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Abstract: As a promising technology to achieve the permanent operation of battery-powered wireless
sensor devices, wireless rechargeable sensor networks (WRSNs) by radio-frequency radiation have
attracted considerable attention in recent years. Determining how to save the deployment cost of
WRSNs has been a hot topic. Previous scholars have mainly studied the cost of deploying chargers,
thus ignoring the impact of sensor deployment on the network. Therefore, we consider the new
problem of joint deployment of sensors and chargers on a two-dimensional plane, i.e., deploying the
minimum number of sensors and chargers used to monitor points of interest (PoIs). Considering
the interaction of deployed sensors and chargers, we divide the problem into two stages, P1 and
P2. P1 addresses the sensor deployment, while P2 addresses the deployment of chargers. Both P1
and P2 have proved to be NP-hard. Meanwhile, we notice that the aggregation effect of sensors
can effectively reduce the number of chargers deployed; therefore, we propose a greedy heuristic
approximate solution for deploying sensors by using the aggregation effect (GHDSAE). Then, a
greedy heuristic (GH) solution and a particle swarm optimization (PSO) solution are proposed for
P2. The time complexity of these solutions is analyzed. Finally, extensive simulation results show
that the PSO solution can always reduce the number of chargers deployed based on the GHDSAE
solution sensor deployment approach. Therefore, it is more cost-effective to jointly deploy sensors
and chargers by using the GHDSAE solution and the PSO solution.

Keywords: wireless rechargeable sensor networks; sensor and charger deployment; aggregation
effect; greedy search; particle swarm optimization

1. Introduction

Traditional wireless sensor networks (WSNs) are distributed networks composed of
a large number of sensors that can perceive the external world. Sensors usually have
the characteristics of small size, convenient deployment, low cost, and easy networking.
Normally, battery-powered sensors with limited capacity tend to be out of service after
frequenting wireless communication and data perception, which limits the continuous
work of the WSNs. Also, sensors are sometimes located in dangerous or hard-to-reach
areas, such as near volcanoes [1], inside concrete walls [2], or under bridges [3], making
battery replacement schemes unsafe [4–6], as well as infeasible or costly. In order to solve
this problem, much literature has proposed methods of energy saving [7,8] and energy
acquisition [9]. Energy saving methods can extend the service life but cannot inherently
solve the energy problem of WSNs. The energy harvesting method allows sensors to
harvest energy from the surrounding environment, but many energy sources, such as
thermal energy [10], wind energy [11,12], etc., are unpredictable and unreliable. The recent
breakthrough in radio-frequency radiation charge technology brings new opportunities
to solve this problem [13]. A major feature of wireless rechargeable sensor networks
(WRSNs) is that their lifetime is no longer restricted by batteries, and wireless chargers can
continuously and stably provide energy supply for sensor networks; thus, they have been
used in smart grids [14], body sensor networks [15] and civil structure monitoring [16].
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Among the research aspects of WRSNs, the deployment strategies of key devices,
such as sensors and chargers, play important roles in the optimization of deployment
cost, network performance, etc., and thus have been a hot topic. In the existing efforts,
three typical scenarios are usually involved: (1) deploying static chargers to charge static
sensors; (2) deploying mobile chargers to charge static sensors; and (3) deploying static
chargers to charge mobile sensors. The first scenario is the most common and usually
studies network utility maximization, delay minimization, and routing protocols [17–19].
The second scenario can be roughly divided into single mobile charger (MC) charging
schemes and multi-MC charging schemes, which are constrained by network lifetime, path
planning, coverage, monitoring efficiency, and so on [20,21]. The third scenario is common
in monitoring mobile WSNs, such as in applications like industrial wireless identification
and healthcare [22,23].

In the first scenario, previous efforts have been mainly focused on the deployment
problem of static chargers. To optimize the deployment cost of chargers, the optimal
charging coverage of the charger for sensors is studied in [24–26]. To maximize the charging
utility, the optimal deployment strategy for chargers is studied in [27–32]. However, these
works tend to overlook the deployment of sensors or directly utilize the distribution of
sensors generated pseudo-randomly, thereby ignoring the impact of sensor deployment on
subsequent charger deployment. This has been proven to be undeniable in our subsequent
research. Therefore, we study a new problem, namely the joint deployment problem of
chargers and sensors, and specifically, the sensors are deployed to monitor the points
of interest (PoIs). As shown in Figure 1, PoIs are randomly and densely distributed in
a two-dimensional plane. The deployed sensors have an aggregation effect, which is
presented by deploying new sensors that are close to the deployed sensors. For example,
in Figure 1, the sensors at candidate locations 1 and 2 have similar sensing reliability,
but candidate location 1 is closer to the deployed sensors than candidate location 2, and
thus, the next sensor is deployed at candidate location 1. Considering that the working
state and the charging state of the sensor powered by radio-frequency radiation cannot be
performed at the same time, any PoI has to be monitored by multi-sensors to ensure that
the PoI is continuously monitored across all time domain, and a sensor can also monitor
multi-PoIs. This many-to-one working mode is achieved by scheduling monitoring and
charging timeslots for sensors. Specifically, a sensor can monitor multi-PoIs in a timeslot.
Considering that multiple sensors sharing a charger can improve charging efficiency and
reduce charger deployment costs, the aggregation effect of sensors in dense areas should
be used to constrain sensor deployment and scheduling. In our deployment scheme for
sensors, the life cycle of a sensor is first divided into several time slots, and these slots of all
sensors are synchronized. The scheduling problem of a sensor is to select the working mode
(working or charging) for the sensor in each time slot under the constraint of uninterrupted
task monitoring. Finally, the chargers are deployed based on the deployment of sensors.
The charging power provided to the sensor has a lower limit, such that the power received
by the sensor during charging time slots should be no less than the energy it consumes
during its working time slots. The main contributions of this paper are as follows:

(1) We present a new problem of joint deployment of sensors and chargers in a two-
dimensional plane with the constraints of deployment cost.

(2) We propose a strategy for deploying static sensors and chargers in a two-dimensional
plane by scheduling the working state and the charging state of the sensors to realize
the real-time monitoring of PoIs. The target is to reduce the deployment cost of WSNs.
We formulate the above problem and conclude two progressive problems, P1 and P2,
to analyze the impact of sensor and charger deployment on deployment network costs
and prove their NP-hardness.

(3) The aggregation effect of sensors is revealed to effectively reduce the number of de-
ployed chargers, and thus, the greedy heuristic approximate solution for deploying
sensors by using the aggregation effect (GHDSAE) is proposed. Then, the greedy
heuristic (GH) solution and the particle swarm optimization (PSO) solution are pro-
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posed for the deployment of chargers. The accuracy and efficiency of the solutions are
evaluated through a large number of simulations at different computational scales.
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Figure 1. An illustration of the network model.

The remainder of the paper is organized as follows. In Section 2, we present the
related works. In Section 3, we introduce the relevant models, formulate our problem,
and reformulate it for easier tractability. Next, we propose four solutions in Section 4.
Numerical results are presented in Section 5. Finally, we conclude this work in Section 6.

2. Related Work

To deploy static chargers for static sensors, the main research objectives of network
deployment are to minimize network deployment cost, maximize charging utility and
radiation safety, etc. However, these studies ignore the impact of sensor deployment on the
network and only consider the impact of charger deployment on network performance.
Yu et al. were the first to consider the connected charger placement problem. In their
scenario, given a fixed number of directional wireless chargers and candidate locations,
the position and orientation angle of each charger are determined under the connection
constraints of wireless chargers to maximize the overall charging utility [27]. Ding et al.
considered two inverse problems: minimizing the charger deployment cost constrained by
the requirement of charging level and maximizing the charging level constrained by the
deployment cost budget of chargers [24]. Wang et al. considered the problem of obstacles
and determined the position and direction of heterogeneous chargers with arbitrary shapes
on the two-dimensional plane, so as to maximize the charging utility of the network [28].
Lin et al. evaluated the impact of data collection or sink nodes and proposed a two-stage
strategy called search most and remove useless [29]. Wu et al. proposed a new cost criterion
in multi-hop wireless charging, which is the comprehensive cost composed of energy cost
and deployment cost [25]. You et al. investigated the impact of obstacles on the placement
of wireless chargers to maximize the overall charging utility [30]. Yang et al. proposed an
improved Firefly algorithm to solve the charger deployment optimization problem, and
furthermore, an optimization framework that simultaneously maximizes the coverage and
the charging efficiency [31]. Wang et al. investigated the effect of charger deployment on
the overall charging utility of sensor networks. They abstracted the charger deployment
problem as a multi-objective optimization problem that maximizes the received power
of sensors and minimizes the number of charging sensors [32]. Fang et al. studied the
application of WRSNs in indoor environments and used a genetic algorithm to optimize
the deployment of chargers in indoor environments [26]. Gong et al. designed a two-stage
algorithm to improve the energy management efficiency of WRSNs. The first stage uses
a particle swarm optimization algorithm to optimize the area coverage. In the second
stage, a queuing game-based energy supply algorithm is designed to optimize the energy
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distribution [33]. In these works, little consideration has been given to the impact of sensor
deployment on the overall network.

Table 1 provides a summary of related work for comparison. These efforts provide
theoretical basis and insights for our work, but none of them can directly address our
problem in three ways. First, we investigate a novel and practical problem for jointly
deploying sensors and chargers in static WRSNs with the constraints of deployment cost,
which has not been addressed in previous work. Secondly, the impact of sensor deployment
on charger deployment is specifically considered. Finally, the new challenge arises from the
necessity of proposing approximate solutions with controllable properties such as accuracy
and efficiency in the face of the NP-hard of this new problem.

Table 1. Relative work comparison. Static Sensor (SS), Static Charger (SC), Charging Utility (CU),
Deployment Cost (DC), Coverage Rate (CR), Energy Consumption Cost (ECC).

Paper Deployment
Objective

Coverage
Objective

Optimization Objective
Approaches

CU DC CR ECC

[27] SC SS
√

GH
[24] SC SS

√ √
GH

[28] SC SS
√

GH
[29] SC SS

√
GH

[25] SC SS
√

GH
[30] SC SS

√
GH

[31] SC SS
√

IFA
[32] SC SS

√
ICS

[26] SC SS
√

GA
[33] SC SS

√ √
GH & PSO

Our SS & SC SS & PoIs
√

GH & PSO

3. Model and Problem Statement
3.1. Network Model

As shown in Figure 1, there are a known number of PoIs (denoted by O = {o1, o2, ..., oN})
randomly distributed in a two-dimensional plane Φ. Our aim is to deploy the minimal
number of sensors (denoted by S = {s1, s2, ..., sM}) to cover all PoIs, and then to deploy
minimum chargers (denoted by C = {c1, c2, ..., cK}) for charging all sensors. We assume
that each sensor has a nearby receiver to collect the monitored information, thus the specific
deployment of receivers is not involved in this work. Table 2 lists the parameters used in
problem formulation.

Table 2. The symbols and descriptions used in the problem formulation.

Parameters Description

Φ A two-dimensional plane used to define the problem
T Sensor’s life cycle
J The number of time slots in a life cycle of the sensor
τ The wireless charging efficiency

dth The maximum charging distance of the charger
Pmax The maximum charging power of the sensor
τmax The maximum operating time slot of the sensor

Pc The average power consumption of the sensor
cth A continuous variable. The sensing probability the sensor perceives the PoIs
Ps A continuous variable. The maximum transmitting power of the charger
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Table 2. Cont.

Variables Description

oi
A two-dimensional continuous variable. The location of the i-th deployed PoI, and O = {o1, o2, ..., oN}) is the set
of all deployed PoIs, and oi also refers to the PoIs itself for simplicity

sj
A two-dimensional continuous variable. The location of the j-th deployed sensor, and S = {s1, s2, ..., sM} is the
set of all deployed sensors, and sj also refers to the sensor itself for simplicity

cx
A two-dimensional continuous variable. The location of the x-th deployed charger, and C = {c1, c2, ..., cK}
is the set of all deployed chargers, and cx also refers to the charger itself for simplicity

P
sj ,cx

h A two-dimensional continuous variable. Wireless charging power delivered by a charger cx to the sensor sj

P
sj ,C
h

A two-dimensional continuous variable. Wireless charging power delivered by all chargers C to the sensor sj

P
sj

min A two-dimensional continuous variable. The minimum charging power of sj
sjt A binary-continuous variable. The schedule of sj in one cycle
ST The scheduling scheme of all sensors

P
(

sj, oi

)
A two-dimensional continuous variable. The probability of sensing a point oi by a sensor sj.

3.2. Sensor Perception Model

We adopt a probability model for the sensor perception. In this model, the probability
value of the PoIs being monitored by the sensor decreases with the growth of the distance
between them. The perception model is as follows [34]:

P(sj, oi) =


0

e−λαβ

1

r + re ≤ d
(
sj, oi

)
r− re ≤ d

(
sj, oi

)
≤ r + re

r− re ≤ d
(
sj, oi

) (1)

where re(re < r) and r is the uncertainty in the measurement sensor detection, α = d
(
sj, oi

)
−(r− re) and λ, β are parameters for measuring the probability of detection. d

(
sj, oi

)
is

Euclidean distance between sj and oi, with sj ∈ Φ, oi ∈ Φ.
We assume that the sensors are required to monitor the PoIs with a probability of no

less than a certain probability cth. Specifically, when P
(
sj, oi

)
≥ cth, the PoI oi is covered by

the sensor sj.
In real life, the working state and the charging state of the sensor cannot occur at

the same time, which means that the sensor cannot be charged during the working state,
and cannot work during the charging process. Therefore, based on the many-to-one
mode of sensor, it is necessary to schedule the status of sensors (working or charging)
reasonably to meet the full-time domain monitoring of all PoIs. Specifically, we assume that
a sensor’s life cycle is divided into J identical time slots, and the time slots of all sensors
are synchronized by default. The scheduling scheme of all sensors is ST = {s1t, s2t, . . . smt},
where sjt =

(
a1, a2, ..., aJ

)
. aj = 1 indicates that the sensor is in a working state in the

current time slot, and the sensor can monitor the PoIs. Otherwise, aj = 0 means that the
sensor is in a charging state.

As shown in Figure 2, the scheduling scheme of the sensor sj in one life cycle is
sjt = (1, 0, 0, 1). Obviously, the sensor sj only enters the working state in the time slot
t ∈ {4kt, (4k + 1)t} or t ∈ {(4k + 3)t, (4k + 4)t}, where k is an integer.
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3.3. Charging Model

As the wireless charging power from the charger to the sensor decreases with the
increase in distance, the sensor cannot obtain power when the charging distance exceeds
a certain threshold dth. Specifically, when d

(
sj, cx

)
≤ dth, the sensor sj is covered by the

charger cx. The radio-frequency radiation power model in [35] is used:

P
sj ,cx
h =


τPs

(d(sj ,cx)+ε)
2 d

(
sj, cx

)
≤ dth

0 d
(
sj, cx

)
> dth

(2)

where τ is the wireless charging efficiency constant in the range of (0, 1), Ps is the transmit
power of the charger, d

(
sj, cx

)
is the Euclidean distance between the locations of sj and cx,

with sj ∈ Φ, cx ∈ Φ, sj is the location of a sensor, cx is the location of a charger, ε is a fixed
small parameter, and dth is the maximum cover distance of a charger.

A number of studies have shown that the charging power of sensors can be aggregated
from multiple chargers [36,37]. Therefore, the total charging power of sj from all chargers is:

P
sj ,C
h = ∑

cx∈C
P

sj ,cx
h (3)

Limited by the factors such as charging safety and hardware performance, the charging
power of sensor has an upper limit Pmax. We assume that the average power consumption
of the sensor is Pc. Then, the maximum operating time slots τmax of the sensor in one life
cycle can be calculated as follows.

τmax =


J − 1

⌊Pmax/Pc⌋
No solution

Pc ≤ Pmax/(J − 1)

Pmax(J − 1) ≤ Pc < Pmax/(J − 1)

Pc > Pmax(J − 1)

(4)

When Pc > Pmax(J − 1), the harvested power of sensors in up to J − 1 time slots is less
than the power consumption in one time slot, and thus the deployment of the charger
is meaningless.

Then, to maintain the continuous operation of the sensor, the minimum charging
power P

sj
min of sensor sj is:

P
sj
min = Pc ∗

∣∣∣∣sjt
∣∣∣∣

1
J −

∣∣∣∣sjt
∣∣∣∣

1

(5)

where sjt is the schedule of sj in one cycle.
∣∣∣∣sjt

∣∣∣∣
1 is the 1-norm of sjt.

Specifically, when P
sj ,C
h ≥ P

sj
min, the sensor sj is fully charged by the charger set C.
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3.4. Problem Formulation

In summary, our goal is to minimize the deployment costs of sensors and chargers
with the constraints of continuous monitoring of all PoIs. The deployment cost includes
sensor deployment cost and charger deployment cost. Therefore, we divide the problem
into two parts: P1 and P2. P1 represents the deployment cost of the sensor:

P1 : min M

s.t. 0 ≤
∣∣∣∣sjt

∣∣∣∣
1 ≤ τmax, sjt ∈ ST

w.r.t s1, s2, . . . , sM

(6)

where M is the number of sensors deployed.
P2 represents the deployment cost of the charger:

P2 : min K

s.t. P
sj ,C
h ≥ P

sj
min, ∀sj ∈ S

w.r.t c1, c2, . . . , cK

(7)

where K is the number of chargers deployed.
To facilitate the calculation, we introduce an evaluation function to reconstruct P1

and P2:

Q =
1
M∑N

n=1 min[
P
(
sj
)

cth
, 1] (8)

W =
1
K ∑M

m=1 min[
P

sj ,C
h

Pmin
, 1] (9)

Then, the formulation of P1 and P2 can be rewritten as:

P1′ Min Q

s.t. Q = 1

w.r.t s1, s2, . . . , sM

(10)

P2′ Min W

s.t. W = 1

w.r.t c1, c2, . . . , cK

(11)

4. Solutions

In this section, we show that the P1 and P2 problems are NP-hard. Then, we propose
approximate solutions for the P1 and P2 problems, respectively.

4.1. Hardness Analysis

In this part, we prove that the above problem is NP-hard.
For P1, we simplify the sensor probabilistic perception model, where the distance

between the PoI and the sensor is less than (r + re), and we assume that the sensor can detect
the PoI. And, we simplify the charging state and working state of the sensor, assuming
that the sensor can be charged while in the working state. Therefore, the P1 problem is
transformed into the selection of the minimum number of sensors that can cover all PoIs
in the continuous plane. This is a typical set coverage decision problem, which has been
shown to be NP-hard [28].

For P2, we simplify the charging model, where the charging power is a constant when
the distance between the charger and the sensor is less than dth. Obviously, charger selection
boils down to finding the minimum number of chargers that can cover all sensors. This is
also a typical set covering decision problem, which has been shown to be NP-hard [28].
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In summary, the original problems P1 and P2 are also NP-hard problems. This implies
that finding the optimal solution may not be computationally tractable. Correspondingly,
the area discretization is adopted, that is: the original continuous and infinite solution
space Φ is transformed into a finite solution set through discretization, which divides Φ
into finite, discrete units or locations to simplifies the complexity of the problem and makes
the solution more feasible and efficient.

4.2. Area Discretization

For sensor deployment, all effective deployment locations of sensor are within the

maximum sensing distance d(s) centered at the PoIs, and d(s) =
(

β

√
− ln cth

λ + (r− re)

)
.

Therefore, a grid discretization of perception area is adopted at each PoI. As shown in
Figure 3, each grid square is represented by its upper right corner. If the distance between a
grid square and the PoI is less than d(s), this grid square is a candidate deployment location
for sensor, and all candidate deployment locations for sensors form a set S′. In order to
minimize the discretization error, an integer Ls = 3 is used as the number of squares along
the radius direction, and then the length of each square is:

ds = d(s) ∗ sin
(

tan−1(1/Ls)
)

(12)
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For charger deployment, all effective deployment locations of charger are within the
maximum charging distance dth centered at the sensors. Therefore, a grid discretization
of charging area is adopted at each sensor. Similarly, each grid square is represented by
its upper right corner, and the length of each square is Lc. If the distance between a grid
square and the sensor is less than dth, this grid square is a candidate deployment location
for charger, and all candidate deployment locations for chargers form a set C′.

4.3. Approximate Algorithms for Deploying Sensors

Based on the result of area discretization, the GHDSAE solution in Algorithm 1 is
proposed to deploy sensors. In Algorithm 1, two principles are adopted to iteratively select
the optimal deployment location: (1) always choose a location that can cover the maximum
number of PoIs that have not yet been covered; (2) based on the principle one, always
choose a location closer to the deployed sensors.

Specifically, Line 1 initializes some key parameters, where Q is an intermediate pa-
rameter indicating the number of PoIs that have been covered by deployed sensors. In
Line 2, the candidate location set S′ is calculated by the discretization method in Section 4.2.
Lines 3–9 of Algorithm 1 are the iterative deployment phase. In Lines 4–6, for each candi-
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date location in S′, the number of uncovered PoIs that the location can cover within τmax
time slots is calculated. In Line 7 the location with the highest number of covered PoIs is
chosen as the optimal location to deploy a new sensor. If there exist multiple best locations,
the distance between these locations and the deployed sensors are further compared, and
the location with the smallest distance is chosen. In Line 8, all related variables are updated.
Finally, in Line 10, the deployment of sensor S and the scheduling scheme for all sensors
ST are outputted.

Algorithm 1: Details of the GHDSAE for sensor deployment

Input: A set oi of O, the maximum working time slot τmax,
Output: The deployment of sensors S, the scheduling scheme of all sensors ST
1: Q = 0, N , ST ← ∅, S← ∅ ;
2: Calculate the S′;
3: While Q ≤ N do
4: For each sj

′ ∈ S′ do
5: Calculate the maximum number of uncovered PoIs for the previous τmax slots;
6: End for
7: Find the candidate location of sensor sj

′ with the largest number of effectively covering
PoIs and the smallest distance to already deployed sensors;

8: Update Q, ST , S← S
⋃{

sj
′ }, S′ ← S′ −

{
sj
′
}

;
9: End while
10: Return S, ST

In Algorithm 1, the number of PoIs is N. Firstly, the time complexity of the candidate
location of sensors is O

(
NL2

s
)
. Then the time complexity of calculating the coverage effect

of candidate locations is O
(

NL2
s (JN + τmax)

)
, and the complexity of selecting the best

candidate location is O
(

N2L4
s + NL2

s
)
. Finally, the time complexity of deploying sensors

and updating ST is O(NJ). The final time complexity is:

O
(

NL2
s

)
+ O

(
NL2

s (JN + τmax)
)
+ O

(
N2L4

s + NL2
s

)
+ O(NJ) = O

(
N2

)
(13)

The approximation rate of Algorithm 1 is similar to that in [38], which is ignored here.
To analyze the impact of the sensor aggregation effect on the charger deployment, we

further eliminate the sensor aggregation effect in Line 7 of Algorithm 1, and this modified
approach is referred to as the greedy heuristic solution for deploying sensors (GHDS).

4.4. Approximate Algorithm for Deploying Chargers

Based on the results of sensor deployment, the GH solution in Algorithm 2 and the
PSO solution in Algorithm 3 are proposed to deploy the chargers. In Algorithm 2, the
principles for iteratively selecting the optimal deployment locations for new chargers are:
(1) preferentially deploy chargers for a sensor that has not yet been fully charged and has
the most neighbor sensors that have not yet been fully charged; (2) based on the principle
one, always choose the locations that can charge the maximum number of sensors that
have not yet been fully charged. Specifically, the number of neighbor sensors is defined as
the number of other sensors in a circle centered at the sensor with a radius of 2 ∗ dth.

The process of Algorithm 2 is as follows: in Line 1, the minimum charging power P
sj
min

of each sensor sj in S is calculated according to the sensor scheduling ST and Equation
(5). In Line 2, the candidate location set C′ is calculated by the discretization method in
Section 4.2. In Line 3, the candidate locations C′ are sorted in descending order based on
the number of their covered sensors. The sensors S are sorted in descending order based
on the number of neighbor sensors. Lines 4–9 are the iterative deployment phase. The k is
the maximum number of chargers to be deployed to charge one sensor, and the Loop_1 is

a temporary intermediate variable. In Line 6, the charging power P
sj ,C
h of sj based on the

currently deployed charger C is calculated. If the sj is still not fully charged (P
sj ,C
h < P

sj
min)
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and Loop_1 < k, Lines 6 and 7 are executed to deploy new chargers for sj. In Lines 7 and
8, the charging power from the candidate locations for sj is calculated, and the candidate

chargers with the maximum P
sj ,C∪Loop_1
h are deployed. Finally, In Line 11, the deployed

chargers C is outputted.

Algorithm 2: Details of GH for charger deployment

Input: A set sj of S, the scheduling scheme of all sensors ST
Output: The deployment of chargers C
1: Calculate the P

sj

min for each sensor sj in S;
2: Calculate the C′;
3: Sort the C′ and S in descending order;
4: For sj ∈ S do
5: Loop_1 = 0;

6: While P
sj ,C
h < P

sj

min && Loop_1 ≤ k do

7: Find the candidate locations with the largest P
sj ,C∪Loop_1
h ;

8: Update C, C′;
9: End While
10: End For
11: Return C

In Algorithm 2, assuming there are M sensors, firstly, the time complexity of calcu-
lating the charging power of the sensors and the candidate location of chargers is O(M)
and O

(
ML2

c
)

respectively. The time complexity of arranging the candidate chargers in
descending order is O

(
M2L2

c + M2L4
c
)
. The time complexity of arranging the sensors in

descending order according to the number of neighbors of the sensor is O
(

M2L2
c + M2).

The time complexity of deploying chargers is O
(
kM2L2

c
)
. The final time complexity is:

O
(

ML2
c

)
+ O(M) + O

(
M2L2

c + M2L4
c

)
+ O

(
M2L2

c + M2
)
+ O

(
kM2L2

c

)
= O

(
M2

)
(14)

Algorithm 3 uses the PSO solution to deploy the chargers. To avoid falling into a local
optimal solution, three improvements are made: (1) The sensors are arranged in descending
order according to their neighbor sensors. The number of neighbor sensors is defined as
the number of other sensors in a circle centered at the sensor with a radius of 2 ∗ dth; (2): A
square search area is established for each sensor. The search area is centered at the sensor
with the side length of 2 ∗ dth; (3): Deploy up to k chargers per sensor to achieve full
charging; otherwise, deployment will fail. We define the particle Zi = (X1,Y1, ...,Xi,Yi) in
Φ, and the iteration velocity vi and iteration location Xi of the particles are respectively:

vi(t + 1) = ω·vi(t) + φk·rk·(ρi −Xi(t)) + φl ·rl ·(ρl −Xi(t))Xi(t + 1) = Xi(t) + vi(t + 1) (15)

vi(t) and Xi(t) are the current velocity and location of the particle Zi, ρi is the current best
location of Zi, ρl is the current best location of all particles, rk and rl are two random vectors
at (0, 1), ω, φk, φl are the parameters of the particle swarm solution.

The details of the PSO solution deployment charger are shown in Algorithm 3. The
principles for iteratively selecting the optimal deployment locations for new chargers are:
(1) preferentially deploy chargers for a sensor that has not yet been fully charged and has
the most neighbor sensors that have not yet been fully charged; (2) based on the principle
one, choose the particles to deploy new chargers, where the maximum number of sensors
that have not yet been fully charged can be charged. Specifically, the number of neighbor
sensors is defined as the number of other sensors in a circle centered at the sensor with a
radius of 2 ∗ dth.

The process of Algorithm 3 is as follows: In Line 1, the minimum charging power
P

sj
min of each sensor sj in S is calculated. In Line 2, the sensors S are sorted in descending

order based on the number of neighbor sensors. Lines 3–10 are the iterative deployment
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phase. Similarly, k is the maximum number of chargers to be deployed to charge one sensor,

and Loop_1 is a temporary intermediate variable. In Line 5, the charging power P
sj ,C
h of sj

based on the currently deployed charger C is calculated. If the sj is still not fully charged

(P
sj ,C
h < P

sj
min) and Loop_1 < k, Line 6 is executed to deploy new chargers for sj. In Line 6, g

iterations are executed to update the positions of the particles and calculate the maximum

fitness value P
sj ,C∪Loop_1
h . In Line 7, the particle with the maximum P

sj ,C∪Loop_1
h is used to

deploy new chargers. Finally, In Line 10, all deployed chargers C is outputted.

Algorithm 3: Details of PSO for charger deployment

Input: A set sj of S, the parameters of the chargers, the scheduling scheme of all sensors ST
Output: The deployment of chargers C
1: Calculate the P

sj

min of the sensor sj;
2: Sort the S in descending order;
3: For each sj ∈ S do
4: Loop_1 = 0;

5: WhileP
sj ,C
h < P

sj

min && Loop_1 ≤ k do

6: Iterate g times, and calculate the maximum fitness value P
sj ,C∪Loop_1
h of each particle;

7: Select the particle with the maximum P
sj ,C∪Loop_1
h , update C;

8: End While
9: End for
10: Return C

For Algorithm 3, the number of sensors is M, the particles in the PSO solution are
w, and the iteration of each search is g. The time complexity of calculating the minimum
charging power for a sensor is O(M). The time complexity of calculating the number of
sensors in the number of neighbors of the sensor and sorting them in descending order is

O
(

M2). Iterate g times, the time complexity of calculating the maximum P
sj ,C∪Loop_1
h with

at most k particles is O
(
kwgM2). The time complexity of updating the set of chargers is

O(kM). The final time complexity is:

O(M) + O
(

M2
)
+ O

(
kwgM2

)
+ O(kM) = O

(
M2

)
(16)

5. Simulation Evaluation
5.1. Simulation Setup

Extensive simulations are performed to verify the accuracy, scalability and efficiency
of the proposed algorithm. In these simulations, the PoIs are randomly distributed in a
two-dimensional space Φ of 50 m × 50 m. The parameters used in the simulations are
shown in Table 3, where the parameters in the sensing model and charging model refer to
those in [34,35], respectively.

Table 3. Simulation parameters.

Parameters Values Parameters Values

Side length of the square 50 (m) λ 0.5
J 5 β 0.5

Ps 5 (W) r 5.6
Pc 0.012 (W) re 3.4

Pmax 0.04 (W) cth 70%
dth 15 (m) Lc 5
τ 0.003 Ls 1 (m)
ε 0.2316 PoIs 70
k 10
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Corresponding to the two sub-problems in Section 3.4 and the corresponding solutions
in Section 4, the subsequent analyses are also carried out from two parts, i.e., sensor
deployment and charger deployment. All numerical analyses are generated by averaging
the results of 50 independent simulations to avoid the influence of random factors. All
experiments are evaluated in the MatlabR2021a environment, and the computer model is
Lenovo Legion Y7000 2020 (Shanghai, China).

5.2. Solution of the Sensor Deployment

As the foundation of charger deployment, we verify the scalability and efficiency of
the GHDSAE solution and the GHDS solution for the sensor deployment by varying the
number of PoIs, the discretization accuracy, and the perception probability.

5.2.1. Varying the Number of PoIs

Figure 4 shows the performance of deployed sensors when the number of PoIs is
varying. The results show that as the number of PoIs increases, more sensors are deployed
for both the GHDS solution and the GHDSAE solution, but the increase rate slows down
because as the number of PoIs increases, the possibility of one sensor monitoring mul-
tiple PoIs gradually increases, which results in a slower increasing trend of the number
of deployed sensors. Compared with the GHDS solution, the GHDSAE solution saves
−0.04~0.47% (with an average of 0.19%) sensors, but the GHDSAE solution consumes
207.62~262.34% (with an average of 232.53%) more time than the GHDS solution. Therefore,
the number of sensors deployed by the GHDSAE solution is comparable to that deployed
by the GHDS solution, and thus, the aggregation effect has no significant impact on the
deployment of sensors. Although the GHDSAE solution takes longer than the GHDS
solution, its execution time is still within seconds, making it acceptable. In summary, both
algorithms are scalable as the problem scale grows.
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5.2.2. Varying the Number of Ls

Figure 5 shows the performance of deployed sensors when the number of Ls is vary-
ing. We can see that the number of sensors deployed by the two solutions is equivalent.
Furthermore, the number of deployed sensors does not change significantly as Ls increases.
This can be explained by the fact that most sensors are deployed near the border of the
circle sensing area of each PoI, and thus, the improvement of discretization accuracy of
the deployment area by increasing Ls does not affect the deployment result of the sensor.
With the increase of Ls, the solving time of the two solutions increases significantly, and
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the growth rate of the GHDSAE solution is faster, but its solving time is still in seconds. In
summary, both algorithms are robust as the discretization accuracy grows.
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5.2.3. Varying the Perception Probability of Sensors

Figure 6 shows the effect of increasing cth on the number of deployed sensors. Due to
the changing value of cth, according to Equation (1), the maximum effective coverage radius
of the sensor also changes, which results in a change in the distance between the candidate
sensor and the PoI, and the distance between the candidate sensors. When cth = 90% and
cth = 80%, the maximum effective coverage radiuses of the sensor are 2.3992 m and 2.2444 m,
respectively, so the distance between the candidate sensors should not be greater than
0.1548 m, and if the distance is too small, the solving time will be too long. To eliminate the
effect of spacing, we uniformly set the spacing between candidate sensors to 0.1 m.
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As shown in Figure 6, the number of sensors deployed by the two solutions increases
with the growth of cth, and the increasing trend slows down. According to Equation (1), as
cth increases, the effective coverage radius of the sensor decreases and the rate of decrease
slows down, which results in an increase in deployed sensors and a decrease in the growth
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trend. As cth increases, the solving time gets shorter and shorter. Because of the high
discretization accuracy, the higher the cth, the fewer candidate locations there are for
placing sensors, so the solving time decreases. In summary, both algorithms are scalable as
the perception probability grows.

To sum up, the proposed solutions for sensor deployment are robust as the number of
PoIs, the accuracy of sensor discretization and the probability of sensor perception grow.
The number of sensors deployed by the GHDSAE solution is comparable to that of the
GHDS solution. Although the GHDSAE solution takes longer than the GHDS solution, its
execution time is still within seconds, making it acceptable.

5.3. Solution of the Charger Deployment

For the charger deployment scenarios, we verify the accuracy, scalability, and efficiency
of the GHDSAE solution and the GHDS solution by varying the number of PoIs, the
discretization accuracy, and the perception probability. Additionally, we verify that the
aggregation effect of sensors reduces the number of chargers deployed, thus reducing the
overall deployment cost of the network.

5.3.1. Varying the Number of PoIs

The scalability of the GH and the PSO solutions is verified by varying the number of
PoIs to increase the problem scale. Figure 7 shows that as the number of PoIs increases,
the number of deployed chargers also increases, and the growth trend gradually slows
down. Both the GH and the PSO solutions based on the GHDSAE solution can always
deploy fewer chargers than the GH and the PSO solutions based on the GHDS solution. In
Figure 7a, the GHDSAE-based GH solution saves 8.09~27.19% (with an average of 19.27%)
chargers than that of the GHDS-based GH solution. In Figure 7, the GHDSAE-based GH
solution saves 0.14~18.58% (with an average of 9.92%) solution time than that of the GHDS-
based GH solution. In Figure 7c, the GHDSAE-based PSO solution saves 1.97~21.72% (with
an average of 14.44%) chargers than that of the GHDS-based PSO solution. In Figure 7d,
the GHDSAE-based PSO solution overspends 2.23~25.95% (with an average of 16.86%)
solution time than that of the GHDS-based PSO solution. As a result, the aggregation
effect of sensors can effectively reduce the deployment of chargers at the cost of slightly
incremental computing time. Likewise, both the PSO solution based on the GHDSAE
and the GHDS solutions can always deploy fewer chargers than that of the GH solution
based on the GHDSAE and the GHDS solutions. In Figure 7a,c, the GHDS-based PSO
solution saves 17.71~40.34% (with an average of 23.98%) chargers than the GHDS-based
GH solution. Furthermore, the GHDSAE-based PSO solution saves 11.80~36.36% (with
an average of 19.00%) chargers than the GHDSAE-based GH solution. In Figure 7b,d, the
GHDS-based PSO solution consumes 237.36~354.39% (with an average of 310.35%) more
solving time than that of the GHDS-based GH solution. The GHDSAE-based PSO solution
consumes 230.29~314.03% (with an average of 277.63%) more solving time than that of
the GHDSAE-based GH solution. This is mainly due to the fact that the PSO solution
is a random population intelligence-based optimization algorithm that requires several
iterations to search for the optimal solution, and thus achieves delicate search and high-
precision deployment. However, the PSO solution can always converge to an optimal
solution with the cost of acceptable solving time. In summary, both the GH and PSO
solutions are scalable as the problem scale grows, and the PSO solution always outperforms
the GH solution by deploying fewer chargers with the cost of acceptable calculation time
expenses, and the aggregation effect of sensors can effectively reduce the deployment of
chargers at the cost of slightly incremental computing time.
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5.3.2. Varying the Number of Ls

The accuracy of the GH and PSO solutions is verified by varying the number of Ls
to improve discretization accuracy. The results in Figure 8 show that as the number of Ls
increases, the number of deployed chargers decreases. Both the GH and PSO solutions
based on the GHDSAE solution can always deploy fewer chargers than that of the GH
and the PSO solutions based on the GHDS solution. In Figure 8a, the GHDSAE-based GH
solution saves 16.82~25.81% (with an average of 21.20%) chargers than that of the GHDS-
based GH solution. In Figure 8b, the GHDSAE-based GH solution saves 0.26~19.21% (with
an average of 10.22%) less time than that of the GHDS-based GH solution. There is an
inflection point at Ls = 7, and subsequent increases of Ls do not significantly reduce the
number of chargers. In Figure 8c, the GHDSAE-based PSO solution saves 14.60~27.77%
(with an average of 18.08%) more chargers than the GHDS-based PSO solution. In Figure 8d,
the GHDSAE-based PSO solution saves 18.15~33.51% (with an average of 21.62%) less
time than that of the GHDS-based PSO solution. An inflection point occurs at Ls = 5,
and subsequent increases of Ls do not significantly reduce the number of chargers. In
consequence, the aggregation effect of sensors can reduce the deployment of chargers at the
expense of slightly incremental computing time. Likewise, both the PSO solutions based
on the GHDSAE and the GHDS solutions can always deploy fewer chargers than that of
GH solutions based on the GHDSAE and the GHDS solutions. In Figure 8a,c, the GHDS-
based PSO solution saves 7.62~26.06% (with an average of 13.81%) more chargers than the
GHDS-based GH solutions. The GHDSAE-based PSO solutions save 5.15~20.72% (with an
average of 10.53%) more chargers than the GHDSAE-based GH solution. In Figure 8b,d,
the GHDS-based PSO solution consumes 308.06~451.70% (with an average of 360.05%)
more solving time than that of the GHDS-based GH solution, and the GHDSAE-based PSO
solution consumes 276.72~354.08% (with an average of 301.20%) more solving time than
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that of the GHDSAE-based GH solution. In summary, both the GH and PSO solutions are
scalable as the discretization accuracy grows, and the PSO solution always outperforms
the GH solution by deploying fewer chargers with the cost of acceptable calculation time
expenses, and the aggregation effect of sensors can effectively reduce the deployment of
chargers at the cost of slightly incremental computing time.
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5.3.3. Varying the Perception Probability of Sensors

Figure 9 shows the effect of the increase of sensor perception probability on the
number of deployed chargers. The results show that with the increase of sensor perception
probability, the number of deployed chargers increases, and the increasing trend slows
down. In Figure 9a, the GHDSAE-based GH solution saves 9.99~19.39% (with an average
of 13.43%) more chargers than the GHDS-based GH solution. In Figure 9b, the GHDSAE-
based GH solution consumes −6.69~3.62% (with an average of 0.69%) more time than that
of the GHDS-based GH solution. In Figure 9c, the GHDSAE-based PSO solution saves
8.98~20.79% (with an average of 12.98%) more chargers than the GHDS-based PSO solution.
In consequence, In Figure 9d, the GHDSAE-based PSO solution saves 11.09~24.98% (with
an average of 15.77%) less time than the GHDS-based PSO solution. As a result, the
GHDSAE-based solution deployment chargers are superior to the GHDS-based solution
deployment chargers with acceptable computing time. Likewise, both the PSO solutions
based on the GHDSAE and the GHDS solutions can always deploy fewer chargers than the
GH solution based on the GHDSAE and the GHDS solutions. In Figure 9a,c, the GHDS-
based PSO solution saves 5.45~6.63% (with an average of 5.84%) chargers compared to the
GHDS-based GH solution. The GHDSAE-based PSO solution saves 3.91~8.29% (with an
average of 5.39%) more chargers than the GHDSAE-based GH solution. In Figure 9b,d,
the GHDS-based PSO solution consumes 275.83~330.32% (with an average of 307.64%)
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more solving time than the GHDS-based GH solution. In summary, both the GH and PSO
solutions are scalable as the perception probability grows, and the PSO solution always
outperforms the GH solution by deploying fewer chargers with the cost of acceptable
calculation time expenses, and the aggregation effect of sensors can effectively reduce the
deployment of chargers at the cost of slightly incremental computing time.
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5.3.4. Varying the Transmitting Power of Chargers

In Figure 10, the results show that as Ps increases, the number of deployed chargers
decreases. According to Equations (2) and (3), with the increase of Ps, P

sj ,cx
h is gradually

increased while keeping d
(
sj, cx

)
and P

sj ,C
h unchanged, the number of deployed chargers

decreases. Both the GH and PSO solutions based on the GHDSAE solution can always
deploy fewer chargers than that of GH and PSO solutions based on the GHDS solution. In
Figure 10a, the GHDSAE-based GH solution saves 16.50~24.93% (with an average of 19.75%)
chargers than that of the GHDS-based GH solution. In Figure 10b, the GHDSAE-based GH
solution saves −2.13~13.5% (with an average of 8.70%) more time than the GHDS-based
GH solution. In Figure 10c, the GHDSAE-based PSO solution saves 10.33~28.20% (with
an average of 14.53%) more chargers than the GHDS-based PSO solution. In Figure 10d,
the GHDSAE-based PSO solution saves 13.05~33.68% (with an average of 18.19%) less
time than the GHDS-based PSO solution. As a consequence, the GHDSAE-based solution
deployment chargers are superior to the GHDS-based solution deployment chargers, at
the cost of a slight increase in time, which is still within an acceptable range. Likewise,
both the PSO solutions based on the GHDSAE and the GHDS solutions can always deploy
fewer chargers than the GH solution based on the GHDSAE and the GHDS solutions.
In Figure 10a,c, the GHDS-based PSO solution saves 12.57~22.20% (with an average of



Energies 2024, 17, 3130 18 of 21

16.72%) more chargers than the GHDS-based GH solution. And the GHDSAE-based PSO
solution saves 8.07~19.32% (with an average of 11.40%) chargers than the GHDSAE-based
GH solution. In Figure 10b,d, the GHDS-based PSO solution consumes 154.95~457.14%
(with an average of 395.25%) more solving time than the GHDS-based GH solution. The
GHDSAE-based PSO solution consumes 65.56~422.69% (with an average of 352.50%)
more solving time than the GHDSAE-based GH solution. In summary, both the GH and
PSO solutions are scalable as the transmitting power grows, the PSO solution always
outperforms the GH solution by deploying fewer chargers with the cost of acceptable
calculation time expenses, and the aggregation effect of sensors can effectively reduce the
deployment of chargers at the cost of slightly incremental computing time.
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5.3.5. Varying the Number of Lc

Since the charger discretization method is not used to deploy chargers based on the
PSO solution, we only analyze the chargers deployed based on the GH solution. The results
in Figure 8 show that as Lc increases, the number of chargers deployed by the GH solution
increases. When Lc = 1.5 (m), the number of deployed chargers has an inflection point,
indicating that when Lc < 1.5 (m), Lc does not affect the number of deployed chargers.
When Lc > 1.5 (m), the number of deployed chargers increases with Lc. As Lc increases,
according to Equation (2), the distance between candidate chargers increases, and the
distance between the candidate chargers and the sensor increases, resulting in an increase
in the number of deployed chargers. In Figure 11a, the GHDSAE-based GH solution saves
5.82~24.84% (with an average of 18.97%) more chargers than the GHDS-based GH solution.
In Figure 11b, the GHDSAE-based GH solution saves −2.09~12.88% (with an average of
4.29%) less time than the GHDS-based GH solution. As a result, the deployed chargers
of the GHDSAE-based solution are fewer than the GHDS-based solution with the cost of
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acceptable solving time growth, and the improvement of discrete accuracy for charging
area can reduce the number of chargers deployed, but there is also a performance limit.
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In conclusion, the proposed solutions for charger deployment are scalable as the
number of PoIs, the accuracy of sensor discretization, the probability of sensor perception,
the transmitting power of chargers, and the accuracy of charge discretization grow. The
aggregation effect of sensors can effectively reduce the deployment of chargers at the cost
of slightly incremental computing time. In addition, the PSO solution always outperforms
the GH solution by deploying fewer chargers with the cost of acceptable calculation
time expenses.

6. Conclusions

This paper explores the novel problem of jointly deploying sensors and chargers on a
two-dimensional plane, deploying a minimum number of wireless sensors and chargers
under the constraint of continuous monitoring PoIs. Considering the interaction between
the deployment of sensors and chargers, we derive two progressive problems: P1 and P2.
P1 solves the deployment of sensors with the constraint that the monitoring probability of
any PoIs is not less than a preset limit cth. P2 solves the deployment problem of chargers
with the constraint that the minimum charging power of any sensors is not less than P

sj
min.

We demonstrate that both P1 and P2 are NP-hard problems. We note that the aggregation
effect of sensors can effectively reduce the number of deployed chargers, and therefore the
GHDSAE solution is proposed. Then, the GH solution and the PSO solution are proposed
for the deployment of chargers. The accuracy, scalability, and efficiency of the GH and PSO
solutions are verified by changing the problem scale, the discretization accuracy, and the
perception probability. The numerical comparative results show that the aggregation of
sensors can effectively reduce the number of chargers required, based on which the PSO
solution can effectively reduce the deployment of chargers at the cost of a slight increase in
computing time. As a result, it is more cost-effective to deploy sensors using the GHDSAE
solution approach and chargers using the PSO solution.

In the future, the joint deployment of sensors and chargers will be applied in mobile
wireless rechargeable sensor networks for electric vehicle adoption rates, grid constraints,
and renewable energy integration scenarios to further explore the key network perfor-
mance, such as charging benefit maximization, monitoring benefit maximization, delay
minimization, life cycle maximization, network deployment cost minimization, etc.
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