
Citation: Yu, R.; Hodzic, E.;

Nogenmyr, K.-J. Learning Flame

Evolution Operator under Hybrid

Darrieus Landau and Diffusive

Thermal Instability. Energies 2024, 17,

3097. https://doi.org/10.3390/

en17133097

Academic Editor: Albert Ratner

Received: 11 May 2024

Revised: 11 June 2024

Accepted: 20 June 2024

Published: 23 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Learning Flame Evolution Operator under Hybrid Darrieus
Landau and Diffusive Thermal Instability
Rixin Yu 1,* , Erdzan Hodzic 2 and Karl-Johan Nogenmyr 3

1 Department of Energy Sciences, Lund University, 221 00 Lund, Sweden
2 Department of Manufacturing Processes, RISE Research Institutes of Sweden, 553 22 Jonkoping, Sweden
3 Siemens Energy AB, 612 31 Finspång, Sweden
* Correspondence: rixin.yu@energy.lth.se

Abstract: Recent advancements in the integration of artificial intelligence (AI) and machine learning
(ML) with physical sciences have led to significant progress in addressing complex phenomena
governed by nonlinear partial differential equations (PDEs). This paper explores the application
of novel operator learning methodologies to unravel the intricate dynamics of flame instability,
particularly focusing on hybrid instabilities arising from the coexistence of Darrieus–Landau (DL)
and Diffusive–Thermal (DT) mechanisms. Training datasets encompass a wide range of parameter
configurations, enabling the learning of parametric solution advancement operators using techniques
such as parametric Fourier Neural Operator (pFNO) and parametric convolutional neural networks
(pCNNs). Results demonstrate the efficacy of these methods in accurately predicting short-term and
long-term flame evolution across diverse parameter regimes, capturing the characteristic behaviors
of pure and blended instabilities. Comparative analyses reveal pFNO as the most accurate model
for learning short-term solutions, while all models exhibit robust performance in capturing the
nuanced dynamics of flame evolution. This research contributes to the development of robust
modeling frameworks for understanding and controlling complex physical processes governed by
nonlinear PDEs.

Keywords: machine learning; operator learning; convolutional neural network; fourier neural
operator; partial differential equation; intrinsic flame instability

1. Introduction

In recent years, the integration of artificial intelligence (AI) and machine learning (ML)
with natural sciences and physical engineering has led to significant advancements, particu-
larly in addressing the complexities of nonlinear partial differential equations (PDEs). These
equations are fundamental in understanding various physical phenomena, ranging from
turbulent fluid dynamics to complicated physico-chemical processes. Within the domain
of nonlinear PDE systems lies a rich tapestry of intricate dynamics, including instabilities,
multiscale interactions, and chaotic behaviors. To enhance predictive capabilities and
design robust control strategies in engineering applications, computational methods are
indispensable. These methods, often in the form of numerical solvers, enable the accurate
simulation of PDE solutions across spatial and temporal domains. Implicit in these solvers
is the concept of the functional mapping operator, which could iteratively advance the
PDE solution functions in time, providing a pathway to explore the evolution of physical
systems over extended durations. A distinctive class of machine learning methods has
emerged, capable of learning and replicating the behavior of these PDE operators.

Recent advancements have seen the proliferation of operator learning methods, each
offering unique insights and capabilities. Early efforts in this domain drew inspiration from
deep convolutional neural networks (CNNs) [1–7], employing techniques from computer vi-
sion. These CNN-based approaches parameterize the PDE operator in a finite-dimensional

Energies 2024, 17, 3097. https://doi.org/10.3390/en17133097 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17133097
https://doi.org/10.3390/en17133097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2561-2770
https://orcid.org/0000-0003-3482-1969
https://orcid.org/0009-0005-1649-4353
https://doi.org/10.3390/en17133097
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17133097?type=check_update&version=2

Energies 2024, 17, 3097 2 of 16

space, enabling the mapping of discrete functions onto image-like representations. Building
upon this foundation, recent strides have witnessed the development of neural operator
methods [8,9] capable of learning operators of infinite dimensionality. Notable examples
include Deep Operator Network [10] and the Fourier Neural Operator (FNO) [11], both
demonstrating remarkable proficiency across a diverse array of benchmark problems [12,13].
Furthermore, recent advancements have extended neural operators by amalgamating con-
cepts from wavelet methods [14,15] and adapting approaches for complex domains [16].

In our recent investigations [17,18], we delved into the intricate dynamics of flame
instability and nonlinear evolution, a canonical problem with profound implications for
combustion science. Flames can undergo destabilization due to intrinsic instabilities, in-
cluding the hydrodynamic Darrieus–Laudau (DL) mechanism [19,20] attributed to density
gradients across a flame, and the Diffusive–Thermal (DT) mechanism [21,22] driven by heat
and reactant diffusion disparities. Our previous work [17] primarily focused on DL flames,
scrutinizing the evolution of unstable flame fronts within periodic channels of varying
widths. Under DL instability, an initially planar flame morphs into a steady curved front; as
the channel width increases, the curved front becomes sensitive to random noise, and small
wrinkles start to emerge. At sufficiently large channels, DL flames give rise to complicated
fractal fronts characterized by hierarchical cascading of cellular structures [23].

The nonlinear evolution of DT flame development can be modeled by the Michel-
son–Sivashinsky equation [24], while a more accurate but computationally expensive ap-
proach involves direct numerical simulation (DNS) of Navier–Stokes equations. Utilizing
these two approaches to generate training datasets, our investigations [17] demonstrated
that both CNNs and FNO could effectively capture the evolution of DL flames, with
FNO exhibiting superior performance in modeling complex flame geometries over longer
durations. Subsequently, we embarked on developing parameterized learning methodolo-
gies capable of encapsulating dynamics across diverse parameter regimes within a single
network framework. Through the introduction of pCNNs and pFNO models [18], we
demonstrated their efficacy in replicating the behavior of DL flames across varying channel
widths. Additionally, our methods have shown success in learning the parametric solutions
of the Kuramoto–Sivashinsky equation [25], which models unstable flame evolution due
to the DT mechanism. However, a challenge remains in mitigating the tendency of these
models to overestimate noise effects.

In this paper, we extend our research horizon to encompass the complexities arising
from hybrid instabilities, specifically those arising from the coexistence of DL and DT
mechanisms. These hybrid systems pose novel challenges, as they embody a rich spectrum
of behaviors stemming from the interplay of distinct instability modes. Leveraging our
recently developed operator learning methodologies, we aim to unravel the nuanced
dynamics underlying such hybrid instabilities, shedding light on their short-term evolution
and long-term statistical properties. Furthermore, our endeavor holds promise for the
development of robust modeling frameworks capable of capturing the intricate dynamics
of real-world flame evolution scenarios.

The paper is organized as follows: first, we describe the problem setup for learning
PDE operators, followed by brief descriptions of the two parametric learning methods to be
used in this work. These methods will be compared in the context of learning parametric-
dependent solution time–advance operators for the Sivashinsky Equation [26], which
models unstable front evolution due to hybrid mechanisms of flame instability. Finally, we
provide a summary and conclusion.

2. Problem Setup for Learning PDE Operators

In this section, we delineate the problem setup for learning a parametric PDE operator,
along with a description of recurrent training methods.

Energies 2024, 17, 3097 3 of 16

Consider a system governed by PDEs, typically involving multiple functions and
mappings between them. Our focus here is on a parametric operator mapping, denoted as

Ĝ : V ×Rdγ → V ′; (v(x), γ) 7→ v′(x′) (1)

where γ ∈ Rdγ represents a set of parameters. The input function is v(x), where x ∈ D
resides in a functional space V(D,Rdv) with domain D ⊂ Rd and co-domain Rdv while the
output function is v′(x′), where x′ ∈ D′ belongs to another functional space V ′(D′,Rd′v)

with domain D′ ⊂ Rd′ and co-domain Rd′v .
Our primary interest lies in the solution time advancement operator with parametric

dependence, given by
Ĝ : (ϕ(x, t̄), γ) 7→ ϕ(x; t̄ + 1) (2)

where ϕ(x; t̄) denotes the solution to a PDE under parameters γ, and t̄ = t/∆t represents
normalized time with a small time increment ∆t. For simplicity, we assume identical
domain and co-domain for both input and output functions, i.e., D′ = D, V ′ = V , d′ = d,
and d′v = dv, with periodic boundary conditions on D.

To approximate the mapping Ĝ using neural network methods, let Θ denote the space
of trainable parameters in the network. A neural network can be defined as

G : V ×Rdγ × Θ → V ′ or equivalently Gθ : V ×Rdγ → V ′, θ ∈ Θ. (3)

where Θ represents the space of network parameters. Training the neural network involves
finding an optimal choice of parameters θ∗ ∈ Θ such that Gθ∗ approximates Ĝ.

Starting with an initial solution function ϕ(x; t0) under fixed parameter values γ, the
recurrent application of the operator Gθ,γ := Gθ(·, γ) can roll out predicted solutions of
arbitrary length by iteratively updating the input function with its output from the previous
prediction. Note that while the learned operator is expected to make accurate short-term
predictions, its long-term prediction might be allowed to deviate if the ground truth PDE
admits chaotic solutions. On the other hand, it is still desirable that the learned operator
can reproduce the correct statistics in the long-term solutions.

Following previous studies [17,18], our training approach adopts a one-to-many
setup where the recurrent network is trained to make multiple successive predictions
from a single input function. Such a setup ensures numerical stability in the learned
solution advancement operator, a crucial consideration highlighted in the prior work [17,18].

More specifically, let
{

vj, (Ĝ1
γi

vj, Ĝ2
γi

vj, ..., Ĝn
γi

vj)
}j=Z′ ,i=Z′′

j=1,i=1
be a total (Z′ × Z′′) number of

training data arranged as input/output pairs in the 1-to-n manner, and an operator with a
superscript n denotes its repeated application n times, e.g., Ĝn

γ := Ĝγ ◦ ... ◦ Ĝγ. Training a
network Gθ to approximate Ĝ then becomes a minimization task

min
θ∈Θ

Ev∼χ′ ,γ∼χ′′

[
C((G1

θ,γv, ...,Gn
θ,γv), (Ĝ1

γv, , ..., Ĝn
γv))

]
(4)

where v ∼ χ′ and γ ∼ χ′′ are randomly drawn according to independent probability
measures of χ′ and χ′′, respectively. The cost function C : Vn ×Vn → R is set to the relative
mean square (L2) error of C(x, y) = ||x − y||2/||y||2; here, Vn abbreviates the Cartesian
product of n copies of V .

3. Parametric Operator Learning Methods

In this section, we present a concise overview of two methods capable of learning the
parametric operator Ĝ. Further details about these methods can be found in paper [18].

3.1. Parametric Convolutional Neural Network (pCNN)

The operator Gθ,γ can be regarded as an image-to-image map when applied for the
temporal advancement of discretized solutions. Deep Convolutional Neural Networks

Energies 2024, 17, 3097 4 of 16

(CNNs) have demonstrated effectiveness in image-learning tasks. The network architecture
suitable for learning operators resembles a convolutional auto-encoder similar to that in
U-Net [6] and ConvPDE [7]. This network comprises an encoder block and a decoder
block, with input data passing through a series of transformations via convolutional layers.
Additionally, the method incorporates side networks to handle additional parameter inputs.
The pCNN model is outlined in Figure 1.

Figure 1. The parametric CNN model adopted in this study is demonstrated for input function v(xi)

discretized at the 1D mesh of 256 points, with L = 6 levels of encoding and decoding. Standard
convolution layers are represented by gray rectangles, while Inception layers are depicted in magenta.
The output data channels cl for each convolution layer are indicated within brackets.

Let e+0 denote the input function v(xj) represented on an x-mesh. The encoder block
follows an iterative update procedure: e+l 7→ (el+1, e∗l+1) 7→ e+l+1. This iteration occurs
over the level sequence l = 0, 1, ..., L − 1. Denote the last decoding output as e′L = e+L , a
subsequent decoding procedure is applied (e′l+1, e+l) 7→ e′l through reversing level l.

Here, el , e∗l , e+l , e′l ∈ Rcl×Nl represent four data sequences, each with cl channels and
size of Nl . The data size is halved as Nl+1 = Nl/2 for l ≥ 1. The first-stage encoder contains
two sub-maps of e+l 7→ el+1 and e+l 7→ e∗l+1; both are implemented using vanilla-stacked
convolution layers (with a filter size of 3, stride 1, periodic padding, and ReLU activation).
Some layers are replaced by Inception layers for improved performance. Additionally, a
size 2 max-pooling layer is prepended to halve the image size for l ≥ 1. The second-stage
encoder map is implemented as e+l+1 = el+1 + e∗l+1 · Dl(γ). Here, Dl is a simple function (a
two-layer perceptron) that converts the PDE parameters γ into a scaling ratio. The decoder
update (e′l+1, e+l) 7→ e′l involves concatenating e′l+1 (but up-sample it to double its size)
with e+l along the channel dimension. The final output is obtained as v′(xj) = e′1.

3.2. Parametric Fourier Neural Operator (pFNO)

The parametric Fourier Neural Operator (pFNO) [18] was developed based on the orig-
inal FNO method [11], wherein learning for the infinite-dimensional operator is achieved
by parameterizing the integral kernel operators in Fourier Space. The pFNO adopts an
architecture of maps-composition as G = Q ◦HL ◦ ... ◦ H1 ◦ P ◦ C, comprising a concate-
nation map C , a lifting map P , a sequence of hidden maps Hl for l = 1, 2, . . . , L, and a
projection map Q.

The first map C : V ×Rdγ → V c(D;Rdv+dγ); (v(x), γ) 7→ vc(x) simply concatenates
the parameters γ to the co-dimension of input function v(x), yielding vc(x). The second

Energies 2024, 17, 3097 5 of 16

map P : V c → V∗; vc(x) 7→ ε0(x), lifts the input to a higher-dimensional functional space
V∗ := V∗(D;Rdε) with dε > dv + dγ. The subsequent hidden maps Hl : V∗ ×Rdγ → V∗ :
(ε l−1, γ) 7→ ε l act sequentially to update ε0 7→ ε1 7→ . . . 7→ εL for all ε l ∈ V∗. Finally, the
map Q : V∗ → V ′; εL(x) 7→ v′(x) projects back to low-dimension functional space, finally
yielding v′(x).

Both P and Q are implemented using simple multilayer perceptrons(MLP). The
hidden maps Hl+1 are implemented as parametric Fourier layers:

ε l+1 = σ
(

Wlε l + bl +F−1{R∗
l (F{ε l}, γ)}

)
(5)

where Wl ∈ Rdε×dε and bl ∈ Rdε are learnable weights and biases, respectively, and σ is
a ReLU activation function. Here, F and F−1 represent the Fourier Transform and its
inverse, respectively. The function R∗

l : Cκmax×dε ×Rdγ → Cκmax×dε acts on the truncated
Fourier modes, transforming them as :

R∗
l (F{ε}, γ)κ,i =

dε

∑
j=1

[(Rl)κ,i,j + (R∗
l)κ,i,jD∗

l (γ)κ]F{ε}κ,j,

κ = 0, 1, ..., κmax and i = 1, ..., dε (6)

where Rl , R∗
l ∈ Cκmax×dε×dε are two learnable weight tensors and D∗

l : Rdγ → Rκmax
is a

function converting the parameters γ into κmax-number of scaling ratios. This function
consists of a two-stage map γ 7→ Dl(γ) 7→ D∗

l (γ), with Dl(γ) ∈ RND outputting ND
scaling ratios and implemented as an MLP. The second map hierarchically redistributes
these ratios across the wave numbers. In one dimension(d = 1), the distribution map
reads: D∗

l (γ)κ = Dl(γ)i for κ ∈ (κmax

2i+1 , κmax

2i] at i = 0, .., ND − 2, and, for κ ∈ (0, κmax

2ND−1] at
i = ND − 1.

One might observe that we can deactivate the second weight tensor R∗
l in Equation (6)

by enforcing the map D∗
l (γ) to output only zeros. This modification still enables learning

of the parameter operator due to the concatenation map C. Such a modified method can
viewed as a simple tweak to the baseline method of FNO [11] and will be referred as pFNO*
in a later section.

4. Numerical Experiments and Result Discussions

In this section, we employ the pFNO and pCNN methods to learn flame evolution
under hybrid instabilities arising from both Darrieus–Landau (DL) [19,20] and Diffu-
sive–Thermal (DT) [21,22] mechanisms. The dynamics of such unstable flame development
are encapsulated by the Sivashinsky equation [26]. To facilitate parametric learning, we
begin by reformulating the Sivashinsky equation, introducing two parameters that enable
straightforward specification for blending the two instabilities and controlling the largest
unstable wave numbers. By sampling across these parameters, we construct an extensive
training dataset covering a range of relevant scenarios subjected to different DL/DT mixing.
Subsequently, we present the results and compare the performance of the different methods
in learning these hybrid instabilities.

4.1. Governing Equations

Consider modeling the unstable development of a statistically planar flame front.
Let t̂ denote time and x̂ represent the spatial coordinate along the normal direction of
flame propagation. Introduce a displacement function ψ(x̂, t̂) : R× R → R describing
the stream-wise coordinate of a flame front undergoing intrinsic flame instabilities. Such
evolution can be modeled by the Sivashinsky equation [26]:

ψt̂ +
1
2
(ψx̂)

2 = −4(1 + Le∗)2ψx̂x̂x̂x̂ − Le∗ψx̂x̂ + (1 − Ω)Γ(ψ) (7)

Energies 2024, 17, 3097 6 of 16

where Γ : ψ 7→ −H(ψx̂) is a linear singular non-local operator defined using the Hilbert
transform H, or equivalently written as Γ : ψ 7→ F−1(|κ|Fκ(ψ)) using the spatial Fourier
transform Fκ(ψ) and its inverse F−1.

In Equation (7), Ω is the density ratio between burned product and fresh reactant; Le∗

is a ratio (positive or negative) depending on the Lewis number of deficient reactant and
another critical Lewis number. Introduce three constants (a, b, c) for variable transformation
on time t = a2 t̂, space x = b−2 x̂ and the displacement function ψ(x̂, t̂) = c2ϕ(x, t), then
Equation (7) can be rewritten as

1
τ

ϕt +
1

2β2 (ϕx)
2 = − µ

β4 ϕxxxx −
ν

β2 ϕxx +
ρ

β
Γ(ϕ) (8)

with β = bc−1, ν = Le∗/c2, ρ = (1 − Ω)bc, µ = 4(1 + Le∗)2b−2c−4 and τ = a−2b−2.
In this work, we consider the flame front solution ϕ(x, t) of Equation (8) in a channel

domain subjected to periodic boundary condition, i.e., x ∈ D = (π, π]. One might notice
that Equation (8) admits a zero equilibrium solution being a flat flame (i.e., ϕ∗(x, t) = 0); a
perturbation analysis around this zero solution yields a linear dispersion relation

ω(κ)

τ
= −µ

(
κ

β

)4
+ ν

(
κ

β

)2
+ ρ

(
κ

β

)
, ∀κ = 0, 1, 2, ... (9)

with the perturbed solution being ϕ(x, t) = ∑κ ϕ̂κ(t)eiκx + ϕ̂∗
κ (t)e−iκx (superscript * denotes

complex conjugate) and the Fourier mode of perturbation evolving as ϕ̂κ(t) ≈ ϕ̂κ(0) · eω(κ)·t.
Equations (8) and (9) present a straightforward approach to hybridizing two flame

instabilities of DT and DL mechanisms. This strategy is accomplished by specifying two
parameters, ρ and β, while the remaining parameters (µ, ν, and τ) can be determined by ad-
ditional constraints outlined below. Initially, the parameter ρ (in between 0 and 1) is defined
to allow for the continuous blending of these two instabilities. When ρ = 1, the Sivashinsky
Equation (8) yields a pure DL instability described by the Michelson–Sivashinsky (MS)
equation [24]:

1
τ

ϕt +
1

2β2 (ϕx)
2 =

1
β2 ϕxx +

1
β

Γ(ϕ) (10)

whereas, at the other end (ρ = 0), it recovers the pure DT instability as described by the
Kuramoto–Sivashinsky (KS) equation [25]:

1
τ

ϕt +
1

2β2 (ϕx)
2 = − 1

β2 ϕxx −
1
β4 ϕxxxx. (11)

Secondly, the parameter β is determined as the largest value for which the dispersion
relation of Equation (9) equals zero (i.e., ω(β) = 0). This definition yields ν = µ − ρ.
Consequently, we can prescribe β to establish the largest unstable wave number. To mitigate
variability in the remaining parameters, a third constraint is imposed: the maximum value
of ω(κ) over the interval 0 < κ < β must be 1/4. Furthermore, τ = ρβ/10 + (1 − ρ) is
employed to better accommodate the timescales attributed to the various hybrid instabilities.
This strategy allows for the determination of all remaining parameters given the values
of ρ and β. This is illustrated in Figure 2, which presents dispersion relation plots and
associated parameters.

Energies 2024, 17, 3097 7 of 16

0.0 0.2 0.4 0.6 0.8 1.0
κ/β

0

1/8

1/4

ω
(κ
)/τ

ρ=0 (μ=1, ν=1)
ρ=1/4 (μ=0.79, ν=0.54)
ρ=1/2 (μ=0.56, ν=0.057)
ρ=3/4 (μ=0.3, ν= −0.45)
ρ=1 (μ=0, ν= −1)

10

20

30

40

b

β=10
β=25

β=40

0 1/4 1/2 3/4 1
ρ

0.4

0.6

0.8

1.0

c

−1.0

−0.5

0.0

0.5

Le
*

0 1/4 1/2 3/4 1
ρ

1.0

1.1

1.2

1/
Ω

Figure 2. Dispersion relations (left) and relevant parameter values at prescribed values of ρ and β.

Before proceeding further, it may be worthwhile to mention a few well-known results.
The KS Equation (11) is often utilized as a benchmark example for PDE learning studies
and is renowned for exhibiting chaotic solutions at large β. On the other hand, the MS
Equation (10), although less familiar outside the flame instability community, can be
precisely solved using a pole decomposition technique [27], transforming it into a set of
ODEs with finite freedoms. Moreover, at large β, the MS equation admits a stable solution
in the form of a giant cusp front. However, at smaller β, the equation becomes susceptible
to noise, resulting in unstable solutions characterized by persistent small wrinkles atop a
giant cusp. Additional details about known theory can be found in references [23,28–35].

4.2. Training Dataset

Equation (8) is tackled using a pseudo-spectral approach combined with a Runge–Kutta
(4,5) time integration method. All solutions are computed on a uniformly spaced 1D mesh
consisting of 256 points. Training datasets are generated for a total of 15 parametric con-
figuration tuples (ρ, β), formed as the Cartesian product of three values for β in the range
[10, 25, 40] and five values for ρ in the range [0, 1/4, 1/2, 3/4, 1]. For each of the fifteen
parametric configurations, we generate 250 sequences of short-duration solutions, as well
as a single sequence of long-duration solutions. Each short solution sequence spans a
time duration of 0 ≤ t ≤ 75 and contains 500 consecutive solutions separated by a time
interval of ∆t = 0.15. Additionally, each sequence starts from random initial conditions
ϕ0(x) sampled from a uniform distribution over the range [0, 0.03]. The long sequence
covers a time duration of 0 ≤ t ≤ 18, 750 and comprises 125,000 consecutive solutions
outputted at the same interval ∆t. A validation dataset is similarly created for all fifteen
parameter tuples, but it contains only 10 percent of the data present in the training dataset.

4.3. Result Analysis

The training datasets described in the previous section are utilized to train parametric
solution advancement operators, denoted as Ĝ(γ) : ϕ(x; t) 7→ ϕ(x; t + ∆t) with γ := (ρ, β)
and dγ = 2. As a reminder, one ending value of ρ = 0 enables the pure DT instability while
the other ending value of ρ = 1 activates the pure DL instability.

In this study, three models—pFNO, pFNO*, and pCNN—described in Section 2 are
employed to learn the two-parameter dependent operator Ĝ(ρ,β). As explained in the last
paragraph in Section 2, pFNO* is a simple variant of the baseline FNO method [11] that
includes the parameters in the co-domain of the input function. On the other hand, pCNN
has shown poor performance in learning the full operator Ĝ(ρ,β), with a high training
error exceeding 3 percent; see Table 1. Therefore, we resort to two slightly restricted
models (pCNN10 and pCNN40), which learn the single parameter (ρ) dependent operators,
Ĝ(ρ,β=10) and Ĝ(ρ,β=40), with each model being trained using one-third of the total dataset
at ρ = 10 and 40, respectively.

Energies 2024, 17, 3097 8 of 16

Table 1. Relative L2 train/validation errors for all operator learning networks.

Model Parameter Configurations (β, ρ) Train L2 Valid. L2

pFNO* [10, 25, 40]× [0, 1/4, 1/2, 3/4, 1] 0.0098 0.010
pFNO [10, 25, 40]× [0, 1/4, 1/2, 3/4, 1] 0.0071 0.0073

pCNN [10, 25, 40]× [0, 1/4, 1/2, 3/4, 1] 0.036 0.037

pCNN10 [10]× [0, 1/4, 1/2, 3/4, 1] 0.011 0.012
pCNN40 [40]× [0, 1/4, 1/2, 3/4, 1] 0.022 0.022

The learned operator at given parameters is expected to make recurrent predictions
of solutions over an extended period. The training for such operators aims not only for
accurate short-term predictions but also for robust predictions of long-term solutions with
statistics similar to the ground truth. As demonstrated in previous studies [17,18], achieving
this involves organizing the training data in a 1-to-20 pair, as expressed in Equation (4),
optimized for accurately predicting 20 successive steps of outputs from a single input over
a range of parameter values.

Table 1 presents the relative training/validation errors for various models. The val-
idation errors in Table 1 are consistent with those reported in our previous work [17,18].
Additional details on training and model hyper-parameters are provided in Appendix A.

Figure 3 compares two randomly initialized sequences of front displacements pre-
dicted by two models (pFNO* and pCNN10) against the reference solutions at
ρ = [0, 1/4, 1/2, 3/4, 1] and β = 10. A similar comparison for pFNO* and pCNN40 at
β = 40 is shown in Figure 4. Additionally, Figures 5 and 6 depict similar comparisons for
the predicted front slope (ϕx) at β = 10 and 40, respectively.

−π
0

π
x

β
=
10

,ρ
=
0

−π
0

π
x

β
=
10

,ρ
=
1/
4

−π
0

π
x

β
=
10

,ρ
=
1/
2

−π
0

π
x

β
=
10

,ρ
=
3/
4

0 2π 4π 6π
ϕ(x, t) + t/15

−π
0

π
x

0 2π 4π 6π
ϕ(x, t) + t/15

β
=
10

,ρ
=
1

Ref pFNO * pCNN10

Figure 3. Long-term solutions of flame front displacement ϕ(x, t) at β = 10 and ρ = [0, 1/4, 1/2, 3/4, 1]
(from top to bottom row). Black reference solutions to Equation (8) obtained using high-order
numerical methods are compared against predictions by the operator learning methods of pFNO*
(red) and pCNN (cyan). The left and right columns correspond to two randomly initialized solution
sequences, each showing eleven snapshots of ϕ(x, t) at t/0.15 = 0, 50, 125, 250, 500, 750, 1000, 1250,
1500, 1750 and 2000. A time shift (t/15) is added to the displayed fronts to avoid overlap.

Energies 2024, 17, 3097 9 of 16

−π
0

π
x

β
=
40

,ρ
=
0

−π
0

π
x

β
=
40

,ρ
=
1/
4

−π
0

π
x

β
=
40

,ρ
=
1/
2

−π
0

π
x

β
=
40

,ρ
=
3/
4

0 2π 4π 6π
ϕ(x, t) + t/15

−π
0

π
x

0 2π 4π 6π
ϕ(x, t) + t/15

β
=
40

,ρ
=
1

Ref pFNO * pCNN40

Figure 4. Comparison of flame front displacement predicted by pFNO* and pCNN40 at β = 40.
Other details are the same as in Figure 3.

Figure 5. Comparison of front slope ϕx(x, t) calculated from a single instance reference solution (first
column) of Equation (10) at β = 10 and ρ = [0, 1/4, 1/2, 3/4, 1], against predictions by pFNO* and
pCNN (last two columns). Rainbow color indicates values from negative to positive.

Energies 2024, 17, 3097 10 of 16

Figure 6. Comparison of front slopes predicted by pFNO* and pCNN40 at β = 40. Other details are
the same as in Figure 5.

All relevant model predictions at all fifteen parametric configurations (β, ρ) ∈ [10, 25, 40]×
[0, 1/4, 1/2, 3/4, 1] are compared in Figure 7 for the normalized total front length (

∫
(ϕ2

x +
1)1/2dx/(2π)), in Figure 8 for the model errors accumulated through recurrent predictions,
and in Figure 9 for the long-term auto-correlation function. This auto-correlation function
characterizes the long-term recurrently predicted solutions:

t/0.15

1
1.
5

2

β=10

Ref
pFNO *

pFNO
pCNN10

t/0.15

β=25

Ref
pFNO *

pFNO

t/0.15

ρ
=
0

β=40

Ref
pFNO *

pFNO
pCNN40

t/0.15

1
1.
5

2

t/0.15 t/0.15

ρ
=
1/
4

t/0.15

1
1.
5

2

t/0.15 t/0.15

ρ
=
1/
2

t/0.15

1
1.
5

2

t/0.15 t/0.15

ρ
=
3/
4

0 500 1000 2000
t/0.15

1
1.
5

2

0 500 1000 2000
t/0.15

0 500 1000 2000
t/0.15

ρ
=
1

No
rm

al
ize

d
to
ta
l f
ro
nt
 le

ng
th
 ,

∫(
ϕ
2 x
+
1)

1/
2 d
x/
(2
π)

Figure 7. Normalized total front length comparison over 15 parametric configurations of (β, ρ) =

[10, 25, 40] × [0, 1/4, 1/2, 3/4, 1]. The black curve represents a single instance of reference solu-
tions obtained from Equation (8). Predictions by pFNO* are shown in red, pFNO in blue, and
pCNN10/pCNN40 in cyan.

Energies 2024, 17, 3097 11 of 16

Figure 8. Time evolution of the relative L2 error between the reference solution of Equation (8) and the
predicted solutions by pFNO*, pFNO, and pCNN10/pCNN40. The reference solutions are initialized
with random conditions at 15 parametric configurations of (β, ρ) = [10, 25, 40]× [0, 1/4, 1/2, 3/4, 1].
Rainbow colors from blue to red represent values ranging from 0 to 0.1; values above 0.1 are truncated
and displayed as white.

-0.5

0

0.5

1
ρ=0 ρ=1/4 ρ=1/2 ρ=3/4

β
=
10

ρ=1
Ref
pFNO *
pFNO
pCNN10

-0.5

0

0.5

1

β
=
25

Ref
pFNO *
pFNO

0 π

-0.5

0

0.5

1

0 π0 π0 π0 π

β
=
40

Ref
pFNO *
pFNO
pCNN40

Figure 9. The auto-correlation functions (Equation (12)) calculated from the long-term reference solu-
tions at 15 parametric configurations of (β, ρ) = [10, 25, 40]× [0, 1/4, 1/2, 3/4, 1] are compared against
those computed from the long-term predictions learned using pFNO*, pFNO, and pCNN10/pCNN40.

R(r) = E
(∫

D
ϕ∗(x)ϕ∗(x − r)dx/

∫
D

ϕ∗(x)ϕ∗(x)dx
)

. (12)

where ϕ∗(x) denotes the predicted solutions obtained after a sufficiently long time. Nu-
merical calculation for the expectation E in Equation (12) is implemented by averaging
over seven randomly initialized sequences of model predictions for a time duration

Energies 2024, 17, 3097 12 of 16

1000 < t/∆t < 4000. Moreover, for each of the learned models Gθ,(β,ρ) ≈ Ĝ(β,ρ), we
compute an approximated dispersion relation:

ω′(κ) = log(J(κ, κ))/∆t (13)

where J is the operator Jacobian

J(κ, κ) =
∂

∂ϵκ

∣∣∣Fκ{Gθ,(β,ρ)(2ϵκ cos(κx))}
∣∣∣, with κ, κ = 0, 1, 2, ... (14)

This Jacobian is computed using the automatic differential tool (e.g., torch.autograd. func-
tional.jacobian in PyTorch version 3.10.4). Figure 10 compares the dispersion relations by
all models with the reference ones. Additionally, Figure 10 shows one example of a learned
operator Jacobian, which is clearly diagonal dominant.

Figure 10. Left three columns: Comparison of reference dispersion relations (Equation (9), solid
lines) with those computed for the learned operators of all models (Equation (13), non-solid lines),
where line colors indicate different ρ. Right column: Illustration of a learned operator Jacobian
(Equation (14)), with dark colors indicating small values.

4.4. Findings

Overall learning: Our study underscores the robust learning capabilities of pFNO and
pCNN methodologies in capturing the nuanced dynamics of flame front evolution, modu-
lated by varying DL and DT instabilities blends. Both pFNO and pFNO* demonstrate good
performance in learning the full two-parameter front evolution operator Ĝρ,β modulated
by a ρ-varying blends of DL/DT instabilities as well as by a β-varying size of the largest
unstable wavelength. While pCNN encounters difficulty in learning the full operator, the
method still performs well in learning different instabilities when being restricted for the
single-parameter operators Ĝρ,β=10 and Ĝρ,β=40.

Short-term learning: Across the board, all learned models (pFNO, pFNO* and
pCNN10/40) demonstrate good accuracy in short-term predictions, with training/validation
errors below 2 percent (Table 1) and small accumulated errors (Figure 8). This precision
extends to various metrics, including front displacement, front slope, and normalized front
length (Figures 3–7 for t ≤ 50∆t), affirming the models’ fidelity in capturing short-term
dynamics. Moreover, pFNO demonstrates the smallest error and is the most accurate model
for learning short-term solutions.

Long-term learning: Detailed analysis of reference solutions unveils distinct charac-
teristics of isolated instabilities. At ρ = 1, DL fronts evolve toward a single giant cusp
structure, either remaining stationary at small β = 10 (Figure 3) or exhibiting noise-induced
wrinkles at larger β = 40 (Figure 4). Conversely, at ρ = 0, DT fronts adopt an overall
flat shape interspersed with oscillatory wavy structures, with decreasing wavelength and
amplitude as β increases from 10 to 40 (Figures 3 and 4). The slope plots for DT front
evolution result in the typical zebra stripe pattern (Figures 5 and 6). Intermediate values of
ρ showcase a gradual transition between these features, with the front structure blending
wavy oscillations together with the cusp shape.

Long-term predictions by all learned models (pFNO*, pFNO, pCNN10/pCNN40)
accurately replicate these characteristic behaviors across diverse parametric configurations,

Energies 2024, 17, 3097 13 of 16

encompassing pure DL and DT instabilities as well as blended scenarios. Quantitative
comparisons through auto-correlation functions (Figure 9) and total front length (Figure 7)
confirm the models’ proficiency in capturing long-term solutions.

Learning challenges: However, a common challenge across both pFNO and pCNN
models lies in over-predicting the impact of noise-induced wrinkles, particularly noticeable
at small β = 10 (Figures 3 and 5). This tendency leads to an overestimation of the total
front area, especially pronounced at lower β values of 10 and 25 (Figure 7 at ρ = 1). When
learning for the hybrid DL and DT instabilities, excessive noisy wrinkles also show up
in all the model predictions (at ρ = 3/4 in Figures 5 and 6), however, the issue becomes
less discernible toward smaller values of ρ when DT instability plays a larger role, as also
evident by the front length in Figure 7.

Extra finding: It is particularly interesting to point out that the two models, pFNO
and pFNO*, learn well on the parametric-dependent linear dispersion relations, as seen in
Figure 10. Except for a moderate level of mismatch at a few parameter conditions toward
large ρ at 25 and 40, pFNO and pFNO* reproduce the relations quite accurately.

Such learning performance is impressive considering the fact that the data effective for
learning these linear relations (i.e., the initial near-zero solutions) is just a tiny portion of
the total dataset. For pCNN-based models, Figure 10 shows pCNN10 learns the dispersion
quite accurately while pCNN40 learned relations show a more significant deviation than
ones by pFNO.

5. Summary and Conclusions

This paper delves into the potential of machine learning (ML) for understanding and
predicting the behavior of flames experiencing hybrid instabilities. These instabilities arise
from the interplay of two key mechanisms: the Darrieus–Landau (DL) instability, driven
by density gradients across a flame, and the Diffusive–Thermal (DT) instability, caused by
heat and mass diffusion disparities.

The nonlinear development of unstable flames can be modeled by a well-known
partial differential equation (PDE), specifically the Sivashinsky equation. By re-expressing
the Sivashinsky equation, we introduce two parameters: ρ and β. These parameters control
the blending of DT and DL instabilities, as well as the cutoff wavelength for unstable
flame behavior.

Our learning problem focuses on understanding the PDE solution time advance-
ment operator under different parameter combinations. This operator, when repeatedly
applied with its input solution as the output from the previous iteration, yields a time
sequence of solutions of arbitrary length. We employ two recently developed operator
learning models: parameterized Fourier Neural Operators (pFNO) and Convolutional
Neural Networks (pCNNs). Our findings demonstrate that both pFNO and pCNN models
effectively capture the intricate flame dynamics under varying DT/DL instabilities (due to
ρ variations). Specifically:

Short-Term Predictions: All learned models accurately predict short-term solutions
and dispersion relations.

Long-Term Behavior: The models also reproduce correct statistics, quantified by
autocorrelation functions and total front length.

pFNO Superiority: Notably, pFNO outperforms pCNN by allowing the learning of
the full two-parameter operator, enabling variation in both ρ and β.

Challenges: However, both pCNN and pFNO tend to overestimate noise-induced
wrinkles associated with DL instability, leading to inaccurate predictions of the total flame
area, especially at lower instability levels.

In conclusion, this work showcases the potential of operator learning methodologies
for analyzing complex flame dynamics arising from hybrid instabilities. While challenges
persist, particularly related to noise overestimation, these methods offer assisting tools for
understanding and predicting real-world flame behavior in combustion systems [36–43].
Realistic flame development can be influenced by various factors beyond the two intrinsic

Energies 2024, 17, 3097 14 of 16

flame instability mechanisms considered in this study. These additional factors include
mechanisms such as thermoacoustic instabilities, Rayleigh–Taylor instabilities, and distur-
bances due to turbulent background flow. However, if the evolution of a realistic flame can
be described by certain PDEs, it can still be viewed as a parametrized solution advancement
operator. It is crucial to emphasize the importance of obtaining a high-quality training
dataset on real flame evolution. Such datasets can be derived either from high-fidelity
numerical simulations or sophisticated laser-diagnostic experiments. With this data, the
flame evolution could potentially be learned by the parametric operator learning methods
demonstrated in our work. Future research directions may involve incorporating additional
physical mechanisms or exploring alternative learning architectures to further enhance the
accuracy and robustness of these models.

Author Contributions: Conceptualization: R.Y., E.H., and K.-J.N.; methodology: R.Y., E.H., and
K.-J.N.; software: R.Y.; validation: R.Y.; formal analysis: R.Y.; investigation: R.Y.; resources: R.Y.,
E.H., and K.-J.N.; data curation: R.Y., E.H., and K.-J.N.; writing—original draft preparation: R.Y.;
writing—review and editing: R.Y., E.H., and K.-J.N.; visualization: R.Y.; supervision: R.Y.; project
administration: R.Y., E.H., and K.-J.N.; funding acquisition: R.Y., E.H., and K.-J.N. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Swedish Research Council with grant number VR-2019-05648.

Data Availability Statement: The code and data that support the findings of this study are openly
available at www.github.com/RixinYu/ML_paraFlame accessed on 11 May 2024.

Acknowledgments: The authors gratefully acknowledge the financial support from the Swedish
Research Council (VR-2019-05648). The computations were enabled by resources provided by the
National Academic Infrastructure for Supercomputing in Sweden (NAISS) at ALVIS and Tetralith,
partially funded by the Swedish Research Council through grant agreement no. 2022-06725.

Conflicts of Interest: Author Karl-Johan Nogenmyr was employed by the Siemens Energy AB.
The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

Appendix A. Model Hyper-Parameters and Training Details

All models undergo training for 1000 epochs with a batch size of 1000, employing the
Adam optimizer with a learning rate set at 0.0025 and a weight decay of 0.0001. A scheduler
step size of 100 and a gamma value of 0.5 are applied for learning rate adjustment. To
stabilize the training process, the maximum norm of gradients is clipped above 50.

Training for pFNO and pFNO* is conducted over the entire dataset using a single GPU
(NVIDIA Tesla A40), taking approximately 28 and 47 h, respectively. In contrast, training
pCNN10 and pCNN40 is performed on one-third of the training dataset, with both models
requiring around 38 h using a single GPU. Conversely, training the pCNN model (to learn
the full two-parameters operator) using the entire dataset takes 26 h utilizing four GPUs.

The pFNO and pFNO* networks are configured with L = 4 levels and dε = 30
channels, with two hyperparameters set: κmax = 128 and Nγ = 5. To reduce model size, all
pFNO methods share most of the trainable parameters within a single parametric Fourier
layer (Equation (5)) across all layers l = 0, ..., L − 1, except for those used to parameterize
the function Dl(γ).

References
1. Guo, X.; Li, W.; Iorio, F. Convolutional neural networks for steady flow approximation. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.
2. Zhu, Y.; Zabaras, N. Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantifica-

tion. J. Comput. Phys. 2018, 366, 415–447. [CrossRef]
3. Adler, J.; Öktem, O. Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 2017, 33, 124007.

[CrossRef]
4. Bhatnagar, S.; Afshar, Y.; Pan, S.; Duraisamy, K.; Kaushik, S. Prediction of aerodynamic flow fields using convolutional neural

networks. Comput. Mech. 2019, 64, 525–545. [CrossRef]

www.github.com/RixinYu/ML_paraFlame
http://doi.org/10.1016/j.jcp.2018.04.018
http://dx.doi.org/10.1088/1361-6420/aa9581
http://dx.doi.org/10.1007/s00466-019-01740-0

Energies 2024, 17, 3097 15 of 16

5. Khoo, Y.; Lu, J.; Ying, L. Solving parametric PDE problems with artificial neural networks. Eur. J. Appl. Math. 2021, 32, 421–435.
[CrossRef]

6. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9
October 2015; Proceedings, Part III 18; Springer: Cham, Switzerland, 2015.

7. Winovich, N.; Ramani, K.; Lin, G. ConvPDE-UQ: Convolutional neural networks with quantified uncertainty for heterogeneous
elliptic partial differential equations on varied domains. J. Comput. Phys. 2019, 394, 263–279. [CrossRef]

8. Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Neural Operator: Graph Kernel
Network for Partial Differential Equations. arXiv 2020, arXiv:2003.03485.

9. Kovachki, N.; Li, Z.; Liu, B.; Azizzadenesheli, K.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Neural operator: Learning maps
between function spaces. arXiv 2021, arXiv:2108.08481.

10. Lu, L.; Jin, P.; Karniadakis, G. DeepONet: Learning nonlinear operators for identifying differential equations based on the
universal approximation theorem of operators. arXiv 2019, arXiv:1910.03193.

11. Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier neural operator for
parametric partial differential equations. arXiv 2020, arXiv:2010.08895.

12. Lu, L.; Jin, P.; Pang, G.; Zhang, Z.; Karniadakis, G. Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators. Nat. Mach. Intell. 2021, 3, 218–229. [CrossRef]

13. Lu, L.; Meng, X.; Cai, S.; Mao, Z.; Goswami, S.; Zhang, Z.; Karniadakis, G. A comprehensive and fair comparison of two neural
operators (with practical extensions) based on FAIR data. Comput. Methods Appl. Mech. Eng. 2022, 393, 114778. [CrossRef]

14. Gupta, G.; Xiao, X.; Bogdan, P. Multiwavelet-based operator learning for differential equations. Adv. Neural Inf. Process. Syst.
2021, 34, 24048–24062.

15. Tripura, T.; Chakraborty, S. Wavelet neural operator for solving parametric partial differential equations in computational
mechanics problems. Comput. Methods Appl. Mech. Eng. 2023, 404, 115783. [CrossRef]

16. Chen, G.; Liu, X.; Li, Y.; Meng, Q.; Chen, L. Laplace neural operator for complex geometries. arXiv 2023, arXiv:2302.08166.
17. Yu, R. Deep learning of nonlinear flame fronts development due to Darrieus–Landau instability. APL Mach. Learn. 2023, 1, 026106.

[CrossRef]
18. Yu, R.; Hodzic, E. Parametric learning of time-advancement operators for unstable flame evolution. Phys. Fluids 2024, 36, 044109.

[CrossRef]
19. Darrieus, G. Propagation d’un front de flamme. Unpublished work presented at La Technique Moderne. 1938.
20. Landau, L. On the theory of slow combustion. In Dynamics of Curved Fronts; Elsevier: Amsterdam, The Netherlands, 1988;

pp. 403–411.
21. Zeldovich, Y. Theory of Combustion and Detonation of Gases. In Selected Works of Yakov Borisovich Zeldovich, Volume I: Chemical

Physics and Hydrodynamics; Princeton University Press: Princeton, NJ, USA, 1944.
22. Sivashinsky, G. Diffusional-thermal theory of cellular flames. Combust. Sci. Technol. 1977, 15, 137–145. [CrossRef]
23. Yu, R.; Bai, X.S.; Bychkov, V. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability. Phys. Rev. E 2015,

92, 063028. [CrossRef] [PubMed]
24. Michelson, D.M.; Sivashinsky, G.I. Nonlinear analysis of hydrodynamic instability in laminar flames—II. Numerical experiments.

Acta Astronaut. 1977, 4, 1207–1221. [CrossRef]
25. Kuramoto, Y. Diffusion-induced chaos in reaction systems. Prog. Theor. Phys. Suppl. 1978, 64, 346–367. [CrossRef]
26. Sivashinsky, G.I. Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations. Acta

Astronaut. 1977, 4, 1177–1206. [CrossRef]
27. Thual, O.; Frisch, U.; Hénon, M. Application of pole decomposition to an equation governing the dynamics of wrinkled flame

fronts. J. Phys. 1985, 46, 1485–1494. [CrossRef]
28. Vaynblat, D.; Matalon, M. Stability of Pole Solutions for Planar Propagating Flames: I. Exact Eigenvalues and Eigenfunctions.

SIAM J. Appl. Math. 2000, 60, 679–702. [CrossRef]
29. Vaynblat, D.; Matalon, M. Stability of Pole Solutions for Planar Propagating Flames: II. Properties of Eigenvalues/Eigenfunctions

and Implications to Stability. SIAM J. Appl. Math. 2000, 60, 703–728. [CrossRef]
30. Olami, Z.; Galanti, B.; Kupervasser, O.; Procaccia, I. Random noise and pole dynamics in unstable front propagation. Phys. Rev. E

1997, 55, 2649. [CrossRef]
31. Denet, B. Stationary solutions and Neumann boundary conditions in the Sivashinsky equation. Phys. Rev. E 2006, 74, 036303.

[CrossRef] [PubMed]
32. Kupervasser, O. Pole Solutions for Flame Front Propagation; Springer International Publishing: Cham, Switzerland, 2015.
33. Karlin, V. Cellular flames may exhibit a non-modal transient instability. Proc. Combust. Inst. 2002, 29, 1537–1542. [CrossRef]
34. Creta, F.; Lapenna, P.E.; Lamioni, R.; Fogla, N.; Matalon, M. Propagation of premixed flames in the presence of Darrieus–Landau

and thermal diffusive instabilities. Combust. Flame 2020, 216, 256–270. [CrossRef]
35. Creta, F.; Fogla, N.; Matalon, M. Turbulent propagation of premixed flames in the presence of Darrieus–Landau instability.

Combust. Theory Model. 2011, 15, 267–298. [CrossRef]
36. Hodzic, E.; Alenius, E.; Duwig, C.; Szasz, R.; Fuchs, L. A Large Eddy Simulation Study of Bluff Body Flame Dynamics

Approaching Blow-Off. Combust. Sci. Technol. 2017, 189, 1107–1137. [CrossRef]

http://dx.doi.org/10.1017/S0956792520000182
http://dx.doi.org/10.1016/j.jcp.2019.05.026
http://dx.doi.org/10.1038/s42256-021-00302-5
http://dx.doi.org/10.1016/j.cma.2022.114778
http://dx.doi.org/10.1016/j.cma.2022.115783
http://dx.doi.org/10.1063/5.0139857
http://dx.doi.org/10.1063/5.0203546
http://dx.doi.org/10.1080/00102207708946779
http://dx.doi.org/10.1103/PhysRevE.92.063028
http://www.ncbi.nlm.nih.gov/pubmed/26764824
http://dx.doi.org/10.1016/0094-5765(77)90097-2
http://dx.doi.org/10.1143/PTPS.64.346
http://dx.doi.org/10.1016/0094-5765(77)90096-0
http://dx.doi.org/10.1051/jphys:019850046090148500
http://dx.doi.org/10.1137/S0036139998346439
http://dx.doi.org/10.1137/S0036139998346440
http://dx.doi.org/10.1103/PhysRevE.55.2649
http://dx.doi.org/10.1103/PhysRevE.74.036303
http://www.ncbi.nlm.nih.gov/pubmed/17025739
http://dx.doi.org/10.1016/S1540-7489(02)80188-2
http://dx.doi.org/10.1016/j.combustflame.2020.02.030
http://dx.doi.org/10.1080/13647830.2010.538722
http://dx.doi.org/10.1080/00102202.2016.1275592

Energies 2024, 17, 3097 16 of 16

37. Hodzic, E.; Jangi, M.; Szasz, R.Z.; Bai, X.S. Large eddy simulation of bluff body flames close to blow-off using an Eulerian
stochastic field method. Combust. Flame 2017, 181, 1–15. [CrossRef]

38. Hodzic, E.; Jangi, M.; Szasz, R.Z.; Duwig, C.; Geron, M.; Early, J.; Fuchs, L.; Bai, X.S. Large Eddy Simulation of Bluff-Body Flame
Approaching Blow-Off: A Sensitivity Study. Combust. Sci. Technol. 2018, 191, 1815–1842. [CrossRef]

39. Yu, R.; Bai, X.S.; Lipatnikov, A.N. A direct numerical simulation study of interface propagation in homogeneous turbulence. J.
Fluid Mech. 2015, 772, 127–164. [CrossRef]

40. Yu, J.; Yu, R.; Bai, X.; Sun, M.; Tan, J.G. Nonlinear evolution of 2D cellular lean hydrogen/air premixed flames with varying initial
perturbations in the elevated pressure environment. Int. J. Hydrogen Energy 2017, 42, 3790–3803. [CrossRef]

41. Yu, R.; Nillson, T.; Bai, X.; Lipatnikov, A.N. Evolution of averaged local premixed flame thickness in a turbulent flow. Combust.
Flame 2019, 207, 232–249. [CrossRef]

42. Yu, R.; Lipatnikov, A.N. Surface-averaged quantities in turbulent reacting flows and relevant evolution equations. Phys. Rev. E
2019, 100, 013107. [CrossRef]

43. Yu, R.; Nilsson, T.; Fureby, C.; Lipatnikov, A. Evolution equations for the decomposed components of displacement speed in a
reactive scalar field. J. Fluid Mech. 2021, 911, A38. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.combustflame.2017.03.010
http://dx.doi.org/10.1080/00102202.2018.1536125
http://dx.doi.org/10.1017/jfm.2015.211
http://dx.doi.org/10.1016/j.ijhydene.2016.07.059
http://dx.doi.org/10.1016/j.combustflame.2019.05.045
http://dx.doi.org/10.1103/PhysRevE.100.013107
http://dx.doi.org/10.1017/jfm.2020.1095

	Introduction
	 Problem Setup for Learning PDE Operators
	Parametric Operator Learning Methods
	Parametric Convolutional Neural Network (pCNN)
	Parametric Fourier Neural Operator (pFNO)

	 Numerical Experiments and Result Discussions
	 Governing Equations
	Training Dataset
	 Result Analysis
	Findings

	Summary and Conclusions
	Model Hyper-Parameters and Training Details
	References

