Data-Driven Approaches for Energy Theft Detection: A Comprehensive Review
Abstract
:1. Introduction
2. Energy Theft in Energy Management System
2.1. Types of Energy Theft
2.1.1. Meter Tampering and Malfunctioning to Achieve Energy Theft
2.1.2. Feeder Tapping for Energy Theft
2.1.3. Billing Irregularities for Energy Theft
2.1.4. Cyber-Attacks for Energy Theft
2.2. Hardware-Based Energy Theft Detection
2.3. Data-Driven Energy Theft Detection
3. Dataset Issues with Data-Driven ETD
- High-dimensional data: Given that energy theft data may be influenced by the interaction of numerous variables, including time, weather, and consumer behavior, they can exhibit high-dimensional properties [38]. The high-dimensional data can increase the model complexity and the required computational resources. Therefore, research using energy theft datasets should explore approaches to reduce computational complexity while reflecting high-dimensional characteristics.
- Imbalanced dataset: The datasets used for ETD are often imbalanced, with instances of energy theft being significantly outnumbered by normal energy usage instances [11]. This imbalance can be ascribed, when compared to benign energy consumption patterns, to the challenge of obtaining empirical data on incidents of energy theft and the relatively brief duration during which energy theft typically occurs. An imbalanced dataset poses challenges such as biased learning and overfitting for numerous data-driven algorithms that operate under the assumption of an equitable distribution of classes. Therefore, adequate data preprocessing or advanced algorithms may be required to mitigate these challenges.
- Inaccurate readings: Energy theft data may include inaccuracies and errors from data collection procedures or malfunctioning meters. These discrepancies have the potential to impact the effectiveness of detection models. In order to mitigate the problems caused by inconsistencies, a preprocessing measure could be required before model training is performed.
- Absence of labels: The instances of energy theft may not be accurately labeled, resulting in a label deficiency. This absence of labels can be ascribed to various factors, such as the difficulties in obtaining accurate labels and the time-consuming, costly nature of the labeling process. Such challenges are significant in training supervised machine learning models, which depend on labeled data for learning and making predictions. Comprehension of these properties may be crucial for developing efficient models to detect energy theft.
3.1. Mitigation for Data Imbalance Problem
3.2. Correction for the Inaccurate Readings Problem
3.3. Adversary Modeling for Deficiency Problem
3.3.1. Energy Theft in Power Generation
3.3.2. Energy Theft in Power Utility
3.3.3. Energy Theft in Energy Consumers
4. Methodologies for Implementing Data-Driven ETD
4.1. Supervised Learning-Based Approaches for ETD
4.2. Semi-Supervised Learning-Based Approaches for ETD
4.3. Generative AI-Based Approaches for ETD
5. Open Issues and Future Research Directions
5.1. Handling Imbalanced Data
5.2. Incorporating Time-Series Analysis with Data Features
5.3. Dealing with High-Dimensional Data
5.4. Addressing Noise and Errors
5.5. Exploiting Characteristic Variables
5.6. Overcoming a Lack of Labels
5.7. Integration of Energy Consumption and Multimodal Data
5.8. Large Language Models for ETD
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tan, S.; De, D.; Song, W.-Z.; Yang, J.; Das, S.K. Survey of security advances in smart grid: A data driven approach. IEEE Commun. Surv. Tutor. 2017, 19, 397–422. [Google Scholar] [CrossRef]
- Athanasiadis, C.L.; Papadopoulos, T.A.; Kryonidis, D.I.; Doukas, D.I. A review of distribution network applications based on smart meter data analytics. Renew. Sustain. Energy Rev. 2024, 191, 114151. [Google Scholar] [CrossRef]
- Carr, D.; Thomson, M. Non-technical electricity losses. Energies 2022, 15, 2218. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, Y.; Iqbal, A.; Gope, P.; Sikdar, B. A novel DDPM-based ensemble approach for energy theft detection in smart grids. arXiv 2024, arXiv:2307.16149. Available online: https://arxiv.org/abs/2307.16149 (accessed on 1 May 2024).
- Theron-Ord, A. Electricity Theft and Non-Technical Losses Total $96bn Annually—Report. Available online: https://www.smart-energy.com/regional-news/africa-middle-east/electricity-theft-96bn-annually/ (accessed on 7 May 2024).
- Zulu, C.L.; Dzobo, O. Real-time power theft monitoring and detection system with double connected data capture system. Electr. Eng. 2023, 105, 3065–3083. [Google Scholar] [CrossRef]
- Singh, N.; Singh, D.P.; Pant, B. A comprehensive study of big data machine learning approaches and challenges. In Proceedings of the 2017 International Conference on Next Generation Computing and Information Systems (ICNGCIS), Jammu, India, 11–12 December 2017; pp. 80–85. [Google Scholar]
- Zheng, Z.; Yang, Y.; Niu, X.; Dai, H.-N.; Zhou, Y. Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans. Ind. Inf. 2018, 14, 1606–1615. [Google Scholar] [CrossRef]
- Gunduz, M.Z.; Das, R. Smart Grid Security: An effective hybrid CNN-based approach for detecting energy theft using consumption patterns. Sensors 2024, 24, 1148. [Google Scholar] [CrossRef]
- Chen, W.; Yang, K.; Yu, Z.; Shi, Y.; Chen, C.L.P. A survey on imbalanced learning: Latest research, applications and future directions. Artif. Intell. Rev. 2024, 57, 137. [Google Scholar] [CrossRef]
- Sun, Y.; Lee, J.; Kim, S.; Seon, J.; Lee, S.; Kyeong, C.; Kim, J. Energy theft detection model based on VAE-GAN for imbalanced dataset. Energies 2023, 16, 1109. [Google Scholar] [CrossRef]
- Gong, X.; Tang, B.; Zhu, R.; Liao, W.; Song, L. Data augmentation for electricity theft detection using conditional variational auto-encoder. Energies 2020, 13, 4291. [Google Scholar] [CrossRef]
- Xia, R.; Wang, J. A semi-supervised learning method for electricity theft detection based on CT-GAN. In Proceedings of the 2022 IEEE International Conference on Power Systems and Electrical Technology (PSET), Aalborg, Denmark, 13–15 October 2022; pp. 335–340. [Google Scholar]
- Ohno, H. Training data augmentation using generative models with statistical guarantees for materials informatics. Soft Comput. 2022, 26, 1181–1196. [Google Scholar] [CrossRef]
- Shivashankar, C.; Miller, S. Semantic data augmentation with generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Luxembourg, 11–15 September 2023; pp. 863–873. [Google Scholar]
- Viegas, J.L.; Esteves, P.R.; Melício, R.; Mendes, V.M.F.; Vieira, S.M. Solutions for detection of non-technical losses in the electricity grid: A review. Renew. Sustain. Energy Rev. 2017, 80, 1256–1268. [Google Scholar] [CrossRef]
- Xia, X.; Xiao, Y.; Liang, W.; Cui, J. Detection methods in smart meters for electricity thefts: A survey. Proc. IEEE 2022, 110, 273–319. [Google Scholar] [CrossRef]
- Ahmed, M.; Khan, A.; Ahmed, M.; Tahir, M.; Jeon, G.; Fortino, G.; Piccialli, F. Energy theft detection in smart grids: Taxonomy, comparative analysis, challenges, and future research directions. IEEE/CAA J. Autom. Sin. 2022, 9, 578–600. [Google Scholar] [CrossRef]
- Guarda, F.; Hammerschmitt, B.; Capeletti, M.; Neto, N.; Dos Santos, L.; Prade, L.; Abaide, A. Non-hardware-based non-technical losses detection methods: A review. Energies 2023, 16, 2054. [Google Scholar] [CrossRef]
- Kgaphola, P.M.; Marebane, S.M.; Hans, R.T. Electricity theft detection and prevention using technology-based models: A systematic literature review. Electricity 2024, 5, 334–350. [Google Scholar] [CrossRef]
- Althobaiti, A.; Jindal, A.; Marnerides, A.K.; Roedig, U. Energy theft in smart grids: A survey on data-driven attack strategies and detection methods. IEEE Access 2021, 9, 159291–159312. [Google Scholar] [CrossRef]
- Badr, M.; Ibrahem, M.; Kholidy, H.; Fouda, M.; Ismail, M. Review of the data-driven methods for electricity fraud detection in smart metering systems. Energies 2023, 16, 2852. [Google Scholar] [CrossRef]
- Stracqualursi, E.; Rosato, A.; Di Lorenzo, G.; Panella, M.; Araneo, R. Systematic review of energy theft practices and autonomous detection through artificial intelligence methods. Renew. Sustain. Energy Rev. 2023, 184, 113544. [Google Scholar] [CrossRef]
- Depuru, S.S.S.R.; Wang, L.; Devabhaktuni, V. Electricity theft: Overview, issues, prevention and a smart meter based approach to control theft. Energy Policy 2011, 39, 1007–1015. [Google Scholar] [CrossRef]
- Lewis, F.B. Costly ‘Throw-Ups’: Electricity theft and power disruptions. Electr. J. 2015, 28, 118–135. [Google Scholar] [CrossRef]
- Czechowski, R.; Kosek, A.M. The most frequent energy theft techniques and hazards in present power energy consumption. In Proceedings of the 2016 Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-SG), Vienna, Austria, 12 April 2016; pp. 1–7. [Google Scholar]
- Grewal, R.; Sharma, T.; Mourya, R.; Kumar, A.; Kaur, K. Cost effective overload and theft detection for power distribution system. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 450–455. [Google Scholar]
- Shokry, M.; Awad, A.I.; Abd-Ellah, M.K.; Khalaf, A.A.M. Systematic survey of advanced metering infrastructure security: Vulnerabilities, attacks, countermeasures, and future vision. Future Gener. Comput. Syst. 2022, 136, 358–377. [Google Scholar] [CrossRef]
- Jokar, P.; Arianpoo, N.; Leung, V.C.M. Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans. Smart Grid 2016, 7, 216–226. [Google Scholar] [CrossRef]
- Leite, J.B.; Mantovani, J.R.S. Detecting and locating non-technical losses in modern distribution networks. IEEE Trans. Smart Grid 2018, 9, 1023–1032. [Google Scholar] [CrossRef]
- Guan, L.; Cong, X.; Zhang, Q.; Liu, F.; Gao, Y.; An, W.; Noureldin, A. A comprehensive review of micro-inertial measurement unit based intelligent PIG multi-sensor fusion technologies for small-diameter pipeline surveying. Micromachines 2020, 11, 840. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Yang, Y.; Xu, Y.; Xue, Y.; Song, R.; Kang, J.; Zhao, H. Electricity theft detection in AMI based on clustering and local outlier factor. IEEE Access 2021, 9, 107250–107259. [Google Scholar] [CrossRef]
- Shaaban, M.; Tariq, U.; Ismail, M.; Almadani, N.; Ahmed, M. Data-driven detection of electricity theft cyberattacks in PV generation. IEEE Syst. J. 2022, 16, 3349–3359. [Google Scholar] [CrossRef]
- Ahir, R.K.; Chakraborty, B. Pattern-based and context-aware electricity theft detection in smart grid. Sustain. Energy Grids Netw. 2022, 32, 100833. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, X.; Hu, T.; Zhu, L. Smart grid theft detection based on hybrid multi-time scale neural network. Appl. Sci. 2023, 13, 5710. [Google Scholar] [CrossRef]
- Ismail, M.; Shaaban, M.F.; Naidu, M.; Serpedin, E. Deep learning detection of electricity theft cyber-attacks in renewable distributed generation. IEEE Trans. Smart Grid 2020, 11, 3428–3437. [Google Scholar] [CrossRef]
- Ezeddin, M.; Albaseer, A.; Abdallah, M.; Bayhan, S.; Qaraqe, M.; Al-Kuwari, S. Efficient deep learning based detector for electricity theft generation system attacks in smart grid. In Proceedings of the 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 20–22 March 2022; pp. 1–6. [Google Scholar]
- Pan, H.; Yin, Z.; Jiang, X. High-dimensional energy consumption anomaly detection: A deep learning-based method for detecting anomalies. Energies 2022, 15, 6139. [Google Scholar] [CrossRef]
- Hasan, M.N.; Toma, R.N.; Nahid, A.-A.; Islam, M.M.M.; Kim, J.-M. Electricity theft detection in smart grid systems: A CNN-LSTM based approach. Energies 2019, 12, 3310. [Google Scholar] [CrossRef]
- Ullah, A.; Javaid, N.; Samuel, O.; Imran, M.; Shoaib, M. CNN and GRU based deep neural network for electricity theft detection to secure smart grid. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1598–1602. [Google Scholar]
- Takiddin, A.; Ismail, M.; Zafar, U.; Serpedin, E. Deep autoencoder-based anomaly detection of electricity theft cyberattacks in smart grids. IEEE Syst. J. 2022, 16, 4106–4117. [Google Scholar] [CrossRef]
- Takiddin, A.; Ismail, M.; Nabil, M.; Mahmoud, M.M.E.A.; Serpedin, E. Detecting electricity theft cyber-attacks in AMI networks using deep vector embeddings. IEEE Syst. J. 2021, 15, 4189–4198. [Google Scholar] [CrossRef]
- Yao, D.; Wen, M.; Liang, X.; Fu, Z.; Zhang, K.; Yang, B. Energy theft detection with energy privacy preservation in the smart grid. IEEE Internet Things J. 2019, 6, 7659–7669. [Google Scholar] [CrossRef]
- Krishna, V.B.; Gunter, C.A.; Sanders, W.H. Evaluating detectors on optimal attack vectors that enable electricity theft and DER Fraud. IEEE J. Sel. Top. Signal Process. 2018, 12, 790–805. [Google Scholar] [CrossRef]
- Krishna, V.B.; Lee, K.; Weaver, G.A.; Iyer, R.K.; Sanders, W.H. F-DETA: A framework for detecting electricity theft attacks in smart grids. In Proceedings of the 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, 8 June–1 July 2016; pp. 407–418. [Google Scholar]
- Takiddin, A.; Ismail, M.; Zafar, U.; Serpedin, E. Robust electricity theft detection against data poisoning attacks in smart grids. IEEE Trans. Smart Grid 2021, 12, 2675–2684. [Google Scholar] [CrossRef]
- Li, S.; Han, Y.; Yao, X.; Yingchen, S.; Wang, J.; Zhao, Q. Electricity theft detection in power grids with deep learning and random forests. J. Electr. Comput. Eng. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Alromih, A.; Clark, J.A.; Gope, P. Electricity theft detection in the presence of prosumers using a cluster-based multi-feature detection model. In Proceedings of the 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aachen, Germany, 25–28 October 2021; pp. 339–345. [Google Scholar]
- Martino, M.D.; Decia, F.; Molinelli, J.; Fernández, A. Improving electric fraud detection using class imbalance strategies. In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods (ICPRAM), Algarve, Portugal, 6–8 February 2012; pp. 135–141. [Google Scholar]
- Depuru, S.S.S.R.; Wang, L.; Devabhaktuni, V. Support vector machine based data classification for detection of electricity theft. In Proceedings of the 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011; pp. 1–8. [Google Scholar]
- Figueroa, G.; Chen, Y.-S.; Avila, N.; Chu, C.-C. Improved practices in machine learning algorithms for NTL detection with imbalanced data. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Mujeeb, S.; Javaid, N.; Ahmed, A.; Gulfam, S.M.; Qasim, U.; Shafiq, M.; Choi, J.-G. Electricity theft detection with automatic labeling and enhanced RUSBoost classification using differential evolution and jaya algorithm. IEEE Access 2021, 9, 128521–128539. [Google Scholar] [CrossRef]
- Yap, B.W.; Rani, K.A.; Rahman, H.A.A.; Fong, S.; Khairudin, Z.; Abdullah, N.N. An application of oversampling, undersampling, bagging and boosting in handling imbalanced datasets. In Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), Kuala Lumpur, Malaysia, 16–18 December 2013; pp. 13–22. [Google Scholar]
- Khan, Z.A.; Adil, M.; Javaid, N.; Saqib, M.N.; Shafiq, M.; Choi, J.-G. Electricity theft detection using supervised learning techniques on smart meter data. Sustainability 2020, 12, 8023. [Google Scholar] [CrossRef]
- Syed, D.; Abu-Rub, H.; Refaat, S.S.; Xie, L. Detection of energy theft in smart grids using electricity consumption patterns. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 4059–4064. [Google Scholar]
- Maraden, Y.; Wibisono, G.; Nugraha, I.G.D.; Sudiarto, B.; Jufri, F.H.; Kazutaka, K.; Prabuwono, A.S. Enhancing electricity theft detection through K-nearest neighbors and logistic regression algorithms with synthetic minority oversampling technique: A case study on state electricity company (PLN) customer data. Energies 2023, 16, 5405. [Google Scholar] [CrossRef]
- Qu, Z.; Li, H.; Wang, Y.; Zhang, J.; Abu-Siada, A.; Yao, Y. Detection of electricity theft behavior based on improved synthetic minority oversampling technique and random forest classifier. Energies 2020, 13, 2039. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X. Electricity theft detection based on SMOTE oversampling and logistic regression classifier. In Proceedings of the 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China, 2–14 May 2023; pp. 2571–2576. [Google Scholar]
- Chen, S.; Yang, Y.; You, S.; Chen, W.; Li, Z. A study of electricity theft detection method based on anomaly transformer. In Proceedings of the Big Data, Sorrento, Italy, 15–18 December 2023; pp. 164–180. [Google Scholar]
- Tripathi, A.K.; Pandey, A.C.; Sharma, N. A new electricity theft detection method using hybrid adaptive sampling and pipeline machine learning. Multimed. Tools Appl. 2023, 83, 54521–54544. [Google Scholar] [CrossRef]
- Pereira, J.; Saraiva, F. A comparative analysis of unbalanced data handling techniques for machine learning algorithms to electricity theft detection. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Petrlik, I.; Lezama, P.; Rodriguez, C.; Inquilla, R.; Reyna-González, J.E.; Esparza, R. Electricity theft detection using machine learning. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 420–425. [Google Scholar] [CrossRef]
- Lepolesa, L.J.; Achari, S.; Cheng, L. Electricity theft detection in smart grids based on deep neural network. IEEE Access 2022, 10, 39638–39655. [Google Scholar] [CrossRef]
- Rahimi, A.; Shahrestani, A.; Ramezani, S.; Zamani, P.; Tehrani, S.O.; Moghaddam, M.H.Y. Filter based time-series anomaly detection in AMI using AI approaches. In Proceedings of the 2021 5th International Conference on Internet of Things and Applications (IoT), Isfahan, Iran, 19–20 May 2021; pp. 1–6. [Google Scholar]
- Huang, L.; Qin, H.; Pan, Z.; Yu, M. Electricity theft detection based on iterative interpolation and fusion convolutional neural network. In Proceedings of the 2022 7th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 23–26 September 2022; pp. 567–571. [Google Scholar]
- Fei, K.; Li, Q.; Zhu, C. Non-technical losses detection using missing values’ pattern and neural architecture search. Int. J. Electr. Power Energy Syst. 2022, 134, 107410. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, M.; Sun, Z. Research status of electricity-stealing identification technology for distributed PV. In Proceedings of the 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, 26–29 January 2015; pp. 2031–2034. [Google Scholar]
- Althobaiti, A.; Jindal, A.; Marnerides, A.K. Data-driven energy theft detection in modern power grids. In Proceedings of the Twelfth ACM International Conference on Future Energy Systems, Virtual, 28 June–2 July 2021; pp. 39–48. [Google Scholar]
- Esmalifalak, M.; Liu, L.; Nguyen, N.; Zheng, R.; Han, Z. Detecting stealthy false data injection using machine learning in smart grid. IEEE Syst. J. 2017, 11, 1644–1652. [Google Scholar] [CrossRef]
- Singh, S.K.; Bose, R.; Joshi, A. Energy theft detection for AMI using principal component analysis based reconstructed data. IET Cyber-Phys. Syst. Theory Appl. 2019, 4, 179–185. [Google Scholar] [CrossRef]
- Kim, J.Y.; Hwang, Y.M.; Sun, Y.G.; Sim, I.; Kim, D.I.; Wang, X. Detection for non-technical loss by smart energy theft with intermediate monitor meter in smart grid. IEEE Access 2019, 7, 129043–129053. [Google Scholar] [CrossRef]
- Punmiya, R.; Choe, S. Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing. IEEE Trans. Smart Grid 2019, 10, 2326–2329. [Google Scholar] [CrossRef]
- Gao, H.-X.; Kuenzel, S.; Zhang, X.-Y. A hybrid ConvLSTM-based anomaly detection approach for combating energy theft. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Nabil, M.; Ismail, M.; Mahmoud, M.; Shahin, M.; Qaraqe, K.; Serpedin, E. Deep learning-based detection of electricity theft cyber-attacks in smart grid ami networks. In Deep Learning Applications for Cyber Security; Alazab, M., Tang, M., Eds.; Advanced Sciences and Technologies for Security Applications; Springer International Publishing: Cham, Switzerland, 2019; pp. 73–102. ISBN 978-3-030-13056-5. [Google Scholar]
- Nabil, M.; Mahmoud, M.; Ismail, M.; Serpedin, E. Deep recurrent electricity theft detection in AMI networks with evolutionary hyper-parameter tuning. In Proceedings of the 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Atlanta, GA, USA, 14–17 July 2019; pp. 1002–1008. [Google Scholar]
- Jindal, A.; Dua, A.; Kaur, K.; Singh, M.; Kumar, N.; Mishra, S. Decision tree and SVM-based data analytics for theft detection in smart grid. IEEE Trans. Ind. Inf. 2016, 12, 1005–1016. [Google Scholar] [CrossRef]
- Zheng, K.; Chen, Q.; Wang, Y.; Kang, C.; Xia, Q. A novel combined data-driven approach for electricity theft detection. IEEE Trans. Ind. Inf. 2019, 15, 1809–1819. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, X.; Li, H.; Xu, J.; Wang, D. Unsupervised detection of abnormal electricity consumption behavior based on feature engineering. IEEE Access 2020, 8, 55483–55500. [Google Scholar] [CrossRef]
- Tacón, J.; Melgarejo, D.; Rodríguez, F.; Lecumberry, F.; Fernández, A. Semisupervised approach to non technical losses detection. In Proceedings of the Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Puerto Vallarta, Mexico, 2–5 November 2014; pp. 698–705. [Google Scholar]
- Aslam, Z.; Ahmed, F.; Almogren, A.; Shafiq, M.; Zuair, M.; Javaid, N. An attention guided semi-supervised learning mechanism to detect electricity frauds in the distribution systems. IEEE Access 2020, 8, 221767–221782. [Google Scholar] [CrossRef]
- Li, J.; Wang, F. Non-technical loss detection in power grids with statistical profile images based on semi-supervised learning. Sensors 2020, 20, 236. [Google Scholar] [CrossRef]
- Hu, T.; Guo, Q.; Shen, X.; Sun, H.; Wu, R.; Xi, H. Utilizing unlabeled data to detect electricity fraud in AMI: A semisupervised deep learning approach. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3287–3299. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, Y.; Wang, Z.; Yi, Y.; Feng, L.; Wang, F. Knowledge embedded semi-supervised deep learning for detecting non-technical losses in the smart grid. Energies 2019, 12, 3452. [Google Scholar] [CrossRef]
- Qi, R.; Li, Q.; Luo, Z.; Zheng, J.; Shao, S. Deep semi-supervised electricity theft detection in AMI for sustainable and secure smart grids. Sustain. Energy Grids Netw. 2023, 36, 101219. [Google Scholar] [CrossRef]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–12 December 2020; Volume 33, pp. 1877–1901. [Google Scholar]
- Ashraf, M.; Anowar, F.; Setu, J.H.; Chowdhury, A.I.; Ahmed, E.; Islam, A.; Al-Mamun, A. A survey on dimensionality reduction techniques for time-series data. IEEE Access 2023, 11, 42909–42923. [Google Scholar] [CrossRef]
- Patil, R.; Gudivada, V. A review of current trends, techniques, and challenges in large language models (LLMs). Appl. Sci. 2024, 14, 2074. [Google Scholar] [CrossRef]
Review | Year | Data Issues | Categorizations of ETD | Main Contribution |
---|---|---|---|---|
Viegas et al. [16] | 2017 |
|
|
|
Althobaiti et al. [21] | 2021 |
|
|
|
Xia et al. [17] | 2022 |
|
|
|
Ahmed et al. [18] | 2022 |
|
|
|
Badr et al. [22] | 2023 |
|
|
|
Guarda et al. [19] | 2023 |
|
|
|
Stracqualursi et al. [23] | 2024 |
|
|
|
Kgaphola et al. [20] | 2024 |
|
|
|
Our Contributions | 2024 |
|
|
|
Dataset | Time Stamp | Duration | Country | Unit | Characteristics | ||
---|---|---|---|---|---|---|---|
Imbalanced | Missing Values | Absence of Labels | |||||
SGCC [8,39,40,41,42,43] | 1 day | 2014.1.~2016.10. | China | kW | ○ | ○ | X |
CER [29,44,45,46,47] | 30 min | 2009.1.~2010.12. | Ireland | kW | ○ | ○ | ○ |
Electricity-Theft [4,48] | 15 min | 31 days | NA | W | ○ | X | ○ |
Ausgrid Solar Dataset [44] | 30 min | 2010.7.~2013.6. | Australia | kW | ○ | ○ | ○ |
UTE [49] | 1 h | 2004.1.~2004.12. | Uruguay | kW | ○ | X | ○ |
India dataset [50] | 15 min | 24 h | India | kW | ○ | X | X |
Honduras electricity consumption dataset [51] | 1 day | 2014.10.~2016.12. | Honduras | kW | ○ | ○ | X |
UMass smart homes dataset [52] | 15 min | 2014.5.~2016.2. | United States | kW | ○ | ○ | ○ |
5 Vs of Big Data | Description | Issues of Generative AI-Based ETD |
---|---|---|
Velocity | The speed at which data are generated and processed |
|
Volume | The scale of the data |
|
Value | The usefulness of the data being analyzed |
|
Variety | The different types of data available |
|
Veracity | The quality and accuracy of the data |
|
Ref. | Approach | Proposed Method | Motivation | Limitation |
---|---|---|---|---|
[8] | Supervised learning | CNN |
|
|
[29] | SVM |
|
| |
[39,73] | ConvLSTM |
|
| |
[74] | RNN |
|
| |
[75] | Deep RNN and GRU |
|
| |
[76] | Random forest and SVM |
|
| |
[37] | Semi- Supervised learning | GRU-RNN |
|
|
[41] | Autoencoder |
|
| |
[77] | MIC |
|
| |
[78] | Density-based spatial clustering |
|
| |
[79] | TSVM |
|
| |
[80] | Relational denoising autoencoder |
|
| |
[82] | Multi-task feature extracting fraud detector |
|
| |
[83] | Semi-supervised Autoencoder |
|
| |
[84] | Autoencoder with LSTM |
|
| |
[4] | Generative AI | Diffusion-based LSTM |
|
|
[11] | CNN with VAE-GAN |
|
| |
[12] | Conditional Autoencoder |
|
| |
[13] | CT (Cooperative Training)-GAN |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Sun, Y.; Lee, S.; Seon, J.; Hwang, B.; Kim, J.; Kim, J.; Kim, K.; Kim, J. Data-Driven Approaches for Energy Theft Detection: A Comprehensive Review. Energies 2024, 17, 3057. https://doi.org/10.3390/en17123057
Kim S, Sun Y, Lee S, Seon J, Hwang B, Kim J, Kim J, Kim K, Kim J. Data-Driven Approaches for Energy Theft Detection: A Comprehensive Review. Energies. 2024; 17(12):3057. https://doi.org/10.3390/en17123057
Chicago/Turabian StyleKim, Soohyun, Youngghyu Sun, Seongwoo Lee, Joonho Seon, Byungsun Hwang, Jeongho Kim, Jinwook Kim, Kyounghun Kim, and Jinyoung Kim. 2024. "Data-Driven Approaches for Energy Theft Detection: A Comprehensive Review" Energies 17, no. 12: 3057. https://doi.org/10.3390/en17123057
APA StyleKim, S., Sun, Y., Lee, S., Seon, J., Hwang, B., Kim, J., Kim, J., Kim, K., & Kim, J. (2024). Data-Driven Approaches for Energy Theft Detection: A Comprehensive Review. Energies, 17(12), 3057. https://doi.org/10.3390/en17123057