Three-Dimensional Modeling of Anion Exchange Membrane Electrolysis: A Two-Phase Flow Approach
Abstract
:1. Introduction
2. Model Description
2.1. Mathematical Modeling
- The fluid mixture is assumed to have Newtonian properties;
- A homogeneous flow is considered in the channels, which means that the gas and liquid velocities are equal;
- No-slip condition is assumed at the free-porous interface on the free-flow side, which means that the tangential component of the mixture velocity is set to zero;
- The oxygen (O2) and hydrogen (H2) produced are considered to be present as pure gas bubbles dispersed within the continuous liquid electrolyte;
- The gas and KOH aqueous electrolyte flows are assumed to be laminar due to the low flow velocity and small pressure gradient;
- Hydrogen and oxygen crossover through the membrane are neglected;
- The porous media are isotropic, and the transport phenomena occurring within them are characterized using effective properties;
- The electrochemically active surface area is assumed to be in contact with the ionomer phase and therefore to be constant whatever the KOH concentration.
- The ionic conductivity of the ionomer is assumed to depend on the KOH concentration.
- An isothermal model is assumed.
2.2. Multiphase Flow
2.3. Charge Transport
2.4. Electrochemical Reactions
2.5. Water Transport through the Ionomer
2.6. Boundary Conditions
2.7. Numerical Procedure
3. Results and Discussion
3.1. Model Calibration and Validation
3.2. Flow Rate Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ACL | Anode catalyst layer | |
AEM | Anion exchange membrane | |
AEMWE | Anion exchange membrane water electrolyzer | |
APTL | Anode porous transport layer | |
CCL | Cathode catalyst layer | |
CL | Catalyst layer | |
CPTL | Cathode porous transport layer | |
GHG | Greenhouse gas | |
HER | Hydrogen evolution reaction | |
MEA | Membrane electrode assembly | |
NE | Negative electrode | |
OER | Oxygen evolution reaction | |
PE | Positive electrode | |
PEM | Proton exchange membrane | |
PEMWE | Proton exchange membrane water electrolyzer | |
PFAS | Polyfluoroalkyl polymer | |
PGMs | Platinum-group metals | |
List of Symbols | ||
Latin | ||
Electrocatalyst specific surface area | m2/m3 | |
Hydroxide concentration | mol/m3 | |
Concentration of the fixed positive charge in the ionomer | mol/m3 | |
Heat capacity of liquid water | J/(g·K) | |
Characteristic diameter | μm | |
Equilibrium potential | V | |
Equivalent weight | kg/mol | |
Faraday’s constant | C/mol | |
Enthalpy of liquid water | J/g | |
Current density | A/cm2 | |
Exchange current density | mA/cm2 | |
Volumetric reaction current | A/cm3 | |
Identity matrix | – | |
Ion exchange capacity | mmol/g | |
Leverett J-function (liquid volume fraction dependent) | – | |
Empirical geometric constant (Cozeny–Karman) | – | |
Rate constant for the water transfer from the ionomer to the liquid phase | g·mol/(cm3·s·J) | |
Relative permeability | – | |
Absolute permeability | m2 | |
Molar mass | kg/mol | |
Water molar flux through the ionomer | mol/(m2·s) | |
Pressure | Pa | |
Capillary pressure | Pa | |
Universal gas constant | J/(mol·K) | |
Rate of water production (anode) or consumption (cathode) | mol/(m3·s) | |
Source term of phase k for mass conservation | kg/(m3·s) | |
Rate of water absorption or desorption from the ionomer to the liquid phase | mol/(m3·s) | |
Volume fraction of phase k | – | |
Temperature | K | |
Velocity | m/s | |
Molar volume of liquid water | mL/mol | |
Positive charge | – | |
Charge of hydroxide ions | – | |
Greek | ||
Charge transfer coefficient for oxidation | – | |
Liquid-equilibrated water transport coefficient | – | |
Charge transfer coefficient for reduction | s·mol2/(kg·m3) | |
Porosity | – | |
Volume fraction of the electronically conductive phase | – | |
Volume fraction of the ionomer phase | – | |
Overpotential | V | |
Contact angle | ° | |
Dynamic viscosity | Pa·s | |
Chemical potential of water absorbed in the ion-conducting phase | J/mol | |
Chemical potential of liquid water | J/mol | |
Electroosmotic coefficient | – | |
Density | kg/m3 | |
Surface tension | mN/m | |
Electronic conductivity | S/cm | |
Ionic conductivity | S/cm | |
Electronic potential | V | |
Ionic potential | V | |
Superscripts and Subscripts | ||
Anodic | ||
Bulk | ||
Cathodic | ||
Electronic | ||
Effective | ||
Hydrogen evolution reaction | ||
Hydrogen | ||
Water | ||
Gas | ||
Phase | ||
Liquid | ||
Mixture | ||
Oxygen evolution reaction | ||
Oxygen | ||
Reference | ||
Triple-point |
References
- Chatenet, M.; Pollet, B.G.; Dekel, D.R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R.D.; Bazant, M.Z.; Eikerling, M.; Staffell, I.; et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar]
- Du, N.; Roy, C.; Peach, R.; Turnbull, M.; Thiele, S.; Bock, C. Anion-Exchange Membrane Water Electrolyzers. Chem. Rev. 2022, 122, 11830–11895. [Google Scholar] [CrossRef]
- Makhsoos, A.; Kandidayeni, M.; Pollet, B.G.; Boulon, L. A perspective on increasing the efficiency of proton exchange membrane water electrolyzers—A review. Int. J. Hydrogen Energy 2023, 48, 15341–15370. [Google Scholar] [CrossRef]
- Hamid, N.; Junaid, M.; Manzoor, R.; Sultan, M.; Meng Chuan, O.; Wang, J. An integrated assessment of ecological and human health risks of per- and polyfluoroalkyl substances through toxicity prediction approaches. Sci. Total Environ. 2023, 905, 167213. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Zhang, J.; Wang, J.; Hu, Y.; Jiang, H.; Li, C. Anion Exchange Membrane Water Electrolyzer: Electrode Design, Lab-Scaled Testing System and Performance Evaluation. Energy Chem. 2022, 4, 100087. [Google Scholar] [CrossRef]
- Faid, A.Y.; Xie, L.; Barnett, A.O.; Seland, F.; Kirk, D.; Sunde, S. Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis. Int. J. Hydrogen Energy 2020, 45, 28272–28284. [Google Scholar] [CrossRef]
- Shirvanian, P.; Loh, A.; Sluijter, S.; Li, X. Novel components in anion exchange membrane water electrolyzers (AEMWE’s): Status, challenges and future needs. A mini review. Electrochem. Commun. 2021, 132, 107140. [Google Scholar] [CrossRef]
- Yu, R.; Yang, H.; Yu, X.; Cheng, J.; Tan, Y.; Wang, X. Preparation and research progress of anion exchange membranes. Int. J. Hydrogen Energy 2024, 50, 582–604. [Google Scholar] [CrossRef]
- Yuan, S.; Zhao, C.; Cai, X.; An, L.; Shen, S.; Yan, X.; Zhang, J. Bubble evolution and transport in PEM water electrolysis: Mechanism, impact, and management. Prog. Energy Combust. Sci. 2023, 96, 101075. [Google Scholar] [CrossRef]
- Angulo, A.; van der Linde, P.; Gardeniers, H.; Modestino, M.; Fernández Rivas, D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 2020, 4, 555–579. [Google Scholar] [CrossRef]
- Zhao, X.; Ren, H.; Luo, L. Gas bubbles in electrochemical gas evolution reactions. Langmuir 2019, 35, 5392–5408. [Google Scholar] [CrossRef]
- Bonnefont, A.; Ryabova, A.S.; Schott, T.; Kéranguéven, G.; Istomin, S.Y.; Antipov, E.V.; Savinova, E.R. Challenges in the Understanding Oxygen Reduction Electrocatalysis on Transition Metal Oxides. Curr. Opin. Electrochem. 2019, 14, 23–31. [Google Scholar] [CrossRef]
- Chand, K.; Paladino, O. Recent developments of membranes and electrocatalysts for the hydrogen production by anion exchange membrane water electrolysers: A review. Arab. J. Chem. 2023, 16, 104451. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, J.K.; Zhao, B.; Fahy, K.F.; Bazylak, A. Transient gas distribution in porous transport layers of polymer electrolyte membrane electrolyzers. J. Electrochem. Soc. 2020, 167, 024508. [Google Scholar] [CrossRef]
- Majasan, J.O.; Cho, J.I.S.; Dedigama, I.; Tsaoulidis, D.; Shearing, P.; Brett, D.J.L. Two-phase flow behaviour and performance of polymer electrolyte membrane electrolysers: Electrochemical and optical characterisation. Int. J. Hydrogen Energy 2018, 43, 15659–15672. [Google Scholar] [CrossRef]
- Lee, J.K.; Lee, C.; Fahy, K.F.; Zhao, B.; LaManna, J.M.; Baltic, E.; Jacobson, D.L.; Hussey, D.S.; Bazylak, A. Critical current density as a performance indicator for gas-evolving electrochemical devices. Cell Rep. Phys. Sci. 2020, 1, 100147. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.; Li, L.; Wu, J.; Yin, Z.; Tan, D. Numerical investigation of mesoscale multiphase mass transport mechanism in fibrous porous media. Eng. Appl. Comput. Fluid Mech. 2024, 18, 2363246. [Google Scholar] [CrossRef]
- Daoudi, C.; Bounahmidi, T. Overview of alkaline water electrolysis modeling. Int. J. Hydrogen Energy 2024, 49, 646–667. [Google Scholar] [CrossRef]
- An, L.; Zhao, T.S.; Chai, Z.H.; Tan, P.; Zeng, L. Mathematical modeling of an anion-exchange membrane water electro-lyzer for hydrogen production. Int. J. Hydrogen Energy 2014, 39, 19869–19876. [Google Scholar] [CrossRef]
- Liu, J.; Kang, Z.; Li, D.; Pak, M.; Alia, S.M.; Fujimoto, C.; Bender, G.; Kim, Y.S.; Weber, A.Z. Elucidating the Role of Hydroxide Electrolyte on Anion-Exchange-Membrane Water Electrolyzer Performance. J. Electrochem. Soc. 2021, 168, 054522. [Google Scholar] [CrossRef]
- Lawand, K.; Sampathkumar, S.N.; Mury, Z.; Van Herle, J. Membrane electrode assembly simulation of anion exchange membrane water electrolysis. J. Power Sources 2024, 595, 234047. [Google Scholar] [CrossRef]
- Gerhardt, M.L.; Pant, L.M.; Weber, A.Z. Along-the-Channel Impacts of Water Management and Carbon-Dioxide Contamination in Hydroxide-Exchange-Membrane Fuel Cells: A Modeling Study. J. Electrochem. Soc. 2019, 166, F3180–F3192. [Google Scholar] [CrossRef]
- Weber, A.Z.; Newman, J. Transport in Polymer-Electrolyte Membranes: II. Mathematical Model. J. Electrochem. Soc. 2004, 151, A311. [Google Scholar] [CrossRef]
Component | Gas | Liquid |
---|---|---|
ACL 1 (positive electrode) | ||
CCL 2 (negative electrode) |
AEM | ACL | CCL | APTL 2 | CPTL 3 | CHANNEL | |||
---|---|---|---|---|---|---|---|---|
Phases present 1 | - | - | I | i, g, l, e | i, g, l, e | g, l, e | g, l, e | g, l |
Porosity | - | 0 | 0.4 | 0.4 | 0.4 | 0.8 | 1 | |
Ionomer volume fraction | - | 1 | 0.15 | 0.15 | 0 | 0 | 0 | |
Electronically conductive volume fraction | - | 0 | 0.45 | 0.45 | 0.6 | 0.2 | 0 | |
Characteristic diameter | μm | 0 | 0.25 | 0.25 | 7.6 | 7.6 | 0 | |
Empirical constant | - | 0 | 9.375 | 9.375 | 4.06 | 4.06 | 0 |
Symbol | Parameter | Values | Unit |
---|---|---|---|
surface tension | 66.24 | mN/m | |
contact angle | 50 | ° | |
bulk electronic conductivity [20] | 120 | S/cm | |
electroosmotic coefficient [20] | 1 | - | |
charge transfer coefficient for reduction | OER: 0.5 HER: 0.5 | - | |
charge transfer coefficient for oxidation | OER: 0.5 HER: 0.5 | - | |
ion exchange capacity | 2.353 | mmol/g | |
molar volume of liquid water | 18.307 | mL/mol | |
viscosity of liquid water [20] | Pa·s | ||
viscosity of gas | | Pa·s | |
density of liquid water | 983.2 | kg/m3 | |
density of gas | i: (anode), (cathode) | kg/m3 | |
reference hydroxide concentration | 0.1 | M | |
charge of hydroxide ions | −1 | - | |
reference pressure | 1 | atm | |
triple point pressure [22] | 611.2 | Pa | |
T | operating temperature | 60 | °C |
triple point temperature [22] | 273.16 | K | |
enthalpy of liquid water [22] | 0 | J/g | |
heat capacity of liquid water [22] | 4.217 | J/(g·K) | |
molar mass of water | 18 | g/mol | |
molar mass of dioxygen | 32 | g/mol | |
molar mass of dihydrogen | 2 | g/mol | |
constant for absorption and desorption of liquid water [22] | 1 | g·mol/(cm3·s·J) |
Symbol | Parameter | Values | Unit | ||||
---|---|---|---|---|---|---|---|
Hydroxide concentration | 0.01 | 0.02 | 0.1 | 0.5 | 1 | mol/L | |
Ionic ionomer conductivity | 23.8 | 32.2 | 40.8 | 51.1 | 57.4 | mS/cm | |
Exchange current density for OER | 0.00242 | 0.00354 | 0.0129 | 0.0172 | 0.0256 | mA/cm2 | |
Exchange current density for HER | 0.3439 | 0.4523 | 0.6067 | 0.7894 | 0.8885 | mA/cm2 | |
Electrocatalyst specific surface area 1 | 1.3 × 107 | 1.3 × 107 | 1.3 × 107 | 1.3 × 107 | 1.3 × 107 | m2/m3 |
Parameter | Values | Unit |
---|---|---|
Cell width | 12 | µm |
Channel length | 15 | µm |
Channel height | 300 | µm |
Channel width | 250 | µm |
Rib width | 250 | µm |
CPTL thickness | 190 | µm |
APTL thickness | 270 | µm |
CL thickness | 10 | µm |
Membrane thickness | 50 | µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tardy, E.; Bultel, Y.; Druart, F.; Bonnefont, A.; Guillou, M.; Latour, B. Three-Dimensional Modeling of Anion Exchange Membrane Electrolysis: A Two-Phase Flow Approach. Energies 2024, 17, 3238. https://doi.org/10.3390/en17133238
Tardy E, Bultel Y, Druart F, Bonnefont A, Guillou M, Latour B. Three-Dimensional Modeling of Anion Exchange Membrane Electrolysis: A Two-Phase Flow Approach. Energies. 2024; 17(13):3238. https://doi.org/10.3390/en17133238
Chicago/Turabian StyleTardy, Erwan, Yann Bultel, Florence Druart, Antoine Bonnefont, Melaine Guillou, and Benoit Latour. 2024. "Three-Dimensional Modeling of Anion Exchange Membrane Electrolysis: A Two-Phase Flow Approach" Energies 17, no. 13: 3238. https://doi.org/10.3390/en17133238
APA StyleTardy, E., Bultel, Y., Druart, F., Bonnefont, A., Guillou, M., & Latour, B. (2024). Three-Dimensional Modeling of Anion Exchange Membrane Electrolysis: A Two-Phase Flow Approach. Energies, 17(13), 3238. https://doi.org/10.3390/en17133238