, to alleviate data complexity. Following this, the LSSVR, RELM, and MHA-BiGRU
models are individually applied to predict the high-, mid-, and low-frequency components, respec-
tively. Thirdly, the parameters of the low-frequency prediction model are optimized utilizing the
Dung Beetle Optimizer (DBO) algorithm. Ultimately, the predicted results of each component are
aggregated to derive the final prediction. The empirical findings illustrate the exceptional predictive
performance of the multiscale hybrid model incorporating LSSVR, RELM, and MHA-BiGRU. In
comparison with other benchmark models, the proposed model exhibits a reduction in Root Mean
Squared Error (RMSE) values of over 10%, conclusively affirming its superior predictive accuracy.

Keywords: BiGRU; ICEEMDAN; LSSVR; multi-head attention mechanism; RELM; wind power
prediction

1. Introduction

Wind energy is an environmentally friendly and economically viable form of renew-
able energy. According to the Global Wind Energy Council (GWEC)’s Global Wind Report
2023, global onshore wind power capacity is projected to exceed 100 GW for the first
time by 2024 [1]. However, wind energy data exhibit significant randomness and non-
stationarity, which has a substantial impact on the stable operation of power systems.
Therefore, accurate prediction of wind power is crucial [2–4].

Currently, wind energy forecasting methods are mainly divided into physical models,
statistical models, and artificial intelligence models [5]. Physical models primarily consider
various sources of geographical information, essentially based on Numerical Weather Pre-
diction (NWP) [6] and high-precision wind farm simulation strategies. This approach has
been widely applied in countries such as Spain, Denmark, and Germany, with examples
including the SOWIE model developed by Eurowind in Germany [7] and a wind sequence
correction algorithm based on NWP proposed by Wang et al. [8]. These algorithms utilize
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large amounts of data to calculate accurate and reliable wind power predictions. However,
because of the large data scale, physical models suffer from slow computational speed and
low efficiency and are affected by adverse wind farm conditions, making reliable data col-
lection difficult. Statistical methods, on the other hand, do not consider external conditions
such as geography or electrical factors. Their core principle uses the relationships between
historical wind power data for prediction in order to improve prediction efficiency [9].
Classical models such as Moving Average (MA) [10] and Autoregressive Integrated Moving
Average (ARIMA) [11] are based on modeling linear relationships among data. However,
when facing complex patterns, these methods suffer from issues of low prediction accuracy
and poor performance.

In comparison with the aforementioned approaches, artificial intelligence models
have exhibited increasingly remarkable performance in the domain of wind energy predic-
tion. Methods such as Support Vector Regression (SVR) [12], Extreme Learning Machine
(ELM) [13], and Gated Recurrent Unit (GRU) [14] have yielded significant accomplishments
in wind energy prediction research. However, because of the considerable prediction
errors commonly associated with individual models, hybrid prediction models have gained
widespread adoption in recent years. Presently, hybrid models primarily encompass the
following three facets: data preprocessing, optimization algorithm tuning, and the predic-
tion of single or combined models. Wang et al. [15] optimized the input weights of ELM
using genetic algorithms, whereas Zhai, Ma, and Tan [16,17] utilized the Artificial Fish
Swarm Algorithm and Salp Swarm Algorithm to optimize the initial input weights and
thresholds of ELM. Their outcomes indicate that these models manifest high prediction
accuracy. In recent years, the wind power prediction domain has begun embracing deep
learning models such as Long Short-Term Memory (LSTM) [18,19], Temporal Convolu-
tional Neural Network (TCN), and Bidirectional Gated Recurrent Unit (BiGRU) [20]. These
models and their derivatives have emerged as principal tools in this sphere. Scholars like W.
Wang proposed a prediction methodology based on the fusion of TCN and Light Gradient
Boosting Machine (LightGBM) [21]. Researchers such as Chi [22] integrated the attention
mechanism into the BiGRU-TCN hybrid model and employed wavelet denoising (WT)
processed raw data for prediction. Experimental results corroborate the robust predictive
capability of this model. Presently, researchers generally favor hybrid models grounded in
intelligent algorithms. Zhang et al. [23] proposed a sparse search algorithm (SSA) to opti-
mize the TCN-BiGRU model and employed the Variational Mode Decomposition (VMD)
algorithm to decompose data, thereby mitigating the non-stationarity of wind power data.
Ablation experiments demonstrated that this model achieved heightened prediction accu-
racy compared with scenarios where the SSA algorithm was not employed for parameter
optimization. The research by the aforementioned scholars underscores that hybrid models,
predicated on algorithmic parameter optimization, can further enhance model prediction
accuracy.

Wind power data are inherently characterized by randomness and non-stationarity,
necessitating data preprocessing to mitigate prediction errors effectively. To address this,
scholars have proposed methodologies grounded in signal decomposition for model for-
mulation. For instance, Gao et al. [24] introduced a composite model combining Empirical
Mode Decomposition (EMD) with GRU for prediction tasks. However, the EMD algorithm
encounters notable challenges such as mode mixing when confronted with gapped signals.
In response, scholars have advocated for the incorporation of uniformly distributed white
noise into EMD, manifesting as Ensemble Empirical Mode Decomposition (EEMD) and
Complementary Ensemble Empirical Mode Decomposition (CEEMD). This technique has
found widespread adoption within the prediction domain. For instance, Torres et al. [25]
argued that inadequate decomposition processing frequencies may lead to the persistence
of white noise’s influence and the emergence of pseudo-mode phenomena. Consequently,
they proposed Complementary Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN), effectively mitigating residual white noise’s impact. Addressing resid-
ual noise and pseudo-mode concerns further, Colominas et al. [26] introduced Improved
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Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEM-
DAN), demonstrating heightened reconstruction accuracy for components and enhanced
suitability for nonlinear signal analysis.

In summary, several limitations persist within the realm of wind power prediction.
Firstly, prevalent approaches tend to employ single-scale prediction models for all decom-
posed sub-modes, overlooking the distinctive characteristics of sub-modes across varying
frequencies. Secondly, contemporary artificial intelligence prediction methods often en-
counter challenges in parameter optimization, resulting in high trial and error costs. Lastly,
some conventional optimization algorithms exhibit insufficient optimization capabilities
and sluggish convergence speeds. Therefore, this paper advocates for a multi-faceted
approach by merging data decomposition techniques with multiple models and harnessing
the Differential Bees Optimization algorithm (DBO) [27]. This strategy rectifies the exist-
ing wind power model shortcomings by addressing deficiencies in sub-mode prediction
methods, parameter optimization, and scale singularity.

The main contributions of this paper are as follows:

(1) This paper proposed a multiscale wind power prediction hybrid model combining
data decomposition, LSSVR, RELM, and MHA-BiGRU.

(2) This paper introduced the ICEEMDAN and PE methods to process the original wind
energy series. These methods can effectively address mode mixing and residual noise,
thereby better handling the nonlinear and non-stationary characteristics of wind
power series.

(3) This paper introduced the multi-head attention mechanism in the prediction of low-
frequency signals, utilizing its strong ability to capture inter-data correlations. Com-
bined with the BiGRU model, this mechanism avoids information loss.

(4) This paper introduced the DBO optimization algorithm to optimize four parameters
including the learning rate, the number of BiGRU neurons, the number of heads in
multi-head attention, and the number of filters and regularization parameters. This
addresses the limitations and arbitrariness of manual tuning when the MHA-BiGRU
model has too many parameters.

(5) This paper considered the characteristics of information in different frequency bands,
used different applicable models, and summed up the results to achieve multiscale
hybrid prediction. This overcomes the limitation of insufficient prediction accuracy of
a single model.

2. Methods
2.1. Intrinsic Combined Ensemble Empirical Mode Decomposition with Adaptive Noise

Empirical Mode Decomposition (EMD), proposed by Huang et al. in 1998, is a signal
processing method suitable for nonlinear and non-stationary processes.

To overcome the limitations of EMD, Colominas et al. further improved CEEMDAN
by introducing the Iterative Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (ICEEMDAN) method. The core of this signal decomposition method
lies in selecting the Kth IMF component of the white noise decomposed by EMD as the
auxiliary noise. Through multiple iterations of noise addition and decomposition, ICEEM-
DAN comprehensively addresses the randomness and non-stationarity of data, thereby
enhancing the stability and reliability of the final decomposition results and reducing the
residual noise generated during reconstruction. The computational process is as follows:

1. Based on the original wind power signal s, construct a new sequence si by adding i
groups of white noise ωi to s, resulting in the first group of residues R1.

si = s + α0E1(ω
i), R1 =

〈
M(si)

〉
(1)

In Equation (1), Ek(·) represents the k-th mode component generated by EMD de-
composition, M(·) represents the local mean of the signal generated by the EMD
algorithm, and ⟨·⟩ represents the overall mean.
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2. Calculate the first mode component IIMF1 = s − R1 iteratively to obtain the k-th group
of residues Rk and mode component IIMFk.

Rk =
〈

M(Rk−1 + αk−1Ek(ω
i))

〉
(2)

IIMFk = Rk−1 − Rk (3)

In Equation (2), αk can be expressed as αk =

{
ε0std(λ)/std(E1(ω

i)), λ = s
ε0std(λ), λ = Rk, k = 1, 2, · · · , K

.

3. Repeat step 2 until the calculation is complete to obtain all wind power sequence
mode components and the final residue.

2.2. Permutation Entroy

The PE (permutation entropy) algorithm, introduced by Bandt et al., is a method
for characterizing the complexity of time series. Its core principle lies in assessing the
irregularity in a time series through the examination of permutation patterns within its
subsequences. A higher entropy value signifies greater complexity within the time series,
whereas a lower value indicates a higher degree of regularity. Applied to the model
proposed in this paper, the algorithmic formula is as follows:

1. Consider a wind power generation sequence X = {x(i), i = 1, 2, · · · , k}, where i
represent the number one of the wind power sequence.

2. Perform phase space reconstruction on the time series, resulting in a reconstruction
matrix Z with a given dimension m and time delay τ.

ZT = [z(1) z(2) · · · Z(k − (m − 1)τ)] (4)

In Equation (4), z(j) = {x(j), x(j + τ), · · · , x(j + (m − 1)τ)}.
3. Sort the elements of z(j) in ascending order and record the sequence of elements in

each row of the reconstruction matrix. Calculate the probability of occurrence for each
element sequence to obtain p1, p2, · · · pq.

4. Define the permutation entropy of wind power sequence X as:

H(m) = −∑q
k=1 Pk ln Pk (5)

In Equation (5), Pk represents the probability of each element size relationship permu-
tation in the reconstruction matrix Z, m is the given dimension, k is the number of
subsequences, and q is the total number of elements.

2.3. Bidirectional Gated Recurrent Unit

GRU (Gated Recurrent Unit) is an enhanced version of the Long Short-Term Memory
(LSTM) network within the domain of recurrent neural networks. It is tailored to capture
long-term dependencies within sequential data while boasting fewer parameters than
LSTM, thereby mitigating computational costs. The core principle involves amalgamating
the forget gate and input gate into a unified update gate. Through the management
of information flow and state updates, it effectively reduces the parameter count and
computational overhead. The model’s architectural depiction is presented in Figure 1, and
the computational formulas are as follows:

zt = σ(Wz · [ht−1, xt]) (6)

rt = σ(Wr · [ht−1, xt]) (7)

ĥt = tanh(W · [rt ⊙ ht−1, xt]) (8)

ht = (1 − zt)⊙ ηt−1 + zk ⊙ ĥt (9)
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Figure 1. Structure of the GRU cell.

In Equations (6)–(9), zt represents the update gate and rt, xt, ht, and ĥt represent the
reset gate, current time step input information, new cell vector, and hidden state vector,
respectively. Wz, Wr, and W represent the weight matrices.

Because of the strong temporal characteristics inherent in wind power load data, infor-
mation corresponding to both the previous time step (t − 1) and the current time step (t + 1)
significantly impact the prediction results at time t during model training. Consequently,
the GRU model fails to fully exploit the inherent information within wind power sequences.
In contrast, the Bidirectional Recurrent Neural Network (BiGRU) model addresses this
limitation by utilizing both past and future data to enhance prediction accuracy. This
effectively overcomes the drawback of low data information utilization observed in the
GRU network. Comprising two GRU models, BiGRU possesses the capability to capture
bidirectional dependencies within sequential data, thereby enabling it to adapt to more
complex sequence patterns. The network structure is visually depicted in Figure 2.
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2.4. Multi-Head Attention

The attention mechanism (AM) is a computational method for the efficient allocation
of information resources, prioritizing more crucial tasks to effectively mitigate information
overload. In AM, input information is represented by key vectors (keys) and value vectors
(values), while target information is represented by query vectors (queries). The weights of
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the value vectors are determined based on the similarity between the query vector and the
key vector.

Following this, the final attention values are computed by aggregating the weighted
value vectors. The fundamental formula is as follows:

Satt = W × V (10)

W = f unc(Q, K) (11)

In Equations (10) and (11), Satt is the attention value, Q represents the query vector,
K represents the key vector in the key–value pairs, V represents the value vector in the
key–value pairs, W represents the weight corresponding to V, and f unc(·) is the weight
transformation function.

The multi-head attention mechanism originates from the Transformer [20] model. Its
core principle involves mapping query, key, and value vectors to multiple spaces through
distinct linear transformations, followed by calculating the scaled dot-product attention.
The computational formula is as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
· V (12)

In Equation (12), dk represents the dimensionality of the keys, which is used to scale
the dot product to prevent the issue of gradient vanishing.

Subsequently, vectors Q, K, and V of dimensionality d are transformed into single
vectors of dimensionality d/n using different weight matrices WQ

i , Ki, and Qi. Here, n
denotes the number of parallel layers or heads, and these individual vectors are input into
corresponding parallel attention layers. Finally, the outputs of each layer are concatenated
and fused together using a linear layer to amalgamate all head output results.

As depicted in the multi-head attention section in Figure 3, in our model, we harness
the powerful capability of the multi-head attention mechanism to capture diverse temporal
scale features in time series, thereby predicting wind power sequences. The mathematical
computation formula is as follows:

MHA(Q, K, V) = Concat(head1, head2, · · · , headn)WO (13)

Qi = QWQ
i

Ki = KWK
i i = 1, 2, · · · , n

Vi = VWV
i

(14)

In Equations (13) and (14), WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , WV
i ∈ Rd×dv , WO ∈ Rndv×d,

and dk = dv = d/n.
The multi-head attention architecture facilitates leveraging the complexity in input

sequences and capturing long-range dependencies, thereby enhancing prediction accuracy.
In this study, to mitigate overfitting, the model training employs Mean Squared Error (MSE)
as the loss function and utilizes the Adam optimizer for parameter updates.

2.5. MHA-Bidirectional Gated Recurrent Unit

Although BiGRU performs effectively in handling wind power sequences, it lacks
the ability to parallelize data processing, resulting in information overload and reduced
computational efficiency when dealing with large datasets. To address this limitation, this
study combines BiGRU with the multi-head attention mechanism (MHA), as depicted in
Figure 3. This integrated model architecture effectively resolves the aforementioned issue.
The core process involves utilizing the data trained through the BiGRU hidden layers as
input for the MHA network. The decomposed Q, K, and V obtained are then fed into each
head for attention value computation. Subsequently, the different results outputted from
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each channel are feature-weighted and concatenated through a connection layer to form
the sequence.
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2.6. DBO-MHA-Bidirectional Gated Recurrent Unit

The Dung Beetle Optimizer (DBO) optimization algorithm, introduces a novel swarm
intelligence optimization approach. Its primary principle involves simulating five distinct
behaviors observed in dung beetles, including rolling, dancing, foraging, stealing, and
reproducing, to address optimization problems. Leveraging the DBO algorithm, the MHA-
BiGRU model undergoes optimization of parameters such as the learning rate, the number
of BiGRU neurons, the number of attention heads, the filter count, and regularization
parameters. This optimization ensures the model’s convergence, with the objective of
minimizing the loss function. The optimization formula is as follows:

f = min(train_loss(e_s, h_s, n_l, l_r, epoch)) (15)

In Equation (15), e_s, h_s, n_l, l_r, and epoch represent the number of attention heads,
the filter count, the MHA-BiGRU model layers, the learning rate, and the regularization
parameter, respectively. train_loss denotes the loss function during the training process.

2.7. Least Squares Support Vector Regression

Least Squares Support Vector Regression (LSSVR), proposed by Vapnik in the early
1990s, is a statistical learning method known for its fast training speed, good generalization
performance, and strong ability to fit nonlinear functions.

It particularly excels in handling high-frequency signals, as its core algorithm trans-
forms the solution of a convex quadratic optimization problem into solving a system of
linear equations. Consequently, LSSVR requires fewer parameters to train compared with
SVR, resulting in faster training speed.

Suppose there is a training set {(xi, yi)}n
i=1, where xi ∈ Rd represents the input and

yi ∈ R represents the output. The model calculation formula is as follows:

f (x) = wTϕ(x) + b =
n

∑
i=1

αiκ(xi, x) + b (16)
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In Equation (16), w =
n
∑

i=1
αiϕ(xi), w represents the weight vector, ϕ(·) denotes the

non-linear mapping from the input space to the high-dimensional feature space, αi stands
for the Lagrange multiplier, κ(xi, x) is the kernel function, and b is the bias term.

2.8. Regularized Extreme Learning Machine

Extreme Learning Machine (ELM) [28] is a machine learning algorithm proposed
by Professor Huang from Nanyang Technological University in 2004. Its distinguishing
feature is a single hidden layer feedback neural network. It can be transformed into
solving the generalized inverse problem of the M-P matrix by simply adding a least squares
minimum norm problem. Consequently, ELM has fewer model parameters and boasts a
fast training speed. It demonstrates excellent capability in handling medium-frequency
sequence information.

Consider a wind power sequence set (Xi, ti), where the model input is denoted by
Xi = [xi1, xi2, · · · , xin]

T and the model output by ti = [ti1, ti2, · · · , tin]
T . Then, an ELM

network with L hidden layer nodes can be defined as:

L

∑
i=1

βi × g(ωi · xj + bi) = oj , j = 1, 2, · · · , N (17)

In Equation (17), g(·) represents the activation function, ωi denotes the connection
weights between the output layer and the hidden layer, βi signifies the output weights
between the hidden layer and the output layer, bi stands for the bias of the i-th hidden
unit, and oj represents the network output. The calculation formula used to minimize the
output error is as follows: min

β
∥Hβ − T∥F, where H denotes the hidden layer output and T

represents the expected output.
To improve the model’s generalization performance, a regularization parameter λ

is introduced to solve β, effectively addressing numerical instability issues when com-
puting the pseudo-inverse of H. The computation process of the RELM model, utilizing
a regularized least squares method to solve β, is mathematically expressed as follows:
min

β
∥Hβ − T∥F + (1/λ) · ∥β∥F.

2.9. Composition of the Proposed Model

Drawing from the aforementioned methodologies, this study introduces a multiscale
hybrid wind power prediction model that integrates ICEEMDAN signal decomposition,
permutation entropy (PE) reconstruction, and LSSVR-RELM-MHA-BiGRU. The model
parameters are optimized using the DBO optimization algorithm. The overall model work-
flow, as depicted in Figure 4, is further elucidated with detailed step-by-step explanations
as follows:

Step 1: ICEEMDAN decomposes the original wind power data into multiple Intrinsic
Mode Function (IMF) components and a residual R. Using permutation entropy (PE), all
IMF components are reconstructed to reduce computational complexity. Subsequently, the
reconstructed components are categorized into high-frequency, medium-frequency, and
low-frequency components based on their PE values.

Step 2: The DBO optimization algorithm is applied to optimize the hyperparameters
of the MHA-BiGRU model. The optimized model is then used to predict the IMF low-
frequency component after reconstruction.

Step 3: The high-frequency, medium-frequency, and low-frequency components are
separately fed into the LSSVR, RELM, and MHA-BiGRU models, respectively. Predictions
are obtained for each component.

Step 4: The predictions for the high-, medium-, and low-frequency IMF components
are aggregated to obtain the final prediction result.
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3. Research Study
3.1. Data Description

The wind power dataset in this paper is sourced from a wind farm operated by Elia
in Belgium. To validate the accuracy of the model, four sets of power data from different
seasons were selected as the original data for the model. The wind power data were
recorded every 15 min. Details of the data are provided in Figure 5 and Table 1. During the
data collection process, issues such as missing data and data errors are inevitable, which
can significantly affect the accuracy of model predictions. Therefore, this paper adopts the
method of removing zeros and mean interpolation to preprocess the data. Each month
contains 2880 data points, and each set of data is divided into training and testing sets at a
ratio of 7:3.

In Table 1 and Figure 5, it is visually evident that the wind power data exhibit sig-
nificant randomness and non-stationarity. Because of the large numerical values in the
wind power dataset, all data are normalized through scaling to facilitate observing the data
characteristics.
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Table 1. Basic information of the four monthly wind power datasets.

Months Dataset Data
Length Max Min Mean Std Dev

March
All (MWh) 2880 3780.86 1.43 920.67 911.52

Training (MWh) 2016 3780.86 16.51 1146.53 976.85
Testing (MWh) 864 2271.29 1.43 393.69 382.49

May
All (MWh) 2880 3483.90 0.21 862.15 918.57

Training (MWh) 2016 3455.84 0.21 784.92 869.87
Testing (MWh) 864 3483.90 2.18 1042.35 1000.30

August
All (MWh) 2880 2751.17 2.53 580.44 482.30

Training (MWh) 2016 2523.70 2.53 543.60 457.46
Testing (MWh) 864 2751.17 7.70 666.39 525.85

November
All (MWh) 2880 4206.60 6.31 2082.61 1361.31

Training (MWh) 2016 4206.60 18.08 2229.31 1345.26
Testing (MWh) 864 3810.65 6.31 1740.32 1336.83

Subsequently, the ICEEMDAN method is employed to decompose the wind power
sequence into signals (as shown in Figure 6). During decomposition, 50 instances of white
noise are added, with a standard deviation (Ntsd) set to 0.2 and a maximum allowable
iteration of 100. ICEEMDAN decomposes the original sequence into multiple Intrinsic
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Mode Function (IMF) sub-sequences. Taking the wind power sequence of March as an
example, the decomposition results are illustrated in Figure 6.
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As shown in Figure 6, the data are decomposed into multiple IMF components. Ac-
cording to the workflow diagram, in this paper, it is necessary to predict each reconstructed
sub-component and then aggregate the prediction results to obtain the final forecast. How-
ever, during this process, the computational complexity significantly increases, leading
to substantial errors in the prediction results. Therefore, the permutation entropy (PE)
method is employed to calculate the entropy value of each sub-component separately,
re-quantifying the complexity of each sub-component.

Simultaneously, all sub-components are reconstructed into three new sub-components,
including high-frequency, medium-frequency, and low-frequency sub-components, thus
reducing the sequence complexity. The PE values of each sub-component are shown in
Table 2.

Based on the entropy values, IMF1–IMF3 are selected as high-frequency components,
IMF4–IMF9 as medium-frequency components, and IMF10 as the low-frequency compo-
nent. The newly reconstructed sub-components are illustrated in Figure 7.
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Table 2. Permutation entropy of each sample.

Component PE

IMF 1 0.9936
IMF 2 0.8908
IMF 3 0.7174
IMF 4 0.5798
IMF 5 0.4913
IMF 6 0.4424
IMF 7 0.4135
IMF 8 0.3999
IMF 9 0.3911
IMF 10 0.0451
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3.2. Performance Metrics

To better assess the performance of the model predictions, this study employs three
different error evaluation metrics including Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Mean Absolute
Percentage Error (MAPE) is used to measure forecast accuracy; Mean Absolute Error (MAE)
reflects the actual situation of errors; and the RMSE value reflects the sensitivity to the
abnormal value of the wind power sequence.

eRMSE =

√√√√√ n
∑

i=1
| f (xi)− a(xi)|2

n
(18)

eMAE =
1
n

n

∑
i=1

| f (xi)− a(xi)| (19)

eMAPE =
1
n

n

∑
i=1

∣∣∣∣ f (xi)− a(xi)

a(x)

∣∣∣∣× 100% (20)

The above equation represents the calculation of the Mean Absolute Percentage Error
(MAPE) metric, where a(xi) denotes the actual observed value of the i-th training sample,
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f (xi) represents the predicted value of the i-th sample, and n represents the total number
of samples.

4. Comparative Results

Experiment and Results Analysis
This study employed nine models to forecast wind power sequences for four different

seasonal months, as outlined in Table 3. A comparative analysis was conducted between
the proposed ICEEMDAN-LSSVR-RELM-DBO-MHA-BiGRU model and other models
including LSSVR, RELM, BiGRU, MHA-BiGRU, ICEEMDAN-LSSVR, ICEEMDAN-RELM,
ICEEMDAN-MHA-BiGRU, and ICEEMDAN-LSSVR-RELM-MHA-BiGRU. The evaluation
was performed using three different metrics including MAE, RMSE, and MAPE. The results
were visually presented using bar charts, radar charts, and stacked bar charts, as depicted
in Figure 8 and summarized in Table 4, providing a comprehensive comparison of the
predictive performance of the models.

Table 3. Code name for each model.

Name Model

Model 1 LSSVR
Model 2 RELM
Model 3 BiGRU
Model 4 MHA-BiGRU
Model 5 ICEEMDAN-LSSVR
Model 6 ICEEMDAN-RELM
Model 7 ICEEMDAN-MHA-BiGRU
Model 8 ICEEMDAN-LSSVR-RELM-MHA-BiGRU

Proposed ICEEMDAN-LSSVR-RELM-DBO-MHA-BiGRU

Upon careful examination of Table 4 and Figure 8, the following conclusions can be
drawn:

1. The comparison of the LSSVR, RELM, and BiGRU models suggests that multiscale
hybrid models outperform single-scale models in wind power sequence prediction.

2. The evaluation of the BiGRU and MHA-BiGRU models reveals a notable decrease
of 18.72% in RMSE and 7.08% in MAE for the May forecast. Additionally, for the
March forecasts, the RMSE values decrease by approximately 10%, indicating that the
incorporation of multi-head attention mechanisms enhances predictive accuracy.

3. The inclusion of decomposition algorithms generally enhances predictive perfor-
mance in wind power prediction compared with single models. For example, in the
August metrics, the LSSVR, RELM, and BiGRU models incorporating the ICEEMDAN
decomposition algorithm exhibit reductions of 25.57%, 25.29%, and 27.63% in RMSE
values, respectively, along with approximately 20% decreases in the other metrics.
This underscores the effectiveness of models incorporating decomposition algorithms
in improving prediction accuracy.

4. The comparison between Model 8 and the single-scale models combined with de-
composition algorithms indicates that hybrid algorithms generally exhibit superior
predictive performance. For instance, in the radar chart of MAPE values in Figure 7,
the proposed model consistently exhibits the lowest values along its axes. Further-
more, in terms of RMSE values for March, Model 8 demonstrates a 57.20% reduction
compared with Model 5. This underscores the advantage of multiscale hybrid algo-
rithms in achieving smaller errors and higher predictive accuracy.

5. The evaluation of Model 8 against the proposed model highlights improvements
in predictive performance with the introduction of DBO optimization algorithms.
For instance, in the November forecast, there are reductions of 25.59%, 46.40%, and
28.96% in the RMSE, MAE, and MAPE values, respectively. This indicates that the
incorporation of DBO optimization algorithms enhances predictive performance,
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rendering the model proposed in this study more suitable for wind power sequence
prediction.
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As shown in Figure 6, the data are decomposed into multiple IMF components. Ac-
cording to the workflow diagram, in this paper, it is necessary to predict each reconstructed
sub-component and then aggregate the prediction results to obtain the final forecast. How-
ever, during this process, the computational complexity significantly increases, leading
to substantial errors in the prediction results. Therefore, the permutation entropy (PE)
method is employed to calculate the entropy value of each sub-component separately,
re-quantifying the complexity in each sub-component.

Simultaneously, all sub-components are reconstructed into three new sub-components,
including high-frequency, medium-frequency, and low-frequency sub-components, thus
reducing the sequence complexity. The PE values of each sub-component are shown in
Table 2. Based on the entropy values, IMF1–IMF3 are selected as high-frequency compo-
nents, IMF4–IMF9 as medium-frequency components, and IMF10 as the low-frequency
component. The newly reconstructed sub-components are illustrated in Figure 7.
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To further validate the accuracy of the proposed model, Figure 9 illustrates a compari-
son of forecasts between the ICEEMDAN-LSSVR-RELM-DBO-MHA-BiGRU model and
other models for four months. Figure 10 displays the relative error plots for the BiGRU,
MHA-BiGRU, ICEEMDAN-MHA-BiGRU, and ICEEMDAN-LSSVR-RELM-MHA-BiGRU
models and the proposed model. Figure 11 presents linear regression plots with 95%
confidence intervals for the true values and predictions of these five models.

Table 4. Statistical measures of wind power prediction.

Dataset Models RMSE MAE MAPE

March

Model 1 0.7563 0.8021 1.4089
Model 2 0.5039 0.6671 0.8476
Model 3 0.4657 0.4332 0.6599
Model 4 0.3605 0.3624 1.3988
Model 5 0.4105 0.3766 0.6821
Model 6 0.4710 0.5691 1.2042
Model 7 0.3933 0.2968 0.6470
Model 8 0.2053 0.2012 0.3535

Proposed 0.1757 0.1133 0.2297

May

Model 1 0.6852 0.5711 1.4820
Model 2 0.5743 0.6113 0.7851
Model 3 0.5670 0.5053 0.5627
Model 4 0.3798 0.4182 0.8501
Model 5 0.3983 0.3398 1.2908
Model 6 0.3422 0.2243 0.3348
Model 7 0.2862 0.2331 1.2788
Model 8 0.1528 0.1662 0.2924

Proposed 0.1354 0.1178 0.2102

August

Model 1 0.6203 0.7706 1.675
Model 2 0.5104 0.5963 1.6358
Model 3 0.4915 0.4784 0.85306
Model 4 0.4688 0.3796 1.1223
Model 5 0.4617 0.3554 0.5117
Model 6 0.3813 0.3048 0.4701
Model 7 0.3557 0.3291 0.7367
Model 8 0.2285 0.2093 0.3467

Proposed 0.1661 0.1243 0.1069

November

Model 1 0.7021 0.6053 1.2463
Model 2 0.6120 0.5825 1.2038
Model 3 0.5811 0.5351 0.9602
Model 4 0.4655 0.4528 1.1745
Model 5 0.3842 0.3413 0.8221
Model 6 0.3522 0.3227 1.1934
Model 7 0.3106 0.3067 0.6332
Model 8 0.1903 0.2026 0.3374

Proposed 0.1416 0.1086 0.2397
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Upon closer examination of the magnified portions in Figure 9, it is evident that
models incorporating decomposition algorithms and multiscale hybrid models exhibit
the highest degree of fitting. This underscores the effectiveness of the proposed model.
In Figure 10, it can be observed that the proposed method demonstrates the smallest
fluctuation range in relative errors. Moreover, in Figure 11, the linear regression confidence
band for the proposed model is the narrowest. Particularly, after incorporating attention
mechanisms and decomposition algorithms, the scatter plots become more concentrated,
and the confidence band notably narrows.
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Based on the aforementioned analysis, it can be concluded that the LSSVR-RELM-
MHA-BiGRU and data decomposition model proposed in this study exhibits effectiveness
and applicability and yields satisfactory prediction results in wind power forecasting.
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5. Discussion

This paper aims to improve the accuracy of wind power prediction. Based on the
comparison of prediction errors among various models and the proposed model, as well as
the verification of methods such as error bands and confidence intervals, it can be concluded
that the proposed method indeed improves the accuracy of wind power prediction. These
results are based solely on historical data prediction, similar to the methods used to handle
historical data in the literature [19–25], but the accuracy in this paper may be relatively
higher. This paper combines machine learning, deep learning, and signal processing
methods, thus contributing a new method of artificial intelligence hybrid prediction of
wind power. Building on the research of previous scholars, the method introduced in
this paper, which incorporates a multi-head attention mechanism and data-denoising
technology, may provide some reference for subsequent researchers.

The multiscale hybrid wind power prediction model proposed in this study advances
the capability of single-step prediction in wind power forecasting, offering valuable insights
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for the rational planning of power systems. However, there are avenues for improving
prediction methods, which include the following:

1. This study relies solely on historical wind power data without considering additional
factors such as geographical conditions and turbine statuses, which can significantly
influence wind power prediction accuracy. Thus, future research could explore inte-
grating multiple factors to enable multi-step prediction.

2. The dataset used in this study is limited to a single wind farm, which may restrict the
model’s ability to generalize across different environments. Future endeavors should
aim to validate the proposed model using data from multiple wind farms to enhance
its robustness and applicability.

6. Conclusions

This paper proposes a multiscale hybrid model incorporating a multi-head atten-
tion mechanism and data decomposition technique and optimizes the parameters of the
low-frequency signal segment of the model using the beetle optimization algorithm. By
introducing the data decomposition technique, the most crucial information of the wind
power series is extracted, thus eliminating the redundancy in feature selection required by
conventional algorithms. On this basis, a multi-head attention mechanism is introduced to
extract features of the low-frequency signal close to the time step, further addressing the
issue of information loss after data decomposition, thereby limiting the impact of random
fluctuations in wind power. The feature correlation results calculated by the sample entropy
method can be directly applied to input variables. It avoids the data clustering used in
conventional methods. The beetle algorithm is employed to improve prediction accuracy,
avoiding the influence of artificially determined network hyperparameters.

The simulation results on datasets demonstrate that the proposed method achieves
higher prediction accuracy compared with previous algorithms. This approach provides a
new avenue for researchers to improve the prediction accuracy of wind power series by
introducing methods such as the multi-head attention mechanism.

However, only single-step prediction is considered, and future work can focus on
improving the method for multi-step prediction. Additionally, since most neural networks
contain hyperparameters, this approach is theoretically applicable to other neural networks
and can be further validated in future studies.
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Abbreviations

Abbreviation Academic name
LSSVR Least Squares Support Vector Regression
RELM Regularized Extreme Learning Machine
BiGRU Bidirectional Gated Recurrent Unit
MHA multi-head attention
ICEEMDAN Improved Complementary Ensemble Empirical Mode Decomposition with

Adaptive Noise
DBO Dung Beetle Optimizer optimization algorithm
PE permutation entropy
LSTM Long Short-Term Memory
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