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Abstract: Pulsating high-frequency voltage injection can be used for the sensorless control of a surface-
mounted permanent magnet synchronous motor (SPMSM) at zero- and low-speed ranges. However,
the sensorless capability still faces challenges to the requirements of industrial application, especially
at heavy load status. Aiming at this issue, this article proposes a sensorless capability expansion
method for an SPMSM based on inductance parameter identification. Firstly, incremental inductances
at the d-q-axis and cross-coupling inductance are identified offline by three steps combining the
rotating high-frequency voltage injection and pulsating high-frequency voltage injection. Using
a polynomial curve fitting algorithm, apparent inductances are calculated. Secondly, positive DC
current injection at the d-axis is proposed to enhance the saliency ratio based on the analysis of
parameter identification results. Compared with the conventional id = 0 or id < 0 method, the saliency
ratio is enhanced obviously when a positive DC current is injected at the d-axis. Then, the convergence
region of the sensorless control method at heavy load status is expanded and the accuracy of rotor
position estimation is improved using the proposed method. Finally, the experimental results validate
that the sensorless capability of the SPMSM is expanded.

Keywords: sensorless capability; inductance parameter identification; saliency ratio; convergence
region; heavy load status; SPMSM

1. Introduction

Permanent magnet synchronous motors (PMSMs) are widely used for industry appli-
cations due to their high power density, high torque density and high efficiency. Sensorless
control of PMSMs is an interesting topic for researchers in recent decades [1]. Once the
position sensor is removed, the cost is reduced. Meanwhile, the reliability is improved
because the additional cables are not needed anymore.

Sensorless control methods for PMSMs can be divided into two categories. The first
category is the model-based method. When the motor is operating at medium- and high-
speed ranges, the rotor position can be estimated by the back electromotive force (EMF) [2].
The second category is the saliency-based method [3]. By injecting high-frequency (HF)
voltage into the motor, the saliency effect can be used for rotor position estimation at zero-
and low-speed ranges.

Among the three typical HF voltage injection methods, the accuracy of position
estimation is low for the rotating high-frequency voltage injection method [4] The phase
delay is small for the high-frequency square-wave voltage injection method. However, high
switching frequency leads to high noise and high loss [5]. Compared with the two methods
above, the pulsating high-frequency voltage injection method has the advantages of high
accuracy and good stability [6]; it has been gradually promoted for industrial applications.

Although the pulsating high-frequency voltage injection method can be used for
sensorless control of SPMSMs, the sensorless capability still faces challenges to the require-
ments of the actual application. It is very necessary to investigate the limitation of the
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saliency-based sensorless control method [7–10]. Sensorless capabilities are comprised of
the saliency ratio, estimation error, and convergence region [7,8]. When pulsating high-
frequency voltage injection is used for the sensorless control of SPMSMs, it is found that
as the load increases, the saliency ratio decreases due to the saturation effect, and the
convergence region of sensorless control is limited. The sensorless control method even
fails at severe status. Meanwhile, due to the cross-coupling effect, the estimated rotor
position gradually deviates from the actual rotor position, and the accuracy of position
estimation is degraded [9,10]. Therefore, the research on sensorless capability expansion
for SPMSMs at heavy load status is of great significance.

In order to expand the sensorless capability for PMSMs based on the saliency effect,
extensive research has been carried out. The two main categories are motor body design
optimization and motor control improvement. In the first category, the motor design
method is proposed to achieve self-sensing capability while retaining the torque-speed
capability for PMSMs used in hybrid electric vehicles [11]. By adding a short-circuited rotor
ring into the two-pole slotless permanent magnet motor, the saliency ratio is expanded
to 1.8 [12]. An improved inductance model is proposed to reduce the torque ripple and
enhance the self-sensing capabilities of PMSMs [13]. In the second category, using the
current reference tilting strategy [14,15], the rotor position estimation error is reduced, and
the torque limitation is expended. In [16], a new online method is proposed to detect and
compensate the position estimation error due to the cross-coupling effect, and the accuracy
of position estimation is improved.

Apart from the methods above, it is noticed that inductance parameter identification
is an effective way to evaluate the sensorless capability of PMSMs based on the saliency
effect [17]. The two kinds of inductances in the voltage equation of PMSMs are incremental
inductance and apparent inductance. In [18,19], the finite element analysis method is used
for the identification of incremental inductance parameters. However, the method is limited
at the motor design process. In [20], driving the motor operating at a constant speed, the flux
linkage versus current curve of the machine is constructed; then, incremental inductances
are identified using partial differentiation calculation. In [21], when the rotor position is
locked, the rotor speed term in the voltage equation is ignored, and incremental inductances
are identified based on the simplified fundamental voltage equation. However, the common
issue in [20,21] is that the computation of partial differentiation is large. High-frequency
voltage injection is proposed for incremental inductance identification in [22,23]. However,
cross-coupling inductance is ignored. In [24], incremental inductance and cross-coupling
inductance are identified using the rotating high-frequency voltage injection method.
In [25,26], with the assistant of a position sensor, high-frequency voltages are injected
into the actual reference frame and the position observer is removed; the incremental
inductance identification process is easy, and the accuracy can be guaranteed. In addition
to the incremental inductances, apparent inductances are also important parameters in
motor drive technology. In [20,21], apparent inductances are identified according to the
flux linkage versus current curve of a PMSM. However, the inductance identification fails
when the fundamental current is zero. Meanwhile, due to the saturation and cross-coupling
effect, a non-linear relationship is observed between the flux linkage and current at the dq-
axis. In [27], polynomial fitting is proposed to reduce the fitting error when the non-linear
relationship between the amplitude of id and the target torque is considered. In [28], second-
order polynomial fitting is proposed to predict the current- and temperature-dependent
behavior of a PMSM. In [29–32], a polynomial curve fitting algorithm is proposed for
apparent inductance identification. Compared with the method in [20,21], the apparent
inductances can be calculated even when the fundamental current is zero.

According to the analysis above, this article proposes a sensorless capability expansion
method for an SPMSM based on inductance parameter identification. The incremental in-
ductances at the d-q-axis and cross-coupling inductance are identified offline by combining
the rotating high-frequency voltage injection and pulsating high-frequency voltage injection
method in three steps. Then, a sixth-order polynomial curve fitting algorithm is proposed
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for apparent inductance identification. Based on the analysis of the offline inductance
identification results, a positive DC current injection at the estimated d-axis is proposed to
expand the sensorless capability of the SPMSM. Compared with the conventional id = 0 or
id < 0 method, the saliency ratio is enhanced obviously, the guaranteed stable convergence
region is expanded to 200% its rated load, and accuracy of the rotor position estimation is
improved using the proposed method. Finally, the effectiveness of the proposed method is
verified using a 200 W SPMSM.

2. Conventional Pulsating High-Frequency Voltage Injection
2.1. Incremental Inductance and Apparent Inductance

The voltage equation considering the cross-coupling effect involves multiple induc-
tance parameters. Among them, incremental inductance is known as dynamic inductance,
transient inductance, differential inductance, etc. Incremental inductance represents the
slope at the operating point on the flux linkage–current curve, which is commonly used for
small signal model analysis. The incremental inductances represent the dynamic behavior
of the machine, for example, PI parameter tuning of the current control loop, inductance
calculation in the high-frequency injection method, etc.

Apparent inductance is known as static inductance, absolute inductance, etc. It
represents the ratio of magnetic flux to current. The inductance in the torque equation is
apparent inductance. Figure 1 shows the difference between the incremental and apparent
inductance. Due to the saturation effect, as the load increases, the incremental inductance
is gradually less than the apparent inductance.
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Figure 1. Incremental inductance and apparent inductance.

2.2. Conventional Pulsating High-Frequency Voltage Injection Method

The voltage equation of PMSM at d-q-axis is shown as

ud = idR + Linc
d

did
dt + Linc

dq
diq
dt − ωeLapp

q iq

uq = iqR + Linc
q

diq
dt + Linc

qd
did
dt + ωe(Lapp

d id + ψPM)
(1)

where ud,uq,id,iq, are the voltages and currents at the d-q-axis, R is the phase resistance, ωe

is the rotor speed, Linc
d , Linc

q are incremental inductances at the d-q-axis, and Linc
dq , Linc

qd are
the incremental cross-coupling inductances between the d-q-axis, and their values are equal.
Lapp

d , Lapp
q are apparent inductances at the d-q-axis; ψPM is the permanent magnet (PM)

flux linkage.
The equivalent circuit diagram of the voltage equation of the PMSM at the dq-axis is

shown in Figure 2.
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Considering that the frequency of the voltage injected is much higher than the fun-
damental frequency and the motor is operating at zero- and low-speed range, the voltage
drop of the resistance and the speed-related term in Equation (1) can be neglected. The HF
model of PMSM is shown as[

udh
uqh

]
=

[
Linc

d Linc
dq

Linc
dq Linc

q

][
didh
dt

diqh
dt

]
(2)

where udh,uqh,idh,iqh, are the HF voltages and currents at the d-q-axis.
For the pulsating high-frequency voltage injection method, the HF voltage is injected

into the estimated d-axis: [
ûdh
ûqh

]
=

[
Uh cos ωht
0

]
(3)

where ûdh, ûqh are the HF voltages at the estimated the d-q-axis and Uh, ωh are the amplitude
and frequency of the injected voltage.

The rotor position and reference frames in the HF voltage injection method are shown
in Figure 3, where αβ is the stationary reference frame, dq is the actual synchronous rotating
reference frame, d̂q̂ is the estimated synchronous rotating reference frame, θ is the actual
rotor position, θ̂ is the estimated rotor position and ∆θ is the difference between the actual
rotor position and the estimated rotor position.
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By coordinate transformation, voltage equation at the estimated d-q-axis can be ob-
tained as[

ûdh
ûqh

]
=

[
∑L −∆L cos 2∆θ − Ldqh sin 2∆θ −∆L sin 2∆θ + Ldqh cos 2∆θ

−∆L sin 2∆θ + Ldqh cos 2∆θ ∑L +∆L cos 2∆θ + Ldqh sin 2∆θ

]
p
[

îdh
îqh

]
(4)

where ΣL =
Linc

q +Linc
d

2 , ∆L =
Linc

q −Linc
d

2 , Ldqh = Linc
dq , îdh, îqh are the HF current at the estimated

d-q-axis and p is the differential operator.
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By substituting (3) into (4), the HF current response is expressed as

[
îdh
îqh

]
=

Uh sin ωht
ωh(∑

2
L −∆2

L − L2
dqh)

∑L +
√

∆2
L + L2

dqh cos(2∆θ − θm)√
∆2

L + L2
dqh sin(2∆θ − θm)

 (5)

where θm is the cross-coupling angle, tan(θm) = Ldqh/∆L.
It is observed that the rotor position is contained in the current response of the q-axis.

Therefore, it can be used for rotor position estimation.
A bandpass filter (BPF) is used to extract the HF current response at the estimated

q-axis. Then, by multiplying with sin ωht, the doubling frequency component is eliminated
by a lowpass filter. The remaining part for rotor position information is shown as

f (∆θ) =
Uh

√
∆2

L + L2
dqh

ωh(∑
2
L −∆2

L − L2
dqh)

sin(2∆θ − θm) (6)

Using (6) as the input of a phase lock loop (PLL)-based position observer, the rotor
position can be estimated when (6) is converged to zero at steady status. However, it is
noticed that additional estimation error would occur due to the cross-coupling effect.

∆θ =
1
2

θm ≈ 1
2

tan−1(
Ldqh

∆L
) (7)

In the conventional pulsating high-frequency voltage injection method, the cross-
coupling effect is always ignored. The error signal for position estimation is expressed as

f ′(∆θ) =
Uh∆L

ωh(∑
2
L −∆2

L)
sin(2∆θ) (8)

The control block of the conventional pulsating high-frequency voltage injection is
shown in Figure 4.
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2.3. Issues of the Conventional Pulsating High-Frequency Voltage Injection Method

Although pulsating high-frequency voltage injection can be used for sensorless control
of the SPMSM, the sensorless capability still faces challenges for actual application:

• The saliency ratio is small, and it decreases with the increase in load. There is no
structure saliency for the SPMSM, and the saturation saliency is weak even when
the HF voltage is injected. The saliency ratio may be less than 1 when the motor is
operating at heavy load status.

• The convergence region is limited and the sensorless control method even diverges in
serious situations. Refs. [1,9] pointed out that it is very necessary to investigate the
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convergence range for the sensorless control of a PMSM, making sure the guaranteed
stable sensorless performance is achieved.

• The accuracy of position estimation is degraded due to the cross-coupling effect. Lots
of research has been carried out to compensate for the estimation error due to the
cross-coupling effect. However, the cross-coupling inductance is small, and it varies
with the increase in load; therefore, it is a great challenge to identify the cross-coupling
inductance and improve the accuracy of rotor position estimation.

3. The Proposed Sensorless Capability Expansion Method

Aiming to solve the issues above, a sensorless capability expansion method for
SPMSMs is proposed based on inductance parameter identification in this section.

3.1. Inductance Parameter Identification
3.1.1. Incremental Inductance Identification

It is found that inductance information is contained in the amplitude of the HF current
response when the HF voltage is injected into the motor. Therefore, it can be used for
inductance parameter identification.

In this section, with the assistance of the encoder, the incremental inductances at the
d-q-axis and cross-coupling inductance are identified offline in three steps by combining
the rotating HF voltage injection and pulsating HF voltage injection [25,26].

Step 1: Positive and negative sequence component of HF current extraction by injecting
the HF voltage at the αβ-axis.

The voltage equation at αβ-axis is expressed as[
uαh
uβh

]
=

[
∑L −∆L cos 2θ − Ldqh sin 2θ −∆L sin 2θ + Ldqh cos 2θ

−∆L sin 2θ + Ldqh cos 2θ ∑L +∆L cos 2θ + Ldqh sin 2θ

]
p
[

iαh
iβh

]
(9)

when the following HF voltages are injected at the αβ-axis[
uαh
uβh

]
=

[
Uh cos ωht
Uh sin ωht

]
(10)

By substituting (10) into (9), the HF current response is shown as[
iαh
iβh

]
=

Uh

ωh(∑
2
L −∆2

L − L2
dqh)

[
∑L sin ωht + ∆L sin(ωht − 2θ) + Ldqh cos(ωht − 2θ)

−∑L cos ωht + ∆L cos(ωht − 2θ)− Ldqh sin(ωht − 2θ)

]
(11)

The vector expression of (11) is shown as

iαβh = Ipej(ωht− π
2 ) + Inej( π

2 +2θ−ωht−θm) (12)

where
Ip =

UhΣL

ωh(Σ2
L − ∆2

L − L2
dqh)

(13)

In =
Uh

√
∆2

L + L2
dqh

ωh(Σ2
L − ∆2

L − L2
dqh)

(14)

It can be seen that incremental inductance information is contained in the amplitude
of the positive and negative sequence component of the HF current. They can be used
for incremental inductance identification. However, it is not enough to identify the three
incremental inductances by solving the Equations (13) and (14).

Step 2: HF current extraction by injecting the HF voltage at the actual d-axis.
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The HF voltage injected at the actual d-axis is shown as[
udh
uqh

]
=

[
Uh cos ωht
0

]
(15)

The current response is expressed as

[
idh
iqh

]
=

Uh sin ωht
ωh(∑

2
L −∆2

L − L2
dqh)

∑L +
√

∆2
L + L2

dqh cos(2∆θ − θm)√
∆2

L + L2
dqh sin(2∆θ − θm)

 (16)

The rotor position is obtained using the encoder, so the HF voltage is injected at the
actual d-axis; therefore, ∆θ is zero. Sine and cosine values of the cross-coupling angle are
calculated according to (7). Then, the amplitude of the HF current at the d-q-axis can be
deduced as

Id1 =
Uh(ΣL + ∆L)

ωh(Σ2
L − ∆2

L − L2
dqh)

(17)

Iq1 =
Uh(−Ldqh)

ωh(Σ2
L − ∆2

L − L2
dqh)

(18)

Step 3: HF current extraction by injecting the HF voltage at the actual q-axis.
The HF voltage injected at the actual q-axis is shown as[

udh
uqh

]
=

[
0
Uh cos ωht

]
(19)

The HF current response is expressed as

[
idh
iqh

]
=

Uh sin ωht
ωh(Σ2

L − ∆2
L − L2

dqh)

 √
∆2

L + L2
dqh sin(2∆θ − θm)

ΣL −
√

∆2
L + L2

dqh cos(2∆θ − θm)

 (20)

Similar to (15) and (16), because the rotor position is obtained by the encoder, the HF
voltage is injected at the actual q-axis, and the amplitude of the HF current at the d-q-axis
can be deduced as

Id2 =
Uh(−Ldqh)

ωh(Σ2
L − ∆2

L − L2
dqh)

(21)

Iq2 =
Uh(ΣL − ∆L)

ωh(Σ2
L − ∆2

L − L2
dqh)

(22)

Finally, combining (13), (14), (17), (18), (21), (22), incremental inductances at the d-q-axis
and cross-coupling inductance can be identified, shown as

Linc
d =

2Uh Ip Iq2

ωh(I2
p − I2

n)(Id1 + Iq2)
(23)

Linc
q =

2Uh Ip Id1

ωh(I2
p − I2

n)(Id1 + Iq2)
(24)

Ldqh = −
Uh Iq1

ωh(I2
p − I2

n)
or Ldqh = − Uh Id2

ωh(I2
p − I2

n)
(25)

3.1.2. Apparent Inductance Identification

Apart from incremental inductances, apparent inductances are also important param-
eters for identification. In this section, a sixth-order polynomial curve fitting algorithm
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is proposed for apparent inductance calculation based on the incremental inductance
identification results.

The incremental inductance matrix considering the cross-coupling effect is a non-
diagonal matrix, which includes the cross-coupling inductance. Therefore, it is necessary to
transform the non-diagonal inductance matrix into a diagonal inductance matrix. Then, it will
be easier to use the polynomial curve fitting algorithm for apparent inductance identification.

Using the matrix transformation, the diagonal inductance matrix can be obtained as

Linc
dq_adj = T(θm)

[
Linc

d Ldqh
Ldqh Linc

q

]
T−1(θm) =

[
Linc

d_adj 0
0 Linc

q_adj

]
(26)

where Linc
d_adj and Linc

q_adj are the incremental inductances after transformation.
The matrix used for transformation is defined as

T(θm) =

[
cos θm − sin θm
sin θm cos θm

]
(27)

After transformation, the incremental inductance is a diagonal matrix, and the sixth-
order polynomial curve fitting algorithm is proposed as

Linc
d_adj = m6i6d + m5i5d + m4i4d + m3i3d + m2i2d + m1id + m0 (28)

Linc
q_adj = n6i6q + n5i5q + n4i4q + n3i3q + n2i2q + n1iq + n0 (29)

where mi, ni with i ∈ {0, 1, 2, 3, 4, 5, 6} are the polynomial coefficients.
Using the tool of “nlinfit” of MATLAB (R2021a) to solve Equations (28) and (29), the

polynomial coefficients can be obtained. Then, apparent inductance can be identified as

Lapp
d =

∫
Linc

dd_adjdid
id

=
1
7

m5i6d +
1
6

m5i5d +
1
5

m4i4d +
1
4

m3i3d +
1
3

m2i2d +
1
2

m1id + m0 (30)

Lapp
q =

∫
Linc

qq_adjdiq
iq

=
1
7

n6i6q +
1
6

n5i5q +
1
5

n4i4q +
1
4

n3i3q +
1
3

n2i2q +
1
2

n1iq + n0 (31)

Compared with the method in [21], the process of obtaining flux linkage through
integration and division calculation are not needed. Apparent inductances at the d-q-axis
are identified by the polynomial curve fitting algorithm, and the identification processes
are conducted offline.

3.2. Sensorless Capability Expansion

Figure 5 shows the proposed sensorless capability expansion method in this paper.
On one hand, it can be seen that the incremental inductances are identified offline by

three steps combining the rotating and pulsating high-frequency voltage injection. Then,
a sixth-order polynomial curve fitting algorithm is proposed for apparent inductance
identification based on the incremental inductance identification results. The identification
of incremental and apparent inductances is an offline method; the identification process is
finished before the startup of the SPMSM. Therefore, the sensorless control of the SPMSM
will not be affected by the inductance identification process.

On the other hand, according to the inductance parameter identification results, it
is observed that compared with the conventional id = 0 or id < 0 method, the saliency
ratio can be enhanced obviously when a positive DC current is injected into the d-axis.
However, positive id would generate additional copper losses; therefore, the efficiency is
reduced. After balancing the saliency ratio improvement and efficiency reduction, a 50%
rated current injection at the d-axis is proposed in this paper. The saliency ratio is enhanced,
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the convergence region is expanded, and the accuracy of position estimation is improved
when the estimation error due to the cross-coupling effect is compensated for online.

θ̂ = θest − θcomp (32)

where θ̂ is the estimated position after compensation, θest is the position estimated by the
observer, and θcomp is the compensated angle, which is equal to −0.5θm.
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4. Experimental Verification
4.1. Experimental Platform

The experimental platform is shown in Figure 6. STM32F405 is selected as the MCU
in the drive, the resolution of the AD converter is 12 bits, PWM switching frequency is
20 kHz and the dead time is 800 ns. During the experiment, two identical drivers are used
to control the two identical SPMSMs. Among them, the tested motor operates in current
control loop mode, and the load motor operates in speed control loop mode. The two
drivers are connected to the power supply through a common DC bus. In order to compare
the estimated rotor position accuracy, the encoder with 2500 line resolution is used to obtain
the actual rotor position. The software on a PC is developed based on the VISA function of
LabVIEW, and the baud rate is 500 kbit/s.
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The parameters of the SPMSM used in the paper are listed in Table 1.

Table 1. Parameters of the test motor.

Item Value Item Value

Rated voltage 110 V Pole pairs 5
Rated current 1.5 A Phase resistance 2.8 Ω
Rated power 200 W d-axis inductance 13 mH
Rated torque 0.64 Nm q-axis inductance 13 mH

4.2. Inductance Parameter Identification
4.2.1. Incremental Inductance Identification

The frequency and amplitude selection of the HF voltage injected is critical for incre-
mental inductance identification. The higher the frequency is, the greater the amplitude
needed, resulting in higher HF losses. Therefore, the frequency of the voltage injected
cannot be too high. At the same time, in order to reduce the non-linearity of the inverter,
the amplitude of the voltage injected should be as large as possible. However, if the am-
plitude of the HF voltage is too large, the saturation of the magnetic field is increased,
and the resolution of the incremental inductance is reduced. Therefore, the amplitude of
the injected signal also needs to be selected appropriately. Finally, after comparing the
parameter identification results of 100 Hz, 300 Hz, and 500 HZ, 300 Hz/26 V is selected
as the frequency and amplitude of the high-frequency voltage injected for incremental
inductance identification in this section.

In order to know how the incremental inductances are affected by id and iq, in the
experiment, id is set as 0 A, ±0.5 A, ±1 A and ±1.5 A; iq is set as 0 A, ±0.5 A, ±1 A,
±1.5 A, ±2 A, ±2.5 A and ±3 A, respectively. Therefore, 91 test points and seven curves
are included in each figure.

Figure 7 shows the incremental inductance parameter identification results. As shown
in Figure 7a,b, it can be seen that due to the saturation and cross-coupling effect, the
incremental inductance of Linc

d and Linc
q gradually decreases with the increase in iq, and

the variation in Linc
q is more significant than that of Linc

d . This will lead to a decrease in
the saliency ratio. Figure 7c shows the identification results of Ldqh. Taking the curve
id = 1.5A as an example, it is observed that the cross-coupling inductance is −0.358 mH
when iq = 1.5 A, and it reaches −0.515 mH when iq = 3 A, which is a 200% rated current. This
means that the cross-coupling effect increases with the load. Figure 7d shows the calculated
rotor position error due to the cross-coupling effect, which is equal to −0.5θm. It can be seen
that the estimation error of the rotor position increases with the load; therefore, compensation
is needed to improve the accuracy of position estimation, especially at heavy load status.
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4.2.2. Apparent Inductance Identification

Using the tool of “nlinfit” in MATLAB, the polynomial curve fitting algorithm is pro-
posed to identify the apparent inductances from the incremental inductances of Linc

d_adj,L
inc
q_adj.

In order to evaluate the order of the polynomial on the fitting accuracy of Linc
d_adj and

Linc
q_adj, the sum of squares (SOS) approximation error is calculated when the polynomials

are in the order of 3, 4, 5 and 6. As shown in Figure 8, it can be seen that the approximation
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error decreases with the increasing polynomial order. Therefore, the sixth order is selected
for the polynomial fitting of Linc

d_adj and Linc
q_adj.
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Figure 9 shows the apparent inductance identification results using the six-order
polynomial curve fitting algorithm. As shown in Figure 9a, the apparent inductances of
Lapp

d are calculated when iq = 0. It can be seen that Lapp
d is 12.97 mH when id = −1.5A, and

Lapp
d decreases to 11.45 mH when id is increased to 1.5 A. This is because the saturation

level of the magnetic field at the d-axis increases gradually with id, which leads to the
decrease in Lapp

d . Meanwhile, compared with id ≤ 0, the variation in Lapp
d is more obvious

when id > 0, which means that the saturation level of the magnet field at the d-axis is
enhanced significantly when a positive current is used for the d-axis. Figure 9b shows
the identification results of Lapp

q when id = 0. It can be seen that Lapp
q is 13.625 mH when

iq = 0A, and Lapp
q decreases to 12.41 mH when iq is increased to 3 A, which is a 200% rated

load. This is because the saturation level of the magnetic field at the q-axis also increases
gradually with iq. As a result, Lapp

q decreases with the increase in iq. Compared with
the method in [20,21], apparent inductance can be identified even when the fundamental
current is zero using the proposed polynomial curve fitting algorithm.
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4.3. Sensorless Capability Expansion
4.3.1. Saliency Ratio Improvement

Based on the incremental inductance identification results, the saliency ratio Linc
q /Linc

d
at different working points is shown in Figure 10.

The following features can be observed from Figure 10:

• The saliency ratio decreases as iq increases. This is because Linc
q is more sensitive than

Linc
d to the variation of iq. The saliency ratio is less than 1 in severe cases.
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• The saliency ratio can be enhanced when a positive DC current is injected into the
d-axis. Taking iq = 2A (130% rated current) as an example, the saliency ratio is less
than 1 using the conventional id < 0 or id = 0 method. It can be predicted that the
HF voltage injection method would fail at these working points. On the contrary, the
saliency ratio gradually increases with the positive value of id, and the saliency ratio
reaches 1.13 when id = 1.5A.

According to the analysis above, it can be predicted that using the proposed method,
when a 50% rated current is injected at the d-axis, the saliency ratio would be enhanced
compared with the conventional id = 0 or id < 0 method.
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4.3.2. Convergence Region Expansion

Figure 11 compares the convergence range between the conventional method and the
proposed method when the motor is operating at 120 r/min. In each figure, id, iq, actual
rotor speed, estimated rotor speed, actual rotor position, estimated rotor position and
position error are listed from top to bottom.

As shown in Figure 11a, using the conventional method, the sensorless control based
on pulsating high-frequency voltage diverges at a 130% rated load. This is because the
saliency ratio is less 1 at this working point. This experimental result is consistent with the
analysis of Figure 7. With the help of zooming in, as shown in Figure 11b, the position error
is fluctuating at ±180, which means that the rotor position estimation fails at this situation
and the convergence range of the sensorless control method is limited at heavy load status.
On the contrary, as shown in Figure 11c, using the proposed method, it is observed that the
sensorless control method works well at a 130% rated load; furthermore, the convergence
range is even expanded to a 200% rated load. It is also observed that the estimated rotor
position gradually deviates from the actual rotor position due to the crossing coupling
effect, and a nearly 12◦ DC bias error occurs at a 200% rated load. In Figure 11d, using
the online compensation method, the DC bias error is eliminated, and the rotor position
error stays around at 0◦ regardless of the increase in the load. Figure 11 verifies that the
convergence region of the sensorlsess control is expanded to a 200% rated load using the
proposed method.
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for the position estimation error due to the cross-coupling effect.

4.3.3. Accuracy of Rotor Position Estimation Improvement

In order to verify how the accuracy of rotor position estimation is improved using the
proposed method, the following experiments are carried out.

Figure 12 shows a comparison of the startup performance between the conventional
method and the proposed method with a rated load. As shown in Figure 12a, it can be seen
that the motor can start from 0 to 120 r/min using the conventional method; however, the
position error increases with rotor speed, and the maximum error exceeds 20◦ at steady
status. On the contrary, using the proposed method in Figure 12b, the position error is ±10◦

during the startup process. Meanwhile, the speed estimation is smoother. This proves that
the startup performance is better using the proposed method.
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Figure 13 shows the experimental results of rotor position estimation when the motor
is operating at 120 r/min with a rated load. As shown in Figure 13a, using the conventional
id = 0 method, the position estimation error is ±20◦. However, as shown in Figure 13b,
using the proposed method, the estimation error keeps within ±10◦ at steady status. This
proves that the accuracy of rotor position estimation is obviously improved using the
proposed method.
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Figure 14 shows the experimental result during the dynamic process that the speed is
changed from −120 r/min to 120 r/min, then back to −120 r/min at the rated load. As
shown in Figure 14a, using the conventional id = 0 method, during the dynamic process in
which the speed is changed from −120 r/min to 120 r/min, the estimated position error
exceeds 20◦. When the rotor speed is changed from 120 r/min to −120 r/min, the estimated
position error exceeds −20◦. On the contrary, as shown in Figure 14b, using the proposed
method, the estimation error keeps within ±15◦ during the speed reversal process. The
experimental results prove that the accuracy of rotor position estimation is enhanced using
the proposed method during the speed reversal test.
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Figure 15 shows the experimental results of rotor position estimation during the
loading and unloading process. As shown in Figure 15a, using the conventional id = 0
method, the rotor position estimation error increases with iq during the loading process, and
the fluctuation error is greater than ±20◦ at a 100% rated load. When the load is decreased
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to 0, the estimation error is ±15◦. Meanwhile, obvious fluctuation error is observed for
the rotor speed estimation. On the contrary, as shown in Figure 15b, using the proposed
method, the position estimation error keeps within ±10◦ during the dynamic loading and
unloading process. When the load is decreased to 0, the estimation error is less than ±5◦.
The speed estimation is smoother than the conventional method. Therefore, this validates
that the accuracy of rotor position estimation is better using the proposed method during
the loading and unloading process.
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increases from 0 to rated value, then back to 0): (a) conventional method; (b) proposed method.

Figure 16 shows the rotor position estimation when the motor is operating at 120 r/min
with a 200% rated load. As shown in Figure 16a, due to the effect of cross-coupling, an
almost −12◦ DC bias error occurred at the 200% rated load, and the position estimation
error exceeds −25◦. On the contrary, as shown in Figure 16b, using the online compensation
method based on the parameter identification in Figure 7d, the DC bias error is eliminated,
the position estimation stays around at 0◦, and the fluctuation error is within ±15◦. The
experimental data verify that the accuracy of position estimation is improved at a 200%
rated load.
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Figure 16. Rotor position estimation at 120 r/min with a 200% rated load: (a) without compensation for
the error due to cross-coupling effect; (b) with compensation for the error due to cross-coupling effect.

5. Conclusions

This article proposes a sensorless capability expansion method for an SPMSM based
on inductance parameter identification. The contributions of this article are as follows:

• Incremental inductances are identified offline in three steps combining the rotating
high-frequency voltage injection and pulsating high-frequency voltage injection. Then,
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a polynomial curve fitting algorithm is proposed for apparent inductance identifica-
tion.

• The saliency ratio is enhanced by injecting a positive DC current into the d-axis.
Compared with the conventional id = 0 or id < 0 method, the saturation level at the
d-axis is enhanced and the saliency ratio is improved obviously.

• The convergence region of the pulsating high–frequency voltage injection method is
expanded at heavy load status. Using the conventional method, the sensorless control
method fails at a 120% rated current. On the contrary, using the proposed method, the
rotor position estimation works well at a 200% rated current.

• The experimental results show that the accuracy of rotor position estimation is im-
proved obviously at the steady state and during the dynamic process.

The sensorless capability of the SPMSM is improved obviously using the proposed
positive DC current injection at the estimated d-axis. However, it is noticed that the energy
losses and resulting heat dissipation are increased at the same time. Therefore, there would
be a tradeoff between the sensorless capability expansion and the energy losses. Meanwhile,
half of the nominal current at the d-axis in this paper is not mandatory, and the positive
value of id needs to be optimized according to the overload level. Future research work
will focus on the trajectory planning of id. The target is to achieve a balance between the
sensorless capability expansion for the SPMSM and the energy losses.
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