Performance Analysis of Interconnection and Differential Power Processing Techniques under Partial Shading Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Proceedings
2.2. Specific Proceedings
3. Results and Discussion
3.1. P-V Curves
3.2. Shading Patterns
3.2.1. High-Irradiance Shading (700 W/m2)
3.2.2. Low-Irradiance Shading (400 W/m2)
3.3. Performance Indicators
3.3.1. Performance Ratio
3.3.2. Mismatch Power Loss
3.3.3. Power Enhancement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Witteck, R.; Siebert, M.; Blankemeyer, S.; Schulte-Huxel, H.; Kontges, M. Three Bypass Diodes Architecture at the Limit. IEEE J. Photovolt. 2020, 10, 1828–1838. [Google Scholar] [CrossRef]
- Xenophontos, A.; Bazzi, A.M. Model-Based Maximum Power Curves of Solar Photovoltaic Panels under Partial Shading Conditions. IEEE J. Photovolt. 2018, 8, 233–238. [Google Scholar] [CrossRef]
- Bingöl, O.; Özkaya, B. Analysis and Comparison of Different PV Array Configurations under Partial Shading Conditions. Sol. Energy 2018, 160, 336–343. [Google Scholar] [CrossRef]
- Singh, R.; Yadav, V.K.; Singh, M. An Improved Hot Spot Mitigation Approach for Photovoltaic Modules under Mismatch Conditions. IEEE Trans. Ind. Electron. 2024, 71, 4840–4850. [Google Scholar] [CrossRef]
- Changmai, P.; Metya, S.K. Determination of the Best Shading Pattern to Maximize the Power of TCT Connected Solar PV Array during Partial Shading Condition. J. Opt. 2019, 48, 499–504. [Google Scholar] [CrossRef]
- Ghosh, S.; Singh, S.K.; Yadav, V.K. Experimental Investigation of Hotspot Phenomenon in PV Arrays under Mismatch Conditions. Sol. Energy 2023, 253, 219–230. [Google Scholar] [CrossRef]
- Belhaouas, N.; Mehareb, F.; Assem, H.; Kouadri-Boudjelthia, E.; Bensalem, S.; Hadjrioua, F.; Aissaoui, A.; Bakria, K. A New Approach of PV System Structure to Enhance Performance of PV Generator under Partial Shading Effect. J. Clean. Prod. 2021, 317, 128349. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Zhang, K.; Zhu, C.; Wei, H. A Fast MPPT-Based Anomaly Detection and Accurate Fault Diagnosis Technique for PV Arrays. Energy Convers. Manag. 2021, 234, 113950. [Google Scholar] [CrossRef]
- Karmakar, B.K.; Pradhan, A.K. Detection and Classification of Faults in Solar PV Array Using Thevenin Equivalent Resistance. IEEE J. Photovolt. 2020, 10, 644–654. [Google Scholar] [CrossRef]
- Bhadoria, V.S.; Pachauri, R.K.; Tiwari, S.; Jaiswal, S.P.; Alhelou, H.H. Investigation of Different BPD Placement Topologies for Shaded Modules in a Series-Parallel Configured PV Array. IEEE Access 2020, 8, 216911–216921. [Google Scholar] [CrossRef]
- Fang, X.; Yang, Q. Dynamic Reconfiguration of Photovoltaic Array for Minimizing Mismatch Loss. Renew. Sustain. Energy Rev. 2024, 191, 114160. [Google Scholar] [CrossRef]
- Suresh Kumar, K.; Winston David, P. Performance Analysis of Winnowing Dynamic Reconfiguration in Partially Shaded Solar Photovoltaic System. Sol. Energy 2024, 268, 112309. [Google Scholar] [CrossRef]
- Oufettoul, H.; Motahhir, S.; Ait Abdelmoula, I.; Aniba, G. Optimized Topology for a Photovoltaic Array Using Switches Control. Energy Convers. Manag. 2023, 291, 117315. [Google Scholar] [CrossRef]
- Manjunath; Suresh, H.N.; Rajanna, S.; Thanikanti, S.B.; Alhelou, H.H. Hybrid Interconnection Schemes for Output Power Enhancement of Solar Photovoltaic Array under Partial Shading Conditions. IET Renew. Power Gen. 2022, 16, 2859–2880. [Google Scholar]
- Madhu, G.M.; Vyjayanthi, C.; Modi, C.N. Investigation on Effect of Irradiance Change in Maximum Power Extraction from PV Array Interconnection Schemes during Partial Shading Conditions. IEEE Access 2021, 9, 96995–97009. [Google Scholar] [CrossRef]
- Sai Krishna, G.; Moger, T. Investigation of Power Losses on Solar Photovoltaic Array Interconnections under Mismatch Conditions. Technol. Econ. Smart Grids Sustain. Energy 2021, 6, 22. [Google Scholar] [CrossRef]
- Satpathy, P.R.; Jena, S.; Sharma, R. Power Enhancement from Partially Shaded Modules of Solar PV Arrays through Various Interconnections among Modules. Energy 2018, 144, 839–850. [Google Scholar] [CrossRef]
- Vinnikov, D.; Chub, A.; Liivik, E.; Kosenko, R.; Korkh, O. Solar Optiverter—A Novel Hybrid Approach to the Photovoltaic Module Level Power Electronics. IEEE Trans. Ind. Electron. 2019, 66, 3869–3880. [Google Scholar] [CrossRef]
- Ramli, M.Z.; Salam, Z. Performance Evaluation of Dc Power Optimizer (DCPO) for Photovoltaic (PV) System during Partial Shading. Renew. Energy 2019, 139, 1336–1354. [Google Scholar] [CrossRef]
- Adly, M.; Strunz, K. Irradiance-Adaptive PV Module Integrated Converter for High Efficiency and Power Quality in Standalone and DC Microgrid Applications. IEEE Trans. Ind. Electron. 2018, 65, 436–446. [Google Scholar] [CrossRef]
- Nazer, A.; Manganiello, P.; Isabella, O. A Virtual Bus Parallel Differential Power Processing Configuration for Photovoltaic Applications. Math. Comput. Simul. 2024, 224, 49–62. [Google Scholar] [CrossRef]
- Sundaram, B.M.; Manikandan, B.V.; Praveen Kumar, B.; Prince Winston, D. Combination of Novel Converter Topology and Improved MPPT Algorithm for Harnessing Maximum Power from Grid Connected Solar PV Systems. J. Electr. Eng. Technol. 2019, 14, 733–746. [Google Scholar] [CrossRef]
- Lee, H.; Kim, K. Design Considerations for Parallel Differential Power Processing Converters in a Photovoltaic-Powered Wearable Application. Energies 2018, 11, 3329. [Google Scholar] [CrossRef]
- Wang, X.; Wen, H.; Chu, G.; Zhu, Y.; Yang, Y.; Wang, Y.; Jiang, L. Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems. IEEE Trans. Power Electron. 2024, 39, 1656–1675. [Google Scholar] [CrossRef]
- Meira Amaral Da Luz, C.; Moreira Vicente, E.; Lessa Tofoli, F.; Roberto Ribeiro, E. Differential Power Processing Architecture to Increase Energy Harvesting of Photovoltaic Systems under Permanent Mismatch. Sol. Energy 2023, 263, 111940. [Google Scholar] [CrossRef]
- Uno, M.; Liu, X.; Sato, H.; Saito, Y. Panel-to-Substring PWM Differential Power Processing Converter and Its Maximum Power Point Tracking Technique for Solar Roof of Plug-In Electric Vehicles. IEEE Access 2022, 10, 42883–42896. [Google Scholar] [CrossRef]
- Pannebakker, B.B.; De Waal, A.C.; Van Sark, W.G.J.H.M. Photovoltaics in the Shade: One Bypass Diode per Solar Cell Revisited. Prog. Photovolt. Res. Appl. 2017, 25, 836–849. [Google Scholar] [CrossRef]
- Saeed, F.; Tauqeer, H.A.; Gelani, H.E.; Yousuf, M.H.; Idrees, A. Numerical Modeling, Simulation and Evaluation of Conventional and Hybrid Photovoltaic Modules Interconnection Configurations under Partial Shading Conditions. EPJ Photovolt. 2022, 13, 10. [Google Scholar] [CrossRef]
- Satpathy, P.R.; Babu, T.S.; Shanmugam, S.K.; Popavath, L.N.; Alhelou, H.H. Impact of Uneven Shading by Neighboring Buildings and Clouds on the Conventional and Hybrid Configurations of Roof-Top PV Arrays. IEEE Access 2021, 9, 139059–139073. [Google Scholar] [CrossRef]
- Bana, S.; Saini, R.P. Experimental Investigation on Power Output of Different Photovoltaic Array Configurations under Uniform and Partial Shading Scenarios. Energy 2017, 127, 438–453. [Google Scholar] [CrossRef]
- Nnamchi, S.N.; Oko, C.O.C.; Kamen, F.L.; Sanya, O.D. Mathematical Analysis of Interconnected Photovoltaic Arrays under Different Shading Conditions. Cogent Eng. 2018, 5, 1507442. [Google Scholar] [CrossRef]
- Agrawal, N.; Bora, B.; Kapoor, A. Experimental Investigations of Fault Tolerance Due to Shading in Photovoltaic Modules with Different Interconnected Solar Cell Networks. Sol. Energy 2020, 211, 1239–1254. [Google Scholar] [CrossRef]
- Alves, T.; N. Torres, J.P.; Marques Lameirinhas, R.A.; F. Fernandes, C.A. Different Techniques to Mitigate Partial Shading in Photovoltaic Panels. Energies 2021, 14, 3863. [Google Scholar] [CrossRef]
- Natarajan, B.; Murugesan, P.; Udugula, M.; Gurusamy, M.; Subramaniam, S. A Fixed Interconnection Technique of Photovoltaic Modules Using a Sensorless Approach for Maximum Power Enhancement in Solar Plants. Energy Sources Part A 2020, 1–23. [Google Scholar] [CrossRef]
- Shao, C.; Migan-Dubois, A.; Diallo, D. Performance of PV Array Configurations under Dynamic Partial Shadings. EPJ Photovolt. 2023, 14, 21. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, H.; Liu, Y.-C.; Kim, K.A. Review of Differential Power Processing Converter Techniques for Photovoltaic Applications. IEEE Trans. Energy Convers. 2019, 34, 351–360. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, T.; Chen, D. Analysis, Design, and Implementation of a Differential Power Processing DMPPT with Multiple Buck–Boost Choppers for Photovoltaic Module. IEEE Trans. Power Electron. 2021, 36, 10214–10223. [Google Scholar] [CrossRef]
- Jeon, Y.-T.; Park, J.-H. Unit-Minimum Least Power Point Tracking for the Optimization of Photovoltaic Differential Power Processing Systems. IEEE Trans. Power Electron. 2019, 34, 311–324. [Google Scholar] [CrossRef]
- Gokdag, M.; Akbaba, M.; Gulbudak, O. Switched-Capacitor Converter for PV Modules under Partial Shading and Mismatch Conditions. Sol. Energy 2018, 170, 723–731. [Google Scholar] [CrossRef]
- Gnanavadivel, J.; Kalarathi, M.; Prakash, K. Analysis of Single Switch Step Up DC-DC Converter with Switched Inductor-Switched Capacitor Cells for PV System. IJAPE 2024, 13, 20. [Google Scholar] [CrossRef]
- Mi, J.; Du, J.; Liu, C.; Li, X.; Zhang, Y.; Fan, G. Design and Optimization of Photovoltaic System in Full-Chain Ground-Based Validation System of Space Solar Power Station. Energies 2023, 16, 3247. [Google Scholar] [CrossRef]
- Niazi, K.A.K.; Yang, Y.; Nasir, M.; Sera, D. Evaluation of Interconnection Configuration Schemes for PV Modules with Switched-Inductor Converters under Partial Shading Conditions. Energies 2019, 12, 2802. [Google Scholar] [CrossRef]
- Wang, X.; Wen, H.; Chu, G.; Zhou, J. Cost-Effective and Extensible LLC-Resonant Voltage-Multiplier-Based Differential Power Processing Optimizer for Mismatched Photovoltaic Systems. Sol. Energy 2021, 225, 501–516. [Google Scholar] [CrossRef]
- Xu, D.; Chen, H.; Wang, X.; Pires, V.; Martins, J.; Anuchin, A.; Li, X.; Palka, R.; Gu, J. Coupling Analysis of Differential Power Processing-Based PV System and Its Decoupling Implementation of Synchronous MPPT Control. IEEE Trans. Ind. Electron. 2023, 70, 6973–6983. [Google Scholar] [CrossRef]
- Uno, M.; Kukita, A. Current Sensorless Equalization Strategy for a Single-Switch Voltage Equalizer Using Multistacked Buck–Boost Converters for Photovoltaic Modules under Partial Shading. IEEE Trans. Ind. Appl. 2017, 53, 420–429. [Google Scholar] [CrossRef]
- Meira Amaral Da Luz, C.; Roberto Ribeiro, E.; Lessa Tofoli, F. Analysis of the PV-to-PV Architecture with a Bidirectional Buck-Boost Converter under Shading Conditions. Sol. Energy 2022, 232, 102–119. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, Y.; Lehman, B. PV Panel to PV Panel Transfer Method for Modular Differential Power Processing. IEEE Trans. Power Electron. 2022, 37, 4764–4778. [Google Scholar] [CrossRef]
- Etarhouni, M.; Chong, B.; Zhang, L. A Combined Scheme for Maximising the Output Power of a Photovoltaic Array under Partial Shading Conditions. Sustain. Energy Technol. Assess. 2022, 50, 101878. [Google Scholar] [CrossRef]
- Murkute, S.; Kulkarni (Deodhar), V.A. New High Performance PV System Architecture for Mitigation of Partial Shading Effects. e-Prime Adv. Electr. Eng. Electron. Energy 2023, 5, 100189. [Google Scholar] [CrossRef]
- Cubas, J.; Pindado, S.; Victoria, M. On the Analytical Approach for Modeling Photovoltaic Systems Behavior. J. Power Sources 2014, 247, 467–474. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
Manufacturer | Yingli Solar |
Model | YL245-29b |
Cell type | Multicrystalline |
Number of cells | 60 |
Maximum power (PMP) | 245 Wp |
Open-circuit voltage (VOC) | 37.8 V |
Short-circuit current (ISC) | 8.63 A |
Voltage at PMP (VMP) | 30.2 V |
Current at PMP (IMP) | 8.11 A |
Temperature coefficient of VOC | −0.33%/°C |
Temperature coefficient of ISC | 0.06%/°C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouvêa, E.C.; Castro, T.S.; de Souza, T.M. Performance Analysis of Interconnection and Differential Power Processing Techniques under Partial Shading Conditions. Energies 2024, 17, 3252. https://doi.org/10.3390/en17133252
Gouvêa EC, Castro TS, de Souza TM. Performance Analysis of Interconnection and Differential Power Processing Techniques under Partial Shading Conditions. Energies. 2024; 17(13):3252. https://doi.org/10.3390/en17133252
Chicago/Turabian StyleGouvêa, Evaldo Chagas, Thais Santos Castro, and Teófilo Miguel de Souza. 2024. "Performance Analysis of Interconnection and Differential Power Processing Techniques under Partial Shading Conditions" Energies 17, no. 13: 3252. https://doi.org/10.3390/en17133252
APA StyleGouvêa, E. C., Castro, T. S., & de Souza, T. M. (2024). Performance Analysis of Interconnection and Differential Power Processing Techniques under Partial Shading Conditions. Energies, 17(13), 3252. https://doi.org/10.3390/en17133252