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Abstract: This paper puts forward a generic methodological framework to holistically assess WtE
technologies based on the PROMETHEE approach. In addition to environmental and economic
aspects, the method focuses on large-scale applicability and social preference, thus adopting economic,
environmental, social, and technological criteria. Three data sources are selected, namely the scientific
literature, a public survey, and an experts’ opinion survey, which is a novel combination with the
aim to cover public consensus, technological applicability, and to provide alternative data sources for
the economic and environmental criteria, thus enriching the methodology with the input of location
specific data. The demonstration of the applicability of the proposed methodology is realized at a
national level for the case of Greece. Anaerobic Digestion is shown to be the most preferable choice,
recognized for its cost-effectiveness and lower environmental burden to other WtE technologies (i.e.,
gasification, pyrolysis, incineration). When all criteria are evaluated with equal weights, anaerobic
digestion greatly outperforms incineration (net flow 0.833 versus 0.1667), while incineration only
becomes the most preferred choice if the social criterion is in high focus (i.e., over 63% weight).

Keywords: multi-criteria decision analysis; life cycle assessment; waste-to-energy; waste management;
anaerobic digestion

1. Introduction

According to the World Bank, waste generation is rapidly increasing worldwide, and
it is estimated to reach 3.5 Gt/year by 2050 [1]. In the field of solid waste management,
the established scenario until today has been sanitary landfilling. However, this practice
remains environmentally harmful due to greenhouse gas emissions (GHG) and polluting
agents affecting ground and aerial contamination [2]. Incineration for electricity production
and anaerobic digestion with biogas production are two practices dating back to the
industrial revolution, but innovative WtE methods such as gasification and pyrolysis have
emerged in recent decades, producing solid, gaseous, and liquid fuels [3]. This has created
the need for large-scale processing, especially for waste with an increased areal density,
such as that of municipal solid waste (MSW). Moreover, the concept of sustainability
introduced the participation of various stakeholders in decision making combined with
different, often self-conflicting criteria. Multi-criteria decision analysis (MCDA) belongs to
the broader scientific field of operational research and allows the synthesis of conflicting
views concerning the three pillars of sustainability, namely the financial, the social, and the
environmental [4].

Within the scientific literature, many methods of MCDA have been used to date to com-
paratively analyze different WtE technologies, such as Simple Additive Models (SAM) [5],
the Analytic Hierarchy Process (AHP) [6], Multi-Objective Programming (MOP) [7], The
Technique for the Order of Preference by Similarity to the Ideal Solution (TOPSIS) [8], the
Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) [9],
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among others. According to Vlachokostas et al. (2021) [4], the most widely used are AHP,
SAM, and PROMETHEE. Regarding the criteria selection, although various frameworks
exist in the scientific literature, such as the 3E model (Energy, Economic, and Environ-
mental) [10], the majority of MCDA studies involve the three established criteria: social,
environmental, and economic. In many cases, a fourth criterion is added, namely the
technological, forming a framework for integration into an efficient management strat-
egy [11]. As an example, Kheybari et al. 2019 [12] expanded the set of selected criteria for
MCDA to include technical aspects like technical maturity, reliability, cleaning systems,
energy efficiency, skilled personnel, etc. In addition, Thengane (2019) [13] included volume
reduction, safety, user friendliness, and scalability potential among the technical criteria, as
well as community acceptance and employment among the socio-political criteria, based
on data from the literature and experts. However, in the studies above, public preference
was not explored based on a public survey, rather than on experts’ input. Furthermore,
each criterion drew its data from a single source, being either the scientific literature or
a questionnaire.

It should be noted that optimal waste management is based on the combination of a
bundle of technologies that are dependent on the characteristics of each case under study
and the waste under consideration. Thus, the mixture of thermochemical and biochemical
technologies can be found in real life cases, in order to holistically manage a wide spec-
trum of waste categories. However, although some technologies may apply to different
waste types, it is crucial to provide a platform for comparing economic, environmental,
technological, and social criteria and parameters of alternative solutions, e.g., [14–17]. In
particular, public preference and social consensus remain crucial factors and, oftentimes, a
point of dispute when it comes to the implementation of such technologies [18]; thus, it
is vital to be embedded in such a holistic approach. Data on public preference and social
consensus can be obtained based on a public survey.

In this work, a complete MCDA methodological scheme for the selection of WtE
technologies in the context of sustainability is proposed. Four criteria were selected, namely
social, economic, environmental, and technological, while the collection of data for each
criterion was based on the scientific literature and two types of surveys: an experts’ opinion
survey, with focus on the large-scale applicability of each WtE technology, and a public
survey, with focus on the public preference and social consensus. To the best of the authors’
knowledge, this combination of the scientific literature, public preference, and experts’
opinions is novel, with the intention to cover both technological and social criteria, while
the economic and environmental criteria were evaluated via multiple data sources (experts,
the scientific literature), thus enriching the methodology with the input of location-specific
data. Regarding the selection of the method, the PROMETHEE method was chosen as
one of the most preferred techniques in similar problems also taking into account that it
allows sensitivity analysis to be carried out in a tractable and flexible way for the user.
Two alternative scenarios were examined, which involved variations in the weighting
factors of the selected criteria. In the first alternative, the economic and environmental
criteria were evaluated based on the scientific literature, while in the second alternative,
they were evaluated by experts. In both scenarios, the social criterion was based on the
results of the public survey, while the technological applicability was evaluated by experts.
The presented method was subsequently used to comparatively analyze various technology
rankings produced by the MCDA method, using alternative scenarios and location-specific
data for the case of Greece. The application of the method produced evident data and
valuable conclusions that can be used by local authorities in decision-making processes,
to avoid “Not In My Back Yard” (NIMBY) syndrome and technical issues of scalability,
especially for innovative and newly incorporated technologies.

The structure of this work is as follows. In the second section, the basic structure and
components of the developed methodological framework are meticulously described. In
the third section, the applicability of the methodology is presented, and the main results are
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critically discussed for the case study of Greece. In the final section, important conclusions
are summarized and future challenges are considered.

2. Methods

The general methodological scheme developed and demonstrated for the purpose of
this study comprises of 6 consecutive steps, as depicted in Figure 1. Firstly, the strategic
scope of the MCDA analysis was defined. This is crucial towards the efficient realization
of sustainability’s assessment of the technological mixture (i.e., combination of different
technologies) under consideration. As a second step, the researcher defined the set of alter-
natives that would be compared (3rd step) based upon the selected criteria that represent
the three pillars of sustainability. The majority of MCDA methods require quantitative
data (4th step). With the completion of the data model, application in selected software
(5th step) yielded various rankings/solutions according to the number of scenarios. Sen-
sitivity analysis is considered a useful technique in MCDA, especially in the context of
sustainability. Alteration of each criterion’s weight often leads to different solutions that
must be taken into consideration to have a broader and clearer understanding of various
parameters (criteria, alternatives, stakeholders, etc.) and the way that these inter-relate and
interact to produce a well-defined result.
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2.1. PROMETHEE Method

PROMETHEE method for MCDA was originally developed by J.P Brans and Ph.
Vincke in 1985 and is based on the outranking approach, using pairwise comparison
between alternatives (actions) and utilizing preference functions [19]. Three main steps
comprise the PROMETHEE method [20]:

1. Calculation of preference degrees for each pair of alternatives.
2. Calculation of unicriterion flows.
3. Calculation of global flows.

Preference degrees are scores between 0 and 1 that indicate how much an alternative
is preferred compared to another. Preference degree of 1 indicates total preference while
preference degree of 0 means no preference at all. This is accomplished by using preference
functions of various forms (usual, linear, level, u-shape, gaussian, etc.). Preference threshold
p is the difference of two alternatives, beyond which, the decision maker shows clear
preference to an alternative over another, while indifference threshold q is the difference of
two alternatives, beneath which, the decision maker shows indifference to either [19]. For
each pair of alternatives

(
ci, cj

)
, a unicriterion preference degree Pm

i,j is calculated, based on
criterion gm, where m is the number of criteria. Let gi

(
cj
)

be the performance of action cj
on criterion gi. Linear function can be shown in Equation (1) [20]

Pm
i,j =


0 i f gm(ci)− gm

(
cj
)
≤ q

[gm(ci)−gm(cj)−q]
|p−q| i f q < gm(ci)− gm

(
cj
)
< p

1 i f gm(ci)− gk
(
cj
)
≥ p

(1)

The global preference degree πij indicates the global preference of action ci on action
cj according to all criteria, where wm is the weight of each criterion Equation (2) [20].
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π
(
ci, cj

)
= ∑q

m=1 wj·Pm
i,j (2)

The next step in the PROMETHEE method is the calculation of unicriterion flows,
which is the summarization of the total pairwise preference degrees. Unicriterion flows con-
sist of the positive, negative, and net flows. The positive flow indicates how an alternative
is preferred over all other alternatives, for a certain criterion, using a score between 0 and 1.
The negative flow, on the contrary, indicates how all other alternatives are preferred to this
alternative, using a score between 0 and 1. The net flow is produced by the substruction of
the negative flow from the positive and it is indicated by a score between −1 and 1 [20].

Lastly, for the calculation of global flows, which takes into consideration all the criteria
simultaneously, the decision maker must specify the weight of each alternative, i.e., the
relative importance of the alternative in comparison to all the others. As in unicriterion
flows, positive and negative flows return values between 0 and 1 and net flows between
−1 and 1. Global net flows produce the final result in the form of ranking. By denoting
Φ+(ci) and Φ−(cj) as the positive and negative flows of action ci, respectively, the global
flows are produced by Equations (3) and (4) [20].

Φ+(ci) =
∑n

j=1 πi j

n − 1
(3)

Φ−(ci) =
∑n

j=1 πj i
n − 1

(4)

One of the main advantages of PROMETHEE software (v 1.1.0.0) is the capability for
implementing sensitivity analysis. It allows the decision maker to produce dynamic results
(rankings) while changing various parameters, e.g., weight. Additionally, this method
requires fewer inputs compared to other techniques and it has a clear and easy-to-use
structure [21].

2.2. Criteria and Data Collection

For the case of Greece, four criteria were analyzed: economic, environmental, tech-
nological, and social. A thorough study of the scientific literature was needed for the
economic and environmental criteria, and the design of two surveys, specially customized
to assess public preference and experts’ opinion, for the social and technological criterion,
respectively (Supplementary Materials). Criteria selection was accompanied by the proper
selection of the corresponding index for each criterion in order to provide the MCDA model
with the necessary quantitative data. Several case studies were studied, concerning either
real case scenarios of WtE plants or model applications.

In this work, 2 different scenarios were analyzed. In Scenario 1, the indices for the eco-
nomic and environmental criteria were extracted by calculating the mean values reported
in the literature for the 4 WtE processes with similar technological characteristics and by
considering particular type of feedstock (MSW for thermal technologies and biodegradable
waste for Anaerobic Digestion) and the same functional unit (1 kg of feedstock). More
specifically, mean values for CAPEX in EUR/Mg were calculated for the economic criterion
based on [10,22–28], while Global Warming Potential (GWP), in kg CO2 eq./Mg feedstock,
was calculated for the environmental criterion based on [10,26–38]. Regarding social pref-
erence, the overall grade of each of the 4 WtE technologies was produced by calculating
the normal weighted average for each technology in the 1–5 qualitative scale based on
the answers of the public. The same method was used for the technological criterion
also, based on the experts’ answers for the applicability of each technology in Greece (in
1–5 qualitative scale). In Scenario 2, data concerning the economic and environmental
dimension were based on the experts’ responses to the respective questionnaire. More
specifically, the experts were asked to comparatively rank the 4 WtE technologies (given the
same plant capacity) (i) from the least to the most expensive and (ii) from the most to least
environmentally friendly, respectively. Both of the above criteria were normalized using
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the weighted average method for each technology. The social preference in Scenario 2 is
the same as in Scenario 1.

Figure 2 depicts the applied framework used for the scope of this study, in the context
of Scenario 1.
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2.2.1. Economic Criterion

Capital Expenditure (CAPEX) mainly consists of construction costs, equipment and
installation, land use and preparation, loan interest, etc. External costs are another factor
that is usually taken into consideration in sustainability issues and consists of direct and/or
indirect consequences of a plant operation in stakeholders not directly related to the plant
owner or operator, e.g., costs related to healthcare from harmful emissions in the area,
or social costs related to the mechanization of labor and the concurrent job losses [22].
For the purpose of this study, CAPEX (EUR/Mg of feedstock) for the 4 types of plants
(incineration, gasification, pyrolysis, and anaerobic digestion) was chosen as an indicator,
mainly due to the greater availability of data in the scientific literature. Especially in the
case of incineration and anaerobic digestion plants, data analysis was conducted based on
data from the scientific literature, that reveal a strong positive linear correlation between
CAPEX (M/EUR) and plant capacity (Gg/year), as it is shown in Figures 3 and 4, with
R2 = 0.9133 and 0.9216, respectively [22–25,29].
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2.2.2. Environmental Criterion

According to ISO 14040, LCA (Life Cycle Assessment) is a methodical process of
gathering and analyzing material and energy inputs and outputs, as well as the related
environmental effects that are directly related to the operation of a system of goods or
services over the course of its life cycle, and has been widely used during recent decades
as an environmental support system [39]. The assessment covers the entire life cycle of
the product or activity, including, for example, extraction and processing of raw materials,
manufacturing, distribution, use, maintenance, recycling, and final disposal, as well as
transportation between the aforementioned stages. Through the comparison of environ-
mental burdens of various options, it provides a valuable tool in decision making and
management [40]. Conducted through dedicated software, LCA provides a plethora of
environmental indicators that stem from the defined system. The most widely known Life
Cycle Impact Assessment Methodologies currently used, especially in Europe, are IPCC
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GWP (carbon print), CML-IA (midpoint), ReCiPe (midpoint and endpoint), and Ecoindica-
tor 99 (endpoint) [26]. The results of the LCA though are affected by parameters that are
up to the researcher’s assumptions such as system boundaries, functional unit, availability
and accuracy of data, type of waste, etc. Moreover, geographical and seasonal variability of
the composition of waste adds more uncertainty to the expected results. Table 1 highlights
the variability of LCA results of selected studies, taking into account also the work of
Mayer et al. (2019) [41] and Dastjerdi et al. (2021) [42].

For the scope of the present study, GWP was chosen as an indicator to be gathered and
analyzed from various LCA papers, mainly due to the plethora of these types of data in the
scientific literature. GWP was used to compare the amount of thermal energy absorbed by
a gas without directly measuring its concentration in the atmosphere and it is defined as
the ratio of the impact on Earth’s energy balance from 1 kg of a GHG to the impact from
1 kg of CO2 [43]. In recent years, due to heightened efforts to combat climate change, GWP
has gained prominence as a quantified metric that aids researchers in understanding the
overall environmental impact of human activities.

Table 1. GWP of various waste feedstock for MSW, according to the scientific literature.

Study Feedstock Functional
Unit Technology GWP (kg CO2

eq./Functional Unit)

[30] MSW 1 Mg of waste Pyrolysis–Gasification 1017
[31] Mixture of waste 1 kg of waste Incineration 1.91

Gasification 0.94
Anaerobic digestion 1.7

[32] MSW 1 kg of waste Incineration 0.7
Pyrolysis 0.6

Gasification 0.55
[44] MSW 1 Mg of waste Gasification −96
[45] MSW 1 Mg of waste Incineration 496
[46] MSW 1 Mg of waste Incineration 593
[27] MSW 1 Mg of waste Incineration 372

Anaerobic digestion 324
Gasification 376

[33] MSW Refuse 1 Mg of waste Incineration −725
[34] MSW 1 Mg of waste Incineration 430

Gasification 27
[47] MSW 1 Mg of waste Incineration 271

Anaerobic digestion −164
[48] MSW 1 Mg of waste Pyrolysis 250
[49] MSW 1 Mg of waste Gasification 566

2.2.3. Social Criterion

For the successful implementation of any waste management system within the
framework of sustainability, social consensus is required. This is also evident in the
last decade’s literature which indicates an increase in the incorporation of social criteria
in the MCDA for WtE technologies [4]. According to Assefa et al. (2007) [50], the factors
influencing information collection concern how easily these data can be quantified, as well
as temporal or geographical constraints. For the needs of this research, a questionnaire
was implemented as a tool and distributed in electronic format through email and social
networks. In total, 225 responses were received.

Figure 5 depicts the age distribution among the respondents of the questionnaire to
the public. The majority of respondents (47.6%) were in the ages between 40 and 64, while
28.4% were between the ages of 25–39. In addition, 12.4% were in the ages over 65 and,
lastly, 11.6% were below the age of 24.
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Figure 6 depicts the distribution of the education levels of participants in the public
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degree, while 8.4% had a high school degree, and 0.5% had a primary school degree.
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The questionnaire’s structure revolved around three axes. The first focused on public
knowledge about the four examined technologies, the second involved the preference for
constructing a plant near the respondent’s place of residence, and the third sought public
opinion on the advantages/disadvantages of WtE technologies and the degree of trust in
auditing and pollution control procedures. An additional objective was to facilitate the
quantification of results, primarily regarding public preference. For this reason, five qualita-
tive choices were presented as responses, corresponding to those used in the PROMETHEE
model (qualitative 5-point scale). Subsequently, in each technology, a preference grade was
assigned in a quantitative 5-point scale. Ultimately, four performance evaluations emerged,
using weighted average method, corresponding to the four technologies introduced into the
model. It is worth noting that during the last decade, social considerations are being increas-
ingly incorporated in MCDA studies, despite the difficulties of the quantification of public
preference. Public consensus is considered crucial in sustainable waste management [4].

2.2.4. Technological Criterion and Alternative Economic and Environmental Indices

The fourth criterion considered was the technological one, which concerned the
degree to which these technologies can be realistically applied in Greece, with unit capacity
characterized as large (>150 Gg/year). For this purpose, an additional questionnaire was
structured, concerning the opinion of experts on these technologies, and distributed via
email and social networks. The questionnaire’s structure was as follows: The first axis
concerned experts’ opinions on ranking technologies based on economic and environmental
criteria. Its purpose was to verify and enrich the literature research and be used on
alternative scenarios in this work (Scenario 2). The second axis focused on the primary
concern, the realistic application of technologies. The third and final axis revolved around
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respondents’ judgment regarding the reasons for hindering the development of such units
in Greece. As it was in the questionnaire for the public, the type of responses in this
survey were given in a qualitative scale and subsequently converted into a quantitative
1–5 scale, using weighted average method. This questionnaire targeted a specific sample
of 17 experts from academia, public, and private sector, whose opinions hold significant
weight, particularly due to the interdisciplinary nature required to thoroughly examine
the subject. Figure 7 depicts the experts’ opinions for the large-scale applicability of the
4 technologies to Greece. Among those with wide probability of application were anaerobic
digestion and, to a lesser degree, incineration. “High probability” was shared among all
the 4 technologies and medium probability concerned mostly thermochemical processes.
Finally, as the probability of large-scale application lowers, a prevalence of pyrolysis in the
experts’ choices can be seen.
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Figure 8 depicts the experts’ ranking of the technologies in relation to the cost of applica-
tion. As it is shown, the least expensive technology (1st place) was considered to be anaerobic
digestion and, to a much lesser degree, incineration and gasification. The votes for the second
least expensive technology were shared between all of the 4 technologies, with emphasis on
incineration. Finally, the most expensive technologies were considered to be gasification and
pyrolysis (3rd and 4th place), as it is shown in the distribution of the experts’ votes.
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Figure 9 depicts the experts’ ranking of the technologies in relation to the degree of
environmental burden. As shown, most environmentally friendly technology appeared to
be Anaerobic Digestion, ranking in 1st place. In 2nd and 3rd place (medium environmental
burden), the votes, in majority, highlighted gasification and pyrolysis. Finally, in 4th place,
as least environmentally friendly, came incineration, according to experts’ votes.
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2.3. Current State of MSW Management in Greece

Greece is an exceptional case study to demonstrate the applicability of the proposed
methodological scheme. The need to promote WtE technological options is imperative,
not only for MSW, but also for other types of waste (agricultural, industrial, sewage, etc.).
Currently, the main MSW management method used in Greece is landfilling, as 80% of
MSW ends up in landfills [51]. The legislative framework for waste management in Greece
closely follows the corresponding European framework. Over recent years, all relevant
EU Directives have been transposed into national law. It should be noted that, in 2021,
law 4819/2021 imposed a landfilling fee for the unprocessed MSW and the residues of
MSW management facilities. This legislation paves the way for the implementation of the
Pay-As-You-Throw (PAYT) system, in compliance with the “polluter pays” principle. The
final target of MSW management is the reduction of MSW landfill disposal down to 10%
by 2035 [52]. EU Waste Framework Directives are also incorporated in the National Waste
Management Plan (NWMP). According to the NWMP, organic waste represents more than
40% of the total generated MSW in Greece, most of which will be separated at source in the
near future due to the installation of urban brown bins for biodegradable waste collection
exclusively. This provides a great opportunity for the implementation of organic waste
treatment facilities, with anaerobic digestion being at the forefront of biowaste valorization
technologies. Optimal decision making in bio-WtE can increase the value of biowaste to
bioproducts and improve the efficiency of bioenergy production [4].

It should be underlined that in Greece’s co-capital, Thessaloniki, the estimation of local
MSW production ranges to about 180 Gg/year [53], hence providing a viable application of
a potential MSW management facility, as it fits the typical capacity of large-scale WtE units
that start in the range of 150 Gg/year [54].
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The location of an MSW management facility is of critical importance, especially to
the viability of the project, since it influences economic and social factors [55]. No MSW
incineration facility exists in Greece so far, and the only operational unit is a medical waste
incineration facility in Attica. The unlikelihood of an MSW incineration unit construction
in Greece is due to the lack of economic viability as well as social acceptance (NIMBY
syndrome), despite the significant energy recovery [56]. A WtE incineration facility can be
promoted as a preferable option in contrast to landfilling, but only under specific conditions
of minimizing external costs of health impacts [53].

As for implementation of WtE technologies in Greece, only hypothetical case studies
exist regarding MSW gasification, such as a MSW plasma gasification plant in Greece by [57]
and biomass gasification in the region of Messenia, Greece [58]. Concerning pyrolysis, no
MSW pyrolysis units exist in Greece, but up-to-date information presented by [59] shows
future plans for an innovative pyrolysis–anaerobic digestion biomass residues processing
plant. In any case, there is still effort to be realized towards implementing waste prevention
principle, which seeks to reduce the total volume of waste and the harmful effects on health
and the environment through re-use and recovering of materials on the basis of circular
economy, taking into account economic costs and social predisposition.

2.4. Waste-to-Energy Technologies
2.4.1. Incineration

During the process of incineration, MSW is combusted in a chamber, in a temperature
range between 900–950 ◦C. The process is exothermic and it is used to heat up water
for steam generation. Electricity production is usually carried by turbines that use the
generated steam for energy production [60]. Volume and mass reduction of MSW may
reach up to 90% [61]. Apart from energy production and waste management, incineration
of MSW may be useful for other sectors like road construction, recovery of ferrous materials
and cement industry, mainly through the utilization of fly and bottom ash [62].

2.4.2. Gasification

Gasification is another example of a technology that belongs to thermal treatment
methods. The organic compound is partially oxidated in the presence of a gasifying agent
(air, oxygen, or steam). The main product is syngas, a gaseous fuel comprised of CO2,
CH4, CO, H2, etc. Typical operating temperatures are 1000–1600 ◦C when the agent is
pure oxygen and 550–900 ◦C when air is used [35]. Advantages of gasification as WtE
technology are reduction in polluting emissions, significant reduction in waste volume and
mass, co-generation compatibility, etc. [60], among others.

2.4.3. Pyrolysis

Pyrolysis is a relatively novel thermal treatment WtE technology that usually operates
in 3 distinct temperature ranges, always in absence of oxygen. In ranges between 400 and
800 ◦C, it mainly produces oil, char, and gaseous products that depend upon the process
temperature, heating time, and residence time [63]. At ranges close to 500 ◦C, the main
products are tar, wax, and pyrolysis oil, and at higher temperatures (>700 ◦C), the main
product is pyrolysis gas. Usually, the type of waste that is best suited for pyrolysis is
plastics, tires, electric waste, etc., [62]. Compared to incineration and gasification, pyrolysis
shows the least production of SO2 and NOx [64].

2.4.4. Anaerobic Digestion

Anaerobic digestion belongs to the biochemical processes. It involves several stages
of biodegradation of bio-waste by methanogenic bacteria, in absence of oxygen. Initially,
simple molecules and organic components are produced. The second stage is the hydrolysis
of these products into acetic acid, hydrogen, and volatile fatty acids (VFA). The third stage
is the conversion of H2 and organic acids into CH4 and CO2 [65]. Biogas is composed
mainly of 25–50% CO2, 50–75% CH4, and 1–15% other gaseous products (NH3, H2S, water
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vapor, etc.) [66]. Eliminating contaminants and especially H2S are of crucial importance
due to the fact that they may produce corrosion problems and negatively influence the
process [67].

2.4.5. Other Technologies

Hydrothermal carbonization (HTC) is a novel WtE technology that is performed
usually at mild temperatures (up to 524 K), utilizing biomass as feedstock, with reaction
times that can hold several hours and produce mainly value-added products, like hydrochar,
with content very similar to lignite [68]. HTC carbon materials can be utilized in a variety
of applications. Hydrochar with high specific surface area can be used in anti-pollution
technologies due to greater contact with pollutants and in adsorption of heavy metals,
greenhouse gases, organic pollutants, and soil amendment [69,70].

The methodological framework proposed by the authors is applicable to other tech-
nologies as well, such as HTC, but in the application of the method for the use case of Greece,
incineration, gasification, anaerobic digestion, and pyrolysis were considered due to data
availability. However, examining large-scale applicability and social preference of HTC in
a MCDA framework, remains a future challenge in waste management decision making.

3. Results

Results were obtained for two different scenarios. In Scenario 1, the index selected
for the economical criterion was CAPEX (EUR/Mg), based on the calculated mean values
reported in the literature. Similarly, the index selected for the environmental criterion was
GWP (kg CO2 eq./Mg feedstock), also based on the calculated mean values reported in the
literature. The index used for the social criterion was social preference, based on the answers
of the public survey, while the index used for the technological criterion was the large-scale
applicability of each technology in Greece, based on experts’ opinions. In Scenario 2, while
the social and technological criteria remained the same, the data concerning the economic
and environmental dimensions were based on the experts’ responses to the respected
questionnaire. Table 2 summarizes the collected data from the scientific literature and from
the data analysis of the survey’s responses, that were used as the input in PROMETHEE.

Table 2. Initial data model from the scientific literature and social and experts’ surveys for the
2 scenarios.

Incineration Gasification Pyrolysis Anaerobic Digestion

Scenario 1
CAPEX (EUR/Mg feedstock) 610 705 800 113
GWP (kg CO2/Mg feedstock) 584 443 482 360

Scenario 2
Economic criterion (1–4 scale) 2.06 2.7 3.6 1.65

Environmental criterion (1–4 scale) 3.41 2.53 2.35 1.70

Scenario 1 and 2
Public preference (1–5 scale) 4.31 4.05 4.07 4.16

Large-scale applicability in Greece (1–5 scale) 3.80 3.10 2.50 4.60

In Scenarios 1 and 2, the economic and environmental criteria were set to mini-
mize in PROMETHEE, while the social and technological were set to maximize. Overall,
four sub-scenarios were examined for each of the two scenarios by implementing a sensi-
tivity analysis according to various weights of the criteria.

3.1. Scenario 1

The positive, negative, and net flows for Scenario 1 are presented in Table 3, with all
weights being equal (25%). Based on the results, it was observed that anaerobic digestion
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has the biggest net flow produced, thus gaining the first place in the ranking, while inciner-
ation, gasification, and pyrolysis hold the second, third, and fourth places, respectively.

Table 3. Positive, negative, and net flows for Scenario 1.

Technology Phi Phi+ Phi− Ranking

Anaerobic digestion 0.8333 0.9167 0.0833 1
Incineration 0.1667 0.5833 0.4167 2
Gasification −0.3333 0.3333 0.6667 3

Pyrolysis −0.6667 0.1667 0.8333 4

In Figures 10–13, the relative rankings of the four technologies, depicted as dimension-
less quantities, are presented when special emphasis, in the form of weight, is given to each
of the four criteria. More specifically, in Figure 10, an increased weight was assigned to the
economic criterion, i.e., 40%, while the rest of the criteria were adjusted to 20% each. In
this example, anaerobic digestion becomes the most preferable technology with quite some
difference compared to the other methods, while pyrolysis is ranked as the least preferable.
This is expected when emphasis is put on the economic criterion since anaerobic digestion
is far less costly, based on the CAPEX data presented in Table 2.
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In Figure 11, increased weight in the environmental criterion was assigned to 47%,
while the rest of the criteria were adjusted to 18% each. In this example, anaerobic digestion
remains the most preferrable technology, while gasification barely surpasses incineration,
and pyrolysis ranks last. This is expected when emphasis is put on the environmental
criterion, since gasification is the most environmentally friendly technology compared
to incineration.

Public opinion, as reflected in the public survey, favored incineration as a WtE tech-
nology. This can be highlighted when increasing the weight of the social criterion. In fact,
if the social criterion is increased substantially, e.g., at 63%, then incineration becomes the
most preferable technology, outperforming anaerobic digestion, as depicted in Figure 12.
It is notable that in this case, gasification was the least preferred, despite outperforming
pyrolysis in the collected data for the economic, environmental, and technological criteria,
due to the fact that it was less preferred by the public.

Considering the social criterion, it was shown that the public was generally positively
inclined towards the energy valorization of waste in Greece, with minimal differences
among the selected technologies. From the data analysis on the responses, about 57% of the
responders considered WtE implementation as necessary and 39% held a positive stance.
As far as the knowledgeability of the technologies, most of the responders had a clear
understanding of incineration and anaerobic digestion (34% and 44%, respectively) com-
pared to gasification and pyrolysis (26% and 30%, respectively). Among the benefits of WtE
technologies, a reduction in waste volume, environmental pollution, and decarbonization
ranked to the top of the responses (57%, 54%, and 45%, respectively). Considering the
disadvantages, 33% replied that there would be none, 30% would argue that they pose a
threat to public health due to harmful emissions, and 28% would emphasize the aesthetic
degradation of landscape. Finally, 38.3% of the responders showed no, little, or very little
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trust in anti-pollution control and auditing procedures, while 40.7% remained neutral and
38.3% were generally positively inclined.

Finally, in the last case of Scenario 1 (Figure 13), the weight of the technological
criterion was set to 50% while the rest were adjusted to 17%. As it is shown, anaerobic
digestion remains the most preferable option with quite some difference from the rest, as in
the first case of Scenario 1. This is expected since the mostly costly technologies are usually
less applicable at a large scale.

3.2. Scenario 2

The positive, negative, and net flows for Scenario 2 are depicted in Table 4, with all
weights being equal (25%). Based on the results, anaerobic digestion and incineration
ranked first and second, respectively, as in Scenario 1 (Table 3), while gasification and
pyrolysis shared the last place in the ranking, with equal positive, negative, and net flows.

Table 4. Positive, negative, and net flows for Scenario 2.

Technology Phi Phi+ Phi− Ranking

Anaerobic digestion 0.8333 0.9167 0.0833 1
Incineration 0.1667 0.5833 0.4167 2
Gasification −0.5 0.25 0.75 3

Pyrolysis −0.5 0.25 0.75 4

In Figures 14–17, emphasis was given to the economic, environmental, social, and
technological criterion, modifying the weights to 40%, 64%, 64%, and 50%, while the
remaining were weighted equally for each case.
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The results in this scenario differed slightly from Scenario 1. The experts’ ratings on the
technologies’ economic performance were generally in accordance with the collected data
in Scenario 1. A sensitivity analysis produced the following results. Whether emphasis was
given to the economic, environmental, or technological criterion, anaerobic digestion ranked
first, as in Scenario 1. However, public preference, as it is shown in Figure 11, favored
incineration as the optimum choice over anaerobic digestion. Among thermochemical
processes, pyrolysis was preferred in comparison to incineration and gasification, as the
weight of the environmental criterion increased. As in Scenario 1, the increase in the weight
of the social criterion to 63% favored incineration over anaerobic digestion. Finally, an
increase in the weight of the technological criterion to 50%, as shown in Figure 17, ranked
incineration as second, gasification as third, and pyrolysis last.

4. Discussion

Anaerobic digestion appeared to be the cheapest and most realistic option compared
to the thermochemical processes, while gasification and pyrolysis are more expensive and
early in their large-scale implementation for Greece, according to the experts’ opinion.
Incineration represents a middle choice in terms of cost and realistic large-scale application,
with a significant portion of the cost attributed to anti-pollution technology. Additionally, a
strong correlation was noted between the investment cost and the capacity of anaerobic
digestion and incineration units, as shown in Figures 3 and 4. Anaerobic digestion and
incineration are more widespread, with the former developing in recent years, even in
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Greece. Furthermore, in these two technologies, social consensus seems to be achieved.
Public predisposition towards incineration and anaerobic digestion was generally positive
compared to the other two. An important preference criterion and a key factor in the NIMBY
syndrome is the level of trust in pollution control procedures, while at the same time, the
general attitude towards energy production from waste is positive. In conclusion, the
public perception of the technologies under consideration is characterized as positive [71].

Matters of technological hysteresis in Greece should be addressed in order to imple-
ment these technologies in large-scale applications. Most cases of the large-scale application
of gasification, pyrolysis, and a combination (Thermoselect method) come from Japan [28]
in widely known commercial plants. Italy also utilizes pyrolysis, although not at a large
scale, but many plants involve the mass-burning of MSW. With the exception of Finland
(Metso Lahti), gasification is not widely used in Europe [28].

Additionally, there is a notable gap in LCA studies related to energy production from
MSW on a large scale, as revealed by the literature review carried out by the authors [41,42].
This fact poses a future challenge in the research field. However, the expert responses
generally aligned with the ranking derived from the processing of data in PROMETHEE
in Scenario 1, indicating incineration with energy recovery as the most polluting process,
anaerobic digestion as the most environmentally friendly, and gasification and pyrolysis in
the middle.

Multi-criteria analysis identified anaerobic digestion as the optimal choice in most
cases. Incineration and gasification differed minimally in the produced rankings, with
the former maintaining a slight lead over the latter, except when the weight of the social
criterion increased. If greater emphasis were to be placed on environmental protection,
Refuse-Derived Fuel (RDF) gasification could be combined with anaerobic digestion, pro-
vided the appropriate technology is developed, while if emphasis is placed on social
consensus, the combination of incineration and anaerobic digestion becomes preferable.
These conclusions are also confirmed by the scenario analysis based on expert opinions.
The preference of anaerobic digestion over other alternatives, in an MCDA framework,
was highlighted in previous works, as in [17], where it was ranked 1st among five WtE
technologies, outranking Landfill Gas Energy (LFG), incineration, TPS Thermiska Gasifi-
cation, and Columbus Battelle gasification, mainly due to its higher performance in the
environmental and economic criteria. In [16], anaerobic digestion was compared with
Incineration, gasification, and pyrolysis, using the “Simple Multi Attribute Rating Tech-
nique Exploiting Ranks” (SMARTER) methodology, where it was shown to be the preferred
option due to greater flexibility in small- and large-scale applicability and the high calorific
value of biogas.

The combination of anaerobic digestion with thermochemical processes is reinforced
by the fact that biochemical processes only affect the biodegradable fraction of waste,
while materials with a high calorific value, such as plastic, paper, etc., could undergo
thermochemical processing if they arise as RDF from mechanical processing facilities. The
co-generation of electricity and heat is also considered a sustainable practice in the field
of energy production from waste, achieving greater efficiency cumulatively. Furthermore,
considering special streams, such as plastic, recent technological research further enhances
regeneration for this type of waste [72].

Finally, the importance of establishing a methodological framework for a multi-criteria
analysis for waste-to-energy methods, with specific and clear stages, should be emphasized.
This framework should serve as a useful tool in the research process, avoiding gaps where
critical aspects of the subject under consideration are overlooked.

5. Conclusions

The maximization of the efficiency of waste resources is strongly related to the optimal
management of energy resources in order to establish a sustainable energy system for the
greatest societal benefit, a vital issue for sustainable development. Undoubtedly, there are
numerous technical specifications and uncertainties in the complex problem of selecting
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the necessary mixture of WtE technologies for a real case under consideration. In this
light, MCDA presents a strong capability to reproduce local or regional characteristics and
processes and “imprint” them for the quantification of the economic, environmental, social,
and technological performances of alternative WtE technological solutions and manage-
ment strategies. Decision makers are advised to approach a WtE management problem
considering MCDA principles in order to make better informed decisions and to put for-
ward technological solution hierarchies tailored to local and regional characteristics, taking
into account the local energy mix, treatment conditions, and efficiency. It is the author’s
strong belief that when WtE solutions are implemented through a multi-criteria framework,
both a rational waste-treating strategy and low-carbon-footprint energy production can be
accomplished simultaneously.

In this paper, a generic methodological framework to assess WtE technologies based
on the PROMETHEE approach has been proposed. The method focused on large-scale
applicability and social preference, adopting economic, environmental, social, and tech-
nological criteria. A combination of data sources was selected, including the scientific
literature, a public survey, and an expert’s opinion survey, providing alternative indices
and data sources for the economic and environmental criteria and enriching the methodol-
ogy with the input of location-specific data. The applicability of the methodology has been
demonstrated for two different scenarios and four WtE technologies analyzed at a national
level for the case of Greece. The results showed that Anaerobic Digestion is considered as
the most preferable choice due to the cost effectiveness and lower environmental burden
compared to gasification, pyrolysis, and incineration. More specifically, when all the criteria
are evaluated with equal weights, anaerobic digestion greatly outperforms incineration
(net flow 0.833 versus 0.1667), while incineration only becomes the most preferred choice if
the social criterion is in high focus (i.e., over 63% weight)

The validity of the methodology was explored via sensitivity analysis for both sce-
narios. The application of the method for the case of Greece emphasized the need for an
assessment of the large-scale applicability of WtE technologies, but also of the technology
concerns, preferences, and public consensus.
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