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Abstract: The research reported in this article focuses on a comparison of two different approaches to
setting error bounds, or prediction intervals, on short-term forecasting of solar irradiation as well as
solar and wind farm output. Short term in this instance relates to the time scales applicable in the
Australian National Electricity Market (NEM), which operates on a five-minute basis throughout the
year. The Australian Energy Market Operator (AEMO) has decided in recent years that, as well as
point forecasts of energy, it is advantageous for planning purposes to have error bounds on those
forecasts. We use quantile regression as one of the techniques to construct the bounds. This procedure
is compared to a method of forecasting the conditional variance by use of either ARCH/GARCH or
exponential smoothing, whichever is more appropriate for the specific application. The noise terms
for these techniques must undergo a normalising transformation before their application. It seems
that, for certain applications, quantile regression performs better, and the other technique for some
other applications.

Keywords: probabilistic forecasting; prediction intervals; ARCH/GARCH; exponential smoothing;
solar irradiation; solar farm; wind farm

1. Introduction

Australia has seen a rapid development of wind and solar farms connected to the
National Electricity Market (NEM) in the last two decades. At first, the development mainly
focused on wind farms, but the last decade has seen a rapid increase in the number and scale
of solar farms. In the NEM, there are three types of generators: scheduled, semi-scheduled
and non-scheduled. The scheduled fleet consists of traditional coal- and gas-fired plants,
whose operating characteristics are well-known and are less dependent on the weather.
Semi-scheduled generators are wind and solar farms over 30 MW and also batteries over
5 MW. Any generators under 30 MW are non-scheduled. Scheduled generators submit
a bid stack every five minutes, stating the amount of energy that they will supply in the
following five minutes at ten price bands from −$1000 per MWh to +$16,000 per MWh
(in $AUS). If they do not supply what they predict (outside some tolerance level), they
are penalised. These act as price makers. Semi-scheduled generators are price takers, but
they still are expected to supply a forecast of their output, and, once again, if the forecast is
outside some tolerance limit, they are penalised. They can also be required to curtail their
output if there is oversupply in the grid. The non-scheduled generators have no restrictions
and are simply price takers. The present author was part of a team that helped five solar
farms to improve their five-minute forecasting, but that was simply for the expected output,
or what can be termed point forecasting—see [1].

In this paper, putting error bounds on the forecast (in other words, constructing
prediction intervals) is the focus. Two methods for producing such intervals are canvassed,
one using quantile regression. A reason for using this method is that the noise terms in
the forecasting method do not follow the hoped-for characteristics of being independent
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and identically distributed random variables. The other method is somewhat complicated,
and also takes this conundrum into account. In this method, one applies a normalising
transformation to the noise terms, then applies tools to forecast their conditional variance,
setting error bounds and back-transforming these bounds. The efficacy of these methods is
evaluated with a comparison to a naive model. The goal of the research is to ascertain if
one of the two methods is superior and in which situations.

In general, the published research has focused on the construction of prediction
intervals for either solar resource or wind speed. In Australia, particularly in South
Australia, there has been a rapid expansion of renewable-energy-generated electricity. For
example, the South Australia Department of Energy and Mining reports that the percentage
of electricity generated from renewable sources is, at present, almost 70% (Department
of Energy and Mining website, accessed 4 April 2024). The same website states that the
goal is 100% by 2030, but a recent government statement suggests it will be closer to 2027
that this happens. It is necessary to consider how setting prediction intervals for forecasts
for output from farms differs from setting them for the variable renewable energy (VRE)
itself. This is particularly the case for solar farms in Australia, as most have a specific
characteristic. For various reasons, they have oversized fields of panels compared to the
capacity of the inverters. Figure 1a,b shows that, on clear days in winter as well as summer,
Broken Hill solar farm reaches capacity output. This is a common occurrence for solar farms
in Australia. A common approach to characterise the seasonality in solar irradiation is by
use of a clear sky model and, subsequently, dividing the incoming global solar irradiation
by that model to obtain a clear sky index (CSI). This approach does not work with capped
output. One would have to devise a power conversion model or construct an empirical
clear sky output model.
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Figure 1. Clear days in (a) winter and (b) summer.

It is important to find the most skillful statistical methods for constructing prediction
intervals, given that, for the very short-term forecasting needed to suit the NEM in Australia,
statistical methods are very well-suited. They often perform equally as well as more
sophisticated methods—see [2] for a comparison of the performance of statistical and
artificial neural network methods for point forecasting.

This paper is set out as follows. Section 2 reviews the relevant literature for interval
forecasting and discusses some areas for improvement. This is not specifically for improving
the skill of forecasting, but rather for defining methods that are more appropriate for the
applications studied here. Section 3 examines the specific methods that are used in this
study. Section 4 describes the metrics used for evaluation of the skill of forecasting the
intervals, while Section 5 gives the results of applying those metrics. Section 6 gives the
concluding remarks.

2. Literature Review

There are various methods for constructing prediction intervals for forecasts of solar
energy. David et al. [3] compared various methods for intraday probabilistic forecasting
of solar energy. A previous article by David et al. [4] used recursive ARMA and GARCH
models for the same task. In that article, they also canvassed many other methods, not
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only for the prediction intervals, but also for deterministic forecasting. These included
the coupled autoregressive and dynamical systems (CARDS) method for deterministic
forecasting, as in [5,6]. The reference model for comparison for prediction intervals is the
analog ensemble mode [7]. An important consideration, as the authors point out, is that
the use of the GARCH technique for forecasting the variance relies on the assumption that
the errors are normally distributed. They go on to point out that, for the two example
locations they used for their analysis, the assumption of normality is not supported. A
way around this conundrum was explored in [8] using a normalising transformation, and
this is discussed further in Section 3. David et al. [3] also pointed to the sieve bootstrap
method for generating prediction intervals, and pointed specifically as well to this method
being used in a more sophisticated manner by Grantham et al. [6]. In that article, the
authors took into consideration the dependence of the noise terms— remaining after the
deterministic forecast—on the time of year and the time of day. When constructing the
prediction intervals, sampling is carried out solely from the noise distribution for the
specific values of the two variables reflecting those dependencies, the sun elevation and
hour angle. One other approach for constructing the prediction intervals is the use of
quantile regression (see, for example, [9]). In this method, instead of forecasting the mean,
as in standard methods of time-series modelling, one forecasts the various quantiles. The
method is used on the noise terms and is fully described in Section 3.

Recently, some researchers have been applying methods from the artificial intelligence
area to construct prediction intervals. Pan et al. [10] used gated recurrent unit (GRU) neural
networks to perform the deterministic forecast for solar irradiation and then added the
prediction intervals using kernel density estimation. Based on the forecast skill metric,
the GRU method performs well for both 5 and 15 min ahead forecasts. From inspection
of the error metrics, the method appears to work well compared with naive approaches.
The metrics used are the prediction interval coverage probability (PICP) and prediction
interval normalised average width (PINAW). In general, the PICP is higher than desired,
and this seems to be a common feature of many procedures. Sun et al. [11] used a machine
learning technique called quantile random forest (QRF) to form their prediction intervals
for ultra-short-term wind power. As they stated, the random forest algorithm provides
forecasts of the mean, but QRF provides a distributional forecast. They compared their
method with a number of other candidate procedures, and the PINAW values were superior
for all confidence levels tried: 80, 90, and 95. In their analysis, they selected the highest
value of PICP for each confidence level as the best, rather than the one closest to the
selected level. Alcantara et al. [12] described the use of deep neural networks (DNN) to
construct prediction intervals. They investigated the differences between using DNN tools
to construct quantiles and then to find prediction intervals and that of directly finding the
intervals. They argued that, since the interval width is part of the optimising approach,
the direct method should result in narrower intervals. They compared two DNN methods:
directly finding the intervals and indirectly finding them using the DNN quantile approach.
One of the direct methods performs best over most of the levels tested, with the DNN
quantile best at the 95% level. The advantage for the DNN tools in this paper over many
other methods is that the PICP is, in most cases, closer to the prescribed level than in the
other two papers canvassed. The treatment in the present paper is mainly for separate
applications from those that have been canvassed in the literature. While one resource
data set, for solar irradiation, is treated in this paper, the other two data sets are for solar
and wind farm output, both with capacity limits. As explained in Section 1, the solar farm
in particular has characteristics that differ from those that are canvassed in the surveyed
literature. This necessitates novel approaches.

Many approaches to both deterministic and probabilistic forecasting of solar energy
had their beginnings in the wind energy forecasting sphere. This is probably because
large-scale wind energy utilisation in the form of wind farms started before the advent of
solar farms of any magnitude. One of the early contributions to the probabilistic forecasting



Energies 2024, 17, 3240 4 of 17

of wind power—specifically, for the horizon of 48 to 72 h ahead—was that in [13]. In more
recent times, machine learning tools have been used for similar purposes [14,15].

3. Methods
3.1. Data

There are three data sets used in this paper. One data set, that of solar irradiation, is
for Cabauw, Netherlands (51.96 N, 4.90 E) and is 15 min data in kilowatt hours (kWh). The
second data set is solar farm output data at a 5 min time scale for Broken Hill solar farm
(31.98 S, 141.39 E), NSW, Australia. The third data set is wind farm output on a half-hour
time scale for Clements Gap wind farm (33.48 S, 130.10 E), South Australia, Australia. The
solar and wind farm data are power in megawatts (MW). All training is carried out for one
year’s complete data set and testing is carried out on a separate year’s data.

3.2. Deterministic Forecasting

There are several methods for performing the deterministic forecasting of solar energy.
The first step is to model the seasonality of the data in the training set. Many researchers,
including David et al. [4], deal with seasonality by constructing the clear sky index, which
is the global horizontal irradiation divided by a suitable clear sky model. They used the
McClear clear sky model [16]. After that, many researchers used artificial neural nets
(ANNs) to forecast the clear sky index. David et al. [4] used the autoregressive moving
average (ARMA) method in recursive mode. A different approach to determining the
seasonality is followed here, by constructing the expected value of the solar energy at
any time t using Fourier series. In [17], there is a description of the physical nature of the
significant frequencies that are inherent in the solar radiation data. The determination of
the significant frequencies is performed using spectral analysis, identifying the frequencies
that contribute most significantly to explaining the variance in the series. The yearly and
daily cycles are intuitively obvious. The necessity of including the twice daily cycle, also
identified by this method, is not obvious. This could represent the fact that, as well as
night being different from day, morning is different from afternoon. This is because the sky
is usually more turbid in the afternoon. The frequencies just surrounding the daily and
twice daily cycles, at 364, 366, as well as at 729, 731 cycles per year, are included. These beat
frequencies, also called sidebands, are well-known in signal processing. In the language
of that discipline, one can have a carrier signal with frequency ωc = 2π fc that has its
amplitude modulated by a signal at lower frequency ωm = 2π fm. In the specific case
examined here, fc is the daily cycle, while fm is the yearly cycle. What occurs is that the
daily amplitude is modulated by the yearly cycle. If the sidebands are not included, the
Fourier series representation exhibits peculiar behaviour, including anomalous positive
solar energy at night in summer (see Figure 2 for summer in Cabauw, Netherlands as
an example) and negative at night in winter. Alternatively, if one includes the sidebands
for the same days, we can see that the Fourier series gives a sensible representation at
night—see Figure 3. Note that the amplitude is such that it also gives a more sensible peak
to the Fourier series. As a result, the seasonality model takes the form

Ft = α0 + α1 cos
2π365
35040

+ β1 sin
2π365
35040

+

2

∑
n=1

1

∑
m=−1

(αnm cos
2π(365n + m)t

35040
+

βnm sin
2π(365n + m)t

35040
). (1)
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Figure 2. Effect of removing the contribution of sidebands.

 

Figure 3. Effect of including the contribution of sidebands.

The next step is to take the difference between the original data St and the seasonal
model to form the residual series Rt = St − Ft. By analysing the sample autocorrelation
function (SACF) and sample partial autocorrelation function (SPACF) (see [18] for details
of the procedure), we find that the best forecast model for the residuals is given by an
autoregressive model with 3 lags AR(3), so that the forecast at time (t − 1) for time t, R̂t is
given by

R̂t = γ1Rt−1 + γ2Rt−2 + γ3Rt−3. (2)

When the AR(3) forecast is added to the Fourier series, this results in the final forecast.
Figure 4 shows the one-step-ahead forecast as an example.
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Figure 4. One-step-ahead forecast overlaid on the data.

3.3. Quantile Regression

Any one-step-ahead statistical forecasting method can be encapsulated by the structure

Yt = f (F; Yt−1, . . . , Yt−p; Xi,t−1, . . . , Xi,t−q) + Zt (3)

This contains the seasonality F and any autoregressive qualities, plus any connection
with exogenous variables, if applicable. Knowledge of the statistical qualities of Zt is
necessary in order to construct the error bounds of the forecast. In this formulation, it is
hoped, and sometimes assumed, that Zt is independent and identically distributed (i.i.d.).
Further, it would make the construction of the prediction intervals straightforward if the
distribution were Gaussian. But, for solar irradiation, none of these assumptions hold. To
estimate the error bounds, or the limits of the prediction intervals, one method is quantile
regression. This is performed on Zt, the noise, which is derived by subtracting the final
forecast model from the data but filtered so that we are working only on data for which the
solar elevation is greater than 10◦. Quantile regression does not require any assumptions
about the noise distribution.

For quantile level τ of the response, the goal is to

min
β0(τ),β1(τ),...,βp(τ)

n

∑
i=1

ρτ(yi − β0(τ)−
p

∑
j=1

zijβ j(τ))
2. (4)

ρ = τ max(r, 0) + (1 − τ)max(−r, 0) (5)

is the check function. If the error in the regression in a single period, r, is positive, then
the check function multiplies the error by τ (and by 1 − τ if negative). In this study, the
predictor variables are the previous five lagged values of the noise. Note that, when
performing the optimisation for the one-step-ahead forecast for time t + 1 at time t, we are
regressing Zt+1 on Zt, Zt−1, . . . , Zt−5.

3.4. ARCH or GARCH Variance Forecast

In [8], the method that was used for generating prediction intervals managed to avoid
the problem of having to assume that the noise terms were normally distributed before
being able to use ARCH or GARCH methods. First, it is instructive to define these methods.
The noise Zt remaining after the deterministic forecast has essentially no autocorrelation,
so the usual assumption from that is that the Zt are independent. But, as first identified
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in financial time series, often the Z2
t series has autocorrelation. This means that the series

displays an ARCH effect, and, since Z2
t is a proxy for the variance in the original series, the

variance changes as t changes. That is the origin of the term AutoRegressive Conditional
Heteroscedastic or ARCH. If there is a sudden break in significant lags for the partial
autocorrelation function for Z2

t , this series can be modelled as a purely autoregressive, or
AR(p), process. This ARCH model is given by Equation (6):

σ2
t = α1Z2

t−1 + α2Z2
t−2 + . . . αpZ2

t−p (6)

When the sample autocorrelation function dies down very slowly and the sample
partial autocorrelation function does also, but with a slightly less long tail, then this is
typical of what drew Bollerslev [19] to expand on the work of Engel [20], who developed
the ARCH model by generalising it to the generalised ARCH (GARCH) model. What this
formulation achieves is replace a long-run autoregressive model for the variance with a
much more parsimonious autoregressive moving average (ARMA) model—albeit with a
slight alteration.

The GARCH(m, s) model is of the following form:

Zt = σtϵt

σ2
t = α0 +

m

∑
i=1

αiZ2
t−i +

s

∑
j=1

β jσ
2
t−j (7)

Here, ϵt ∼ (0, 1) and one obtains estimates of the αi and β j in the following manner.
Take {Z2

t } as an observed series and fit an ARMA(p, q) model to this series, with
parameter estimates ϕ̂i and θ̂i. Then,

β̂i = θ̂i

α̂i = ϕ̂i − θ̂i (8)

As mentioned in Section 2, use of the ARCH or GARCH approach assumes that
the noise is at least close to normally distributed. An inspection of the noise from the
deterministic forecasting for 15 min data from Cabauw, Netherlands with a normal curve
with the same mean and standard deviation shows that it is definitely not normal—see
Figure 5. This finding is in line with that of David et al. [4]. The standard result from this
form of forecasting is noise that has a Laplace distribution, leptokurtic with fat tails. This
feature will not be used here.

Simply applying an ARCH or GARCH forecast to the squared noise is not appropriate.
Instead, first transform the noise to the equivalent value from the standard normal distribu-
tion. Figure 5 shows the noise for all values of solar elevation above 10° as an illustration.
The reality is that there are different distributions for different hours of the day, reflecting
the changing volatility over the day, and this change in distribution must be accounted
for. The day is split into the hours before 6 a.m. each hour between 6 a.m. and 6 p.m.,
and the hours after 6 p.m. The algorithm for setting the prediction intervals is given in
Algorithm 1. Figures 6 and 7 illustrate the transform procedure. Take a value of the noise
zt, and, using the cumulative distribution function (CDF) for the noise in Figure 6, find the
probability value τ for which F(zt, i) = τ. In terms of the figure, locate zt on the horizontal
axis, then progress vertically to the curve. Then, move left horizontally to the vertical axis,
and where one lands is the value of τ. Then, Figure 7 shows how we take τ and find the
corresponding value from the standard normal distribution. In essence, find τ on the y-axis,
move horizontally to the normal CDF and drop down to obtain the corresponding normal
distribution value.
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Figure 5. Distribution of the noise from deterministic forecasting. The blue denotes the distribution,
and the red curve the normal distribution with the same mean and variance.

 

Figure 6. Finding the probability of occurrence of zt.

Inspiration for this novel approach comes from an article produced early on in the
research into forecasting solar radiation [21]. In that article, Sfeir transformed the solar
radiation data to normal before applying an ARMA forecasting model. They assumed
that ARMA was not an appropriate tool unless the data were at least close to normally
distributed. For simple forecasting, this assumption is not supported, but, for other applica-
tions like synthetic generation, it is a sensible approach. However, a simple transformation
of the data in their entirety is not sufficient. As is seen in the algorithm, there are differing
distributions for different times of the day, and this aspect must be taken into account.
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Figure 7. Finding the equivalent value of the standard normal distribution.

Algorithm 1: The Transformation to Normal Algorithm
Data: The noise terms from the deterministic forecasting
for t = 1, . . . , N do

Find F(Zt, i), the cumulative probability distribution (CDF) of Zt for time of
day i;

Transform each specific value zt according to γt = F−1(zt, i), with
γt ∼ N(0, 1);

Form γ2
t for every 15 min over the year;

Find the GARCH forecast model for γ2
t ;

Use the GARCH model to estimate the variance for each 15 min, and then
calculate the standard deviation σt;

Form the lower and upper bounds for the prediction interval (PI), for instance
for a 95% PI, they are ±1.96 × σt;

Find the corresponding probabilities from the cumulative distribution function
of the standard normal distribution pL, pU ;

Find the values of F(Zt, i) corresponding to pL, pU , using the suitable CDF in
each case; Result: Add these bounds to the deterministic forecast, to
form the final prediction intervals.

end

3.5. Exponential Smoothing Variance Forecast

The algorithm described in Section 3.4 is used in the same way for forecasting the
variance, simply substituting an exponential smoothing forecast tool instead of ARCH or
GARCH. This is introduced since, for some situations, this approach is more appropriate.
To describe the process, write the forecast model for σ2

t —see Equation (9):

σ̂2
t = αγ2

t−1 + (1 − α)σ2
t−1 (9)

3.6. Wind Farm Modelling

The model construction for setting prediction intervals for wind farm output is much
simpler than for solar energy. This is due to two particular facts. One is that there is
very little or no seasonality. Perhaps wind speeds may display some seasonality but,
largely, wind farm output in the Australian context does not. The farms are large and
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extend mainly over either a very large landscape or a hilly terrain near coastal areas.
Both of these attributes tend to smooth out any seasonality of the wind itself. Thus, the
deterministic forecast is simply an ARMA model. The other factor is that, even though
the noise distribution from the forecast model is not normal, it does not vary over the day
or year. The transformation to normal errors can be performed with a single CDF of the
noise. The determination of the prediction intervals is performed following the algorithm
in Section 3.4, but with simply a single-noise distribution.

3.7. Solar Farm Modelling

The procedure for determining a one-step-ahead forecast and then putting error
bounds on the forecast for solar farm output is similar to that used for solar irradiance.
There is one exception to this. In Australia, most of the solar farms, including the Broken
Hill one, have an oversized field of panels compared to what the inverters can handle. This
results in a capping of the output, as seen in Figure 8, so we can say that the capacity of the
solar farm is approximately 54 MW. The capacity is reached on clear days throughout the
year, resulting in the only significant frequencies in the data being the once a day and twice
a day. There is no yearly cycle of note and, thus, the beat frequencies are also redundant.
As for the solar irradiance forecasting, once the seasonality that is modelled with Fourier
series is removed, an AR(p) process is sufficient to complete the point forecasting, as
demonstrated in Figure 9. The prediction intervals are found using both the quantile
regression and normal transformation methods as with the solar irradiance.
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Figure 8. Two days of Broken Hill solar farm output.

3.8. Benchmark

The goal is to compare the performance of the quantile regression approach with using
the normalising transformation plus ARCH or GARCH. It is useful as well to demonstrate
how they compare to a fairly simple naive method. It is only applied to the prediction inter-
val estimation, as it still involves using the deterministic forecast described in Section 3.2.
A completely naive approach for the deterministic forecast would entail using a persistence
forecast for the expected output Xt+1 = Xt. Note that, often, researchers will only use
the persistence forecast on the data once the seasonality is removed and term it smart
persistence, but this negates the fact that the form of seasonality determination is in itself a
model. The naive approach here is to take the deterministic forecast using the seasonality
and ARMA model, and then add to and subtract from it the standard deviation of the total
noise distribution (for solar elevation above 10◦) multiplied by the score from the standard
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normal distribution corresponding to the probability level desired. This is solely for the
solar energy evaluation. Since there is little to no seasonality for the wind farm output, we
use the simplest benchmark: a persistence forecast with normal errors around that forecast.
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Figure 9. Two days of Broken Hill solar farm output and forecast.

4. Metrics

Two simple metrics are used for comparison. This is because the goal is to compare
the two methods, quantile regression and ARCH/GARCH, for constructing the prediction
intervals, and also to compare these methods with the benchmark. This is performed for
solar energy, solar farm output and wind farm output. The first metric is coverage. When a
95% prediction interval is calculated, for example, it is expected that close to 95% of the
observed values will fall within the intervals. There are two comments to make about this
stipulation. Some researchers would state it somewhat differently, that at least 95% of the
observed values would fall in the intervals. Overcoverage is also deficient, as it implies
that, potentially, the intervals are wider than necessary. This leads into to the second point.
The other criterion is sharpness. The coverage criterion should be maintained with the
narrowest intervals possible. Thus, the mean interval width is also used for evaluation.

The metric for calculating the coverage is the prediction interval percentage cover-
age (PICP):

PICP =
1
n

n

∑
i=1

δi (10)

In this equation, δi is a Boolean operator, equal to unity when the observed value St
falls within the prediction interval for time t, and zero when it does not.

For the interval width, the metric is the prediction interval normalised average
width (PINAW):

PINAW =
1

nR

n

∑
i=1

ηi (11)

In this equation, ηi is the width of the ith prediction interval and R is the difference
between the minimum and maximum for solar energy or wind farm output (or the capacity
for solar farm output). Why it is not the capacity for the wind farm is that, for wind farms,
there are intervals for which the output is negative. This is because the control systems
remain on even if there is no wind, resulting in power being drawn from the grid, resulting
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in negative output. The periods of zero wind can happen randomly. There is not the same
problem with the solar farm output since sunrise and sunset can be calculated for all days
of the year and, between these times, the output is always positive. The control systems
activate and deactivate at the specific times of sunrise and sunset.

5. Results and Discussion

As well as reporting the metrics, some graphical results are displayed to give a
pictorial version of the comparison. The most telling results come, however, from the
quantitative metrics.

5.1. Solar Energy

First, a pictorial summary of the comparison of the three methods is given—quantile
regression, an ARCH model and the naive approach that simply assumes that the noise
terms are identically distributed normal variables. Figure 10 shows some interesting results
for the 95% probability level. For example, it appears that, at least at this probability level,
the ARCH model performs much better than the other two on clear days and worse on
intermittent days. The other two models perform overall about the same. On the other
hand, Figure 11 shows that the ARCH model performs significantly better than the naive
model for the 80% probability level for clear days and at least as good for intermittent days.
In this figure, LB stands for lower bound and UB for upper bound.
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Figure 10. Comparing prediction intervals using quantile regression and an ARCH forecast with the
naive approach.

A more explicit way to compare the methods is by use of the two metrics, PICP
and PINAW. From inspection of Table 1, for PICP, it is obvious that the quantile method
gives the most precise results. On the other hand, the method that stands out as being
deficient according to this metric is the one where the noise terms are considered to
be independent and identically distributed normal random variables. Table 2 gives the
normalised mean widths of the prediction intervals for the three methods. Combining the
results for both metrics, the most reliable method is the model where the noise terms are
transformed, with respect to the systematic chances of variance, to the standard normal
distribution. The transformed noise values are then squared and an ARCH model is used
to forecast the variance. Then, lower and upper bounds are found and the values are then
back-transformed.
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Figure 11. Comparing prediction intervals using an ARCH forecast with the naive approach.

Table 1. PICP for the methods for solar irradiation.

Naive Quantile ARCH

99 96.3 98.9 98.8
95 93.7 94.9 96.0
90 91.8 90.0 92.4
80 88.4 79.9 83.3

Table 2. PINAW percentages for the methods for solar irradiation.

Naive Quantile ARCH

99 31.9 47.4 33.9
95 24.6 27.1 23.2
90 20.7 18.1 17.3
80 16.3 9.4 11.0

5.2. Wind Farm Output

From Figure 12, it is very hard to tell which works best. Examination of the metrics in
Tables 3 and 4 is more revealing. If one simply looks at the interval widths, then it appears
that the naive model performs better at the 95% level. The coverage at that level is 93.9%,
which would mean a narrower width on average than if the coverage were more in keeping
with the desired coverage. It does not perform at all well in comparison at the other levels.
The two approaches trialled here appear to behave very similarly, with perhaps a slight
advantage to the quantile regression method. The added benefit of that method is that it is
simpler to use, so, at least for the wind farm studied here, the quantile regression method
is preferred.

Table 3. PICP for Clements Gap wind farm.

Naive Quantile ARCH

95 93.9 95 96.0
90 91.0 90 91.2
80 85.5 80 80.7
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Table 4. PINAW percentages for Clements Gap wind farm.

Naive Quantile ARCH

95 31.1 33.1 33.8
90 27.5 24.8 25.5
80 21.8 17.2 17.2
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Figure 12. Comparing prediction intervals for Clements Gap wind farm.

5.3. Solar Farm Output

In Figure 13, we compare the use of quantile regression with the transform method
for 95% prediction intervals. In the figure, Q stands for quantile and T for transform, with
L for lower bound and U for upper. The interesting result is that the quantile regression
method appears to perform better when the data are highly variable, producing narrower
bounds, while the transform method seems to be better on the clear days. If one examines
the coverage in Table 5, it is obvious that the naive approach is not performing well, with
the coverage for the nominal 80% level being 91.0%. And, in Table 6, apart from the single
instance of a narrow mean interval at the 95% level, once again the naive approach is
not performing well. If one takes the overall set of results for the quantile regression
versus transform methods, there is not a lot of difference. Overall, with much narrower
means intervals for the 95% and 90% levels, the suggestion is that the transform method is
slightly better.

Table 5. PICP for Broken Hill solar farm.

Naive Quantile Transform

95 94.9 96.2 94.0
90 93.4 92.2 89.8
80 91.0 83.6 78.1

Table 6. PINAW percentages for Broken Hill solar farm.

Naive Quantile Transform

95 29.6 34.4 26.3
90 25.4 22.8 20.6
80 20.3 11.1 13.3
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Figure 13. Comparing prediction intervals for Broken Hill solar farm.

The various methods were evaluated for three applications: solar irradiation and
solar and wind farm output. The first observation is that both the quantile regression and
transform methods outperformed the naive method in general. The exception is for high
probability levels but, in most of these cases, the interval width was better, but the coverage
was not as good. At these very short-term time scales, very simple methods work well, so
this is a positive result.

For solar irradiation, if one examines Figure 10, the conclusion could be that the
quantile method performs better for highly variable data, while the transform method
performs better on clear days. When examining the overall metrics, they point to the
transform method being superior in the main. For the wind farm output, there is not any
obvious difference between the two approaches. For the solar farm output, examination of
the metrics points to the transformation method as the better of the two. An interesting
result from the pictorial depiction is that the transform method appears to perform better
with variable data, while, on clear days, the quantile approach performs better. This is
opposite to what happened with the irradiation data. Looking at these results, perhaps a
mixture of the two methods might be the best option. An attempt to do so by simply taking
the mean of the two options did not add significantly to the skill. From that, future work
should include the use of machine learning techniques to blend the approaches.

It is not a simple matter to compare this results of the modelling here with that of
what has appeared in the literature. Since the Australian context is different from the rest
of the world, both in the short time scale of the electricity market and how solar farms
are managed—with the fields often oversized—there can be only moderate comparisons
made without applying the methods directly. One point to make is that, apart from [12],
the other methods do not, in general, have very good PICP results, while, apart from the
naive method, the methods in this study do have that feature. It is difficult to compare
PINAW results when the PICP values do not match.

6. Conclusions

This paper gives a comparison of two approaches to construction of error bounds
for short-term forecasting for solar irradiation as well as solar and wind farm output. In
the context of the short-term operation of the electricity grid and market, the generation
of prediction intervals will be crucial in decision making with increased use of storage
mechanisms linked to renewable energy installations. This paper is not about forecasting
of solar and wind farm output per se, but rather about putting error bounds around those
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forecasts. It is pointed out in the literature review that quantile regression and its variants
have been used for constructing such bounds, and one of the methods used here is quantile
regression. The other method is not one that is routinely present in the literature. Yes,
ARCH and GARCH have been used for this purpose, but not with the added feature of first
transforming the noise terms to Gaussian before applying the conditional forecasting of the
variance. By performing the normalising transformation, then forecasting the variance and
back-transforming the bounds, the problem of non-normality of the noise is overcome. This
approach in general out performs the quantile regression method. The overall conclusion
from this study is that the transform method is superior in performance, even though the
quantile regression method is simpler to implement.
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