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Abstract: Achieving sustainable green building design is essential to reducing our environmen-
tal impact and enhancing energy efficiency. Traditional methods often depend heavily on expert
knowledge and subjective decisions, posing significant challenges. This research addresses these
issues by introducing an innovative framework that integrates building information modeling (BIM),
explainable artificial intelligence (AI), and multi-objective optimization. The framework includes
three main components: data generation through DesignBuilder simulation, a BO-LGBM (Bayesian
optimization–LightGBM) predictive model with LIME (Local Interpretable Model-agnostic Expla-
nations) for energy prediction and interpretation, and the multi-objective optimization technique
AGE-MOEA to address uncertainties. A case study demonstrates the framework’s effectiveness, with
the BO-LGBM model achieving high prediction accuracy (R-squared > 93.4%, MAPE < 2.13%) and
LIME identifying significant HVAC system features. The AGE-MOEA optimization resulted in a
13.43% improvement in energy consumption, CO2 emissions, and thermal comfort, with an additional
4.0% optimization gain when incorporating uncertainties. This study enhances the transparency of
machine learning predictions and efficiently identifies optimal passive and active design solutions,
contributing significantly to sustainable construction practices. Future research should focus on
validating its real-world applicability, assessing its generalizability across various building types, and
integrating generative design capabilities for automated optimization.

Keywords: sustainable architecture; predictive modeling; energy optimization; building information
modeling (BIM); explainable AI

1. Introduction

The construction sector is essential for meeting growing needs and expanding social
and economic activities while minimizing harm to the local environment [1]. The building
industry plays a crucial role in global energy consumption and greenhouse gas emissions,
driving up energy costs and causing severe environmental damage like pollution and
climate change as a major concern [2]. For example, the building process alone in China
produced 4.997 billion tons of carbon dioxide (CO2) in 2019, representing 50.6% of the
nation’s total carbon emissions, due to the country’s fast urbanization [3]. Furthermore,
the construction sector in China was responsible for 2.233 billion tons of standard coal
equivalent (SCE), representing 46.5% of the country’s total energy consumption [4]. In the
European Union (EU), buildings also account for 36% of greenhouse gas emissions and
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more than 40% of energy usage [5]. Globally, the building industry is trending toward
increased energy usage, which is predicted to rise by 88% between 2003 and 2050 [2,6].
This issue has raised awareness of the need of near-energy-neutral green buildings in
accomplishing sustainable development goals [7]. Environmental, social, and human
viewpoints all highlight the advantages of adopting green construction over traditional
building practices [8,9]. Achieving great energy efficiency, lowering CO2 emissions, saving
money, and providing adaptable thermal comfort are among the benefits [10,11]. In recent
years, the idea of “green building” has grown significantly. Evaluating and optimizing
building energy performance in the preliminary stages of design are essential for developing
a green building [12,13].

This early analysis aims to reduce waste and discomfort that result from poor design so
that the building can reach its maximum potential for both energy efficiency and occupant
comfort [14]. Several energy simulation programs have been developed to gain insights
into energy performance through dynamic modeling, including DOE-2, OpenStudio, Eco-
tect, DesignBuilder, and others [15]. However, because so many parameters are needed,
this physics-based modeling approach can be overly complex and occasionally lack com-
putational efficiency [16]. Adhering closely to internationally recognized green building
certification systems that integrate sustainable design principles, such as China’s MHURD
standards, the EU’s EPBD for near-zero-energy buildings, and LEED (Leadership in Energy
and Environmental Design), is a simpler approach [17]. However, comparing results to
several criteria can be laborious, experience-based, and biased towards judgment [18,19].
The European Union established the Energy Performance of Buildings Directive (EPBD
2018/844/EU) among other regulations to ensure that every new construction conforms
with the requirements for near-zero-energy buildings (nZEBs) [20]. The Ministry of Hous-
ing and Urban–Rural Development of China creates the most widely used green building
evaluation standard (MHURD) [21]. It does, however, require a significant amount of time
and work to assess a range of variables, in addition to experience. Furthermore, it may
generate erroneous findings influenced by judgment and cognitive biases [22,23]. Since
the building industry is presently becoming more information-intensive, it is beneficial to
delve further, for hidden knowledge discovery, into the growing corpus of data on building
energy efficiency [24]. This is enabled by the rapidly growing big data sector. Notably,
data-driven approaches have become more important in the assessment of green buildings
to facilitate automated, effective, and impartial decision-making [25]. Machine learning has
emerged as a promising solution to overcome shortcomings of traditional building energy
prediction methods during design [26,27]. Numerous algorithms, including multi-layer
perceptron, ensemble learning, support vector machines, and others, have the following
advantages: they are highly efficient, have a simplified parameter structure that is appro-
priate for the early stages of design, consistently perform well in predictions, and have an
excellent generalization ability to comprehend complex energy systems [28,29]. Machine
learning techniques play a significant role in offering insightful information about the
intricate relationship between the performance of green buildings and various influential
factors, including personnel activities, façade openings, the envelope structure, and facility
operational efficiency [30]. This information enables decision-makers to identify potential
issues with design early on and take appropriate action [31].

The following three areas still require improvement, even though many studies have
produced highly effective machine-learning-based energy prediction models [32]. First, it
should be mentioned that fine-tuning hyperparameters is essential to managing a machine
learning model’s behavior [33]. A more promising prediction quality will undoubtedly
be attained by carefully choosing the ideal hyperparameter setup [34]. Studies that have
looked at different machine learning techniques for predicting energy performance have
paid less attention to the automated adjustment process [35]. Despite being labor-intensive,
manual parameter tuning is still common [36]. This approach enhances the model’s re-
peatability and reliability by rapidly determining the optimal hyperparameter combination
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in fewer iterations. However, research suggests that machine learning is most effectively
applied during the operational phase rather than the design phase [37].

Since effective design accounts for about 30% of energy savings, it is desirable to fully
incorporate machine learning from the design stage to support the decisions made by
building designers [38]. Nevertheless, it is challenging to directly interpret most machine
learning approaches since they are complex [39]. A lack of confidence may result from an
inability to understand the results and predictive models. The solution to this is to use
explainable machine learning algorithms that generate understandable explanations of the
variable importance and prediction mechanism [40]. This may unlock the mystery, offering
believable justifications and boosting the models’ level of trust. The best practices for green
building design are currently being discussed [41]. This decision-making technique, a
multi-objective optimization (MOO) task, can be seen as an alternative to conventional hu-
man judgment [42]. MOO integrates with the well-known machine learning methodology
to produce Pareto-compromised solutions without the need for complex equations [43].
This makes the prediction models more useful in actual situations and makes it easier
to create data-driven, optimal plans for green buildings [44,45]. Considering sources of
uncertainty is a necessary step towards making data-driven strategies more robust [46,47].
The goal of this study is to provide a system that combines multi-objective optimization,
explainable machine-learning-based prediction, and simulation based on building informa-
tion modeling (BIM) to provide data-driven assistance for the design of successful green
buildings from the ground up. The novel aspect of this study is the hybrid algorithm that
uses computational intelligence methods to extract information about various aspects of
building energy usage from massive volumes of BIM-based simulation data. It still has a
strong capacity for high generalization, simultaneous optimization, in-depth explanation,
and autonomous learning. The usefulness of this research lies in its potential to function as
a trustworthy instrument for decision-making, enhancing computational efficiency and
objectivity in the process of pinpointing the most important variables and effectively man-
aging features of interest. By adhering to accurate forecasts and practical recommendations
derived from the proposed data-driven analysis, green buildings can meet their objectives
of minimizing our environmental impact, enhancing indoor thermal comfort, and reducing
energy consumption from the early design stage onward. The rest of the manuscript covers
the following: Section 2—Overview of relevant research, Section 3—Methodology, Sec-
tion 4—Case study validating the proposed method’s performance, Section 5—Reliability
under uncertainty sources, Section 6—Conclusions and future research recommendations.

2. Literature Review
2.1. Green Building Information Modeling

BIM is the creative process of organizing information to provide value in design
projects [48,49]. Due to its advantages in information sharing, digital visualization, project
collaboration, and improved decision-making, BIM has been used in previous studies to
support green buildings [50,51]. The notion of “green BIM” emerged as a result, with
the goal of promoting sustainability in terms of the social, economic, and environmental
spheres [52,53]. For example, Cascone [54] created a Revit plug-in connecting BIM with
LEED certification to automate sustainability review, while Huang, Lei [55] incorporated
a green building rating system into BIM to assure energy efficiency via improved design.
Another important area of research is accurately and promptly estimating building energy
use to enable early design decisions, to achieve desired sustainability [56]. It takes a lot of
time to manually enter many building factors into BIM-based simulation engines, even
if the simulation-based approach excels at varying energy usage under various design
parameter settings [28,57]. Issues that need to be addressed include inconsistent regulations
and standards, the need for BIM technical training, excessive manual operations, high
computation costs, and the underutilization of BIM data for performance analysis. For
instance, Motalebi, Rashidi [58] created a comprehensive method of energy modeling and
lifecycle analysis allowed by BIM to produce practical solutions that might enhance the
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environmental effects and energy efficiency of buildings. Feng [59] effectively mitigated
carbon dioxide emissions in cold climates by combining an optimization technique with
discrete-event simulation. However, a questionnaire survey by Abuhussain, Waqar [60] of
various stakeholders indicates that there are still obstacles to green BIM practice that must be
quickly overcome. These include inconsistent regulations and standards currently in place,
the need for BIM technical training, the need for excessive manual operations, the excessive
cost of computation, and the underutilization of data [47]. Green building information
modeling (BIM) is pivotal in enhancing sustainable construction practices. The utilization of
reliable data sources, such as the China Building Energy and Emission Database (CBEED), is
essential to ensure accurate assessments. CBEED, developed by the China Building Energy
Conservation Association, comprehensively covers energy consumption and emissions
data within China’s construction sector. This data is instrumental in quantifying carbon
emissions trends in commercial buildings and formulating future predictions. However,
existing research reveals challenges in identifying and eliminating redundant influencing
factors affecting carbon emissions, which complicates policy implementation and increases
control costs. Moreover, scenario analysis based on the KAYA identity often overlooks
variations in the significance of different factors influencing emissions pathways. These
challenges highlight a current knowledge gap: the full potential of BIM in green building
development has not been realized, and there is scope to maximize the use of BIM data
for performance analysis and sustainable design. Addressing these gaps can enhance the
practical application of BIM in sustainable building design. Future research should focus
on developing standardized protocols, training programs, and automated tools to leverage
BIM data more effectively.

Despite the advancements in green BIM, several challenges remain, including the need
for consistent regulations and standards, technical training, and efficient data utilization.
Addressing these gaps can enhance the practical application of BIM in sustainable building
design. Future research should focus on developing standardized protocols, training
programs, and automated tools to leverage BIM data more effectively for green building
performance analysis.

2.2. Predicting Building Energy with Machine Learning

Building project management is undergoing innovative changes due to the emerging
field of machine learning, which is a subset of artificial intelligence (AI) and is growing in
maturity [61]. Optimal solutions can be obtained through a variety of machine learning
algorithms rather than laborious building performance simulations [62]. Machine learning
can characterize building energy systems accurately and intelligently, given their intrinsic
complexity and nonlinearity, because it is more computationally efficient and has a higher
learning capacity than classical energy analysis methodologies [63]. Machine learning
techniques can provide valuable insights into the expanding BIM information flows for
automated knowledge discovery [64]. Through the process of developing energy models
and estimating the input–output connection, some research has used machine learning to
provide quick early-stage energy estimates [65]. This approach usually entails data collect-
ing, preprocessing, model training, and testing. Uncuoglu, Citakoglu [66] comprehensively
reviewed commonly used techniques like autoregressive approaches, tree-based algorithms,
neural networks, support vector machines, linear regression, etc. Ghasemieh, Lloyed [67]
highlighted ensemble learning’s importance, noting its ability to balance individual model
strengths/weaknesses for improved generalization and prediction performance. Hence,
this study explores the Light Gradient Boosting Machine (LGBM) ensemble technique,
which is a high-performance, distributed gradient boosting system using decision trees for
fast and effective execution, aiming at energy-efficient building design [68]. Its benefits
include minimal memory consumption, high prediction accuracy, great computational
efficiency, and compatibility with a wide range of datasets [69]. Furthermore, there is
further work to be carried out on the automatic tuning of hyperparameters and model
description in the current investigations [70]. Regarding the first point, model parameter
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adjustment is crucial for effectively managing the behavior of machine learning models, as
noted by Pinto, Wang [38]. To guarantee extremely accurate machine learning models, the
best hyperparameter combinations can be quickly found by efficiently scanning the hyper-
parameter space with less manual labor [71]. However, there is currently a growing focus
on explainable artificial intelligence (XAI) to improve machine learning’s interpretability
and transparency [72]. Explainable AI (XAI) extracts critical components from complex
machine learning models and determines their importance to prediction outcomes [73].
XAI analysis provides a comprehensive understanding of how the model interacts with
inputs and why the optimal model outperforms others in accuracy [74]. As per Roscher,
Bohn [75], explainable machine learning is crucial for extracting novel scientific insights
from models. Although unexplored for building energy previously, it can enable high
interpretability and transparency in machine learning for richer research findings [76].
Using the LGBM, Bayesian hyperparameter optimization, and a new model explanation
approach, this work develops an explainable hybrid machine learning model to close this
gap. Its goals include deeper “black box” knowledge and better prediction accuracy with
fewer iterations [77].

While the current literature extensively explores the application of ML techniques
such as LGBM for building energy prediction, there remains a significant gap in under-
standing the scalability and robustness of these models across diverse building types and
geographical locations. Existing studies often focus on specific building types or regions,
limiting the generalizability of their findings. Future research should therefore prioritize
the development of ML models that can adapt to varying building characteristics and
environmental conditions, ensuring reliable predictions across different contexts. This
approach will not only enhance the applicability of ML in building energy management
but also foster broader acceptance and adoption within the construction industry.

2.3. Multi-Objective Optimization for Green Building Design

The established predictive model can be used to predict building energy; however,
it is unclear how best to use it to further the development of green buildings [78]. Green
building design recommendations are now mostly based on the rapid evaluation and accu-
mulated knowledge/experience of specialists, which might vary from person to person and
be unreliable [61]. Regretfully, under conditions of extreme complexity and unpredictability,
this poses a serious obstacle to the data-driven reporting of energy control measures [79].
Another promising research direction involves developing a decision-making tool that
balances all objectives in sustainable built environment creation through a multi-objective
optimization (MOO) method based on the LGBM metamodel [80]. Formulating an opti-
mal building design requires considering and simultaneously optimizing more than two
building energy performance objectives, likely presenting challenges beyond conventional
single-objective problems [81]. For instance, Tanhadoust, Madhkhan [82] combined the
energy performance model of the air conditioning system and building envelope with the
Non-dominated Sorting Genetic Algorithm II (NSGA-II) to find the best configurations for
minimizing CO2 emissions and construction costs at the same time. Building envelope de-
sign parameters were optimized using the NSGA-II algorithm by Chen, Liu [83] to reduce
building energy consumption and increase thermal comfort. These investigations, how-
ever, mostly use the most traditional NSGA method, which may have several drawbacks,
including a limitation on spread uniformity, the creation of duplicate persons, challenges
in locating isolated sites, and an increase in variable dimensions [84]. In contrast, their
explanation of the optimization problem is simplistic and considers only one category of
variables and two objectives, which is inconsistent with reality [85]. It is also important to
highlight that the substantial influence of uncertainty on optimization performance has
not been investigated in prior research. Given that uncertainty originating from both the
data and the model is inevitable in real-world scenarios, it is crucial to take uncertainty
into account when optimizing to ensure the resilience of the suggested approach. These
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limitations call for a more thorough and theoretical analysis because there is still much to
learn about the subject of optimization-based green building design.

Building energy management is entering a new stage with the integration of Internet
of Things (IoT) devices and real-time data streams [86]. Subsequent investigations might
concentrate on creating machine learning models that can handle and adjust to ongoing
data inputs, allowing for more dynamic and responsive energy forecasts [87]. This strategy
would enable real-time system optimization for buildings, which might save a lot of energy
and increase occupant comfort. The use of transfer learning strategies to overcome the issue
of restricted data availability for building types or geographic areas is another exciting
field [32]. Transfer learning has the potential to enhance the generalizability of machine
learning models across a variety of building types by enabling models developed on
data-rich buildings to be modified for usage in situations where data are limited [88].
The integration of occupant behavior modeling into energy prediction algorithms is an
essential area of research. Current models tend to view building inhabitants as static
entities, even though human behavior has a major impact on energy usage. The creation of
machine learning models that take into consideration the random behavior of occupants
has the potential to improve prediction accuracy and provide guidance for more efficient
energy-saving measures [89].

Life cycle assessment (LCA) techniques and MOO approaches have the potential to be
integrated in the field of green building design optimization. This integration could allow
for more thorough sustainability assessments, considering not only operational energy use
but also embodied energy and environmental implications over the course of a building’s
lifetime [90]. A more comprehensive and sustainable building design could result from
such an approach. An intriguing area of study is the use of reinforcement learning methods
to build energy optimization and management [89]. Over time, reinforcement learning
algorithms may be able to determine the best control techniques for building systems,
adjusting to shifting circumstances and user preferences while continuously maximizing
comfort and energy economy [91]. The area may advance more quickly if cooperative,
cloud-based systems for exchanging building energy data and machine learning models are
developed. These kinds of platforms might make it easier to compile bigger, more varied
datasets and allow academics to compare their models with a variety of building kinds
and operating conditions. This cooperative method may provide models that are stronger
and more broadly applicable while also encouraging innovation through transparent
information exchange. The dynamic character of the subject and the potential for major
breakthroughs in building energy prediction and green building design optimization are
highlighted by these new research directions. Through investigating these fields, scholars
can aid in the advancement of increasingly complex, versatile, and efficient instruments for
establishing sustainable constructed environments.

Table 1 provides a comprehensive overview of various factors involved in green build-
ing design, spanning different areas such as green BIM, machine learning, multi-objective
optimization, and related domains. One crucial factor that stands out is the handling of
uncertainty, which is marked as being addressed by multi-objective optimization tech-
niques. Given that uncertainty originating from both the data and the model is inevitable in
real-world scenarios, it is crucial to take uncertainty into account when optimizing to ensure
the resilience of the suggested approach. However, the literature review also emphasizes
that “These limitations call for a more thorough and theoretical analysis because there is
still much to learn about the subject of optimization-based green building design.” This
suggests that while multi-objective optimization shows promise in addressing uncertainty,
there is still a need for further research and theoretical analysis to develop more robust and
resilient optimization approaches for green building design.
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Table 1. Comparison of features in green approaches to sustainable architecture and design.

Feature Green BIM Machine
Learning

Multi-
Objective

Optimization

Early Design
Stage

Knowledge
Discovery

Environmental
Impact

Cost
Efficiency

Collaborative
Design

Design
Optimization

Risk
Management

Data
Visualization

Digital Visualization ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✘ ✘
Project Collaboration ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Improved Decision-Making ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Automated Energy Analysis ✓ ✓ ✓ ✘ ✓ ✓ ✘ ✓ ✘ ✓ ✘

Computational Efficiency ✘ ✓ ✘ ✘ ✘ ✓ ✘ ✓ ✘ ✓ ✘
Ensemble Learning Techniques ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Hyperparameter Tuning ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
Explainable AI (XAI) ✘ ✓ ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Balancing Multiple Objectives ✘ ✘ ✘ ✘ ✓ ✘ ✓ ✘ ✓ ✘ ✘
Handling Uncertainty ✘ ✘ ✘ ✘ ✓ ✘ ✓ ✓ ✘ ✓ ✘

Traditional Optimization Algorithms ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✘ ✘ ✘
Data Integration ✓ ✓ ✘ ✓ ✘ ✓ ✘ ✘ ✘ ✓ ✘

Simulation-based Approach ✓ ✘ ✓ ✘ ✓ ✓ ✘ ✘ ✓ ✘ ✘
Regulatory Compliance ✓ ✘ ✘ ✘ ✓ ✘ ✓ ✓ ✘ ✓ ✘

Technical Training ✓ ✓ ✘ ✘ ✘ ✓ ✘ ✘ ✘ ✓ ✘
Manual Operations ✓ ✘ ✘ ✘ ✘ ✓ ✘ ✘ ✘ ✓ ✘

Interdisciplinary Collaboration ✓ ✘ ✘ ✘ ✓ ✓ ✓ ✘ ✓ ✘ ✘
Life Cycle Analysis ✓ ✓ ✘ ✘ ✓ ✓ ✓ ✓ ✓ ✓ ✘
Parametric Design ✓ ✘ ✓ ✘ ✓ ✘ ✓ ✓ ✘ ✓ ✓

Building Performance Simulation ✓ ✓ ✓ ✘ ✓ ✓ ✘ ✓ ✓ ✘ ✘
Cloud Computing ✘ ✓ ✘ ✘ ✘ ✓ ✘ ✓ ✘ ✓ ✘

Internet of Things (IoT) ✘ ✓ ✘ ✓ ✓ ✘ ✘ ✘ ✘ ✘ ✘
Sensor Data Integration ✓ ✓ ✘ ✓ ✓ ✘ ✘ ✘ ✘ ✘ ✘
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Despite the potential of multi-objective optimization in green building design, current
methods often oversimplify the optimization problem and neglect the impact of uncer-
tainties. Addressing these gaps requires developing more sophisticated optimization
algorithms that consider multiple categories of variables and objectives, as well as incorpo-
rating uncertainty into the optimization process. Future research should focus on creating
robust optimization frameworks that can handle the complexities and unpredictability’s of
real-world scenarios, ensuring resilient and sustainable green building designs.

3. Methodology

A unique hybrid framework combining explainable machine learning and multi-
objective optimization approaches is offered for intelligent prediction and data-driven
improvement of green building performance. The framework, outlined in Figure 1, com-
prises three key components providing robust knowledge support across two optimization
scenarios and intelligent forecasting. Initially, an orthogonal testing and BIM-based sim-
ulation approach aids in curating a multi-feature dataset. Several crucial features closely
linked to green building energy efficiency have been identified to develop a multi-feature
assessment system. Subsequently, a prediction model dubbed Bayesian optimization–Light
Gradient Boosting Machine (BO-LGBM) is constructed by synergizing ensemble learning
with Bayesian optimization. Moreover, to enhance model interpretability, LIME (Local
Interpretable Model-agnostic Explanations) values quantify the significance of each input
feature towards the target objective [92]. In the third step, the generated metamodel is
subjected to the multi-objective optimization (MOO) method of the Adaptive Genetic En-
semble of Multi-Objective Evolutionary Algorithms (AGE-MOEA) to determine the optimal
solutions for constructing aesthetically pleasing and long-lasting buildings. Two scenarios
are included in the data-driven optimization framework: the deterministic scenario and
the uncertain scenario. The main difference between them is how the latter manages
uncertainty. In particular, the deterministic scenario does not take into consideration the
combination of model and data uncertainty, while the uncertain scenario does. The uncer-
tain scenario may thus improve the robustness and dependability of choices made on the
design of green buildings by specifically including these uncertainties into the optimization
process. A data-driven analytical framework for green building design aims to proactively
construct an assessment index system that includes objectives and contributing elements.
It is essential to create a dataset on building energy performance based on the established
evaluation methodology by utilizing DesignBuilder (2020) simulation and BIM modeling.
First, using Revit software (2020), a geometrically precise 3D BIM model of the suggested
building is produced.

A Common Data Environment (CDE) is built as part of the BIM-based design information
management process to enable data integration into the model [93]. Next, a computational
simulation program called DesignBuilder is employed for dynamic simulation, considering
multiple parameters to provide accurate energy performance estimation [94]. DesignBuilder
offers an intuitive graphical user interface for EnergyPlus software (2020), with two key
advantages—importing the BIM model in gbXML format eliminates the need for recreating
an analysis model, and when supplied with parameters, DesignBuilder as a simulation
engine enables highly realistic simulations accounting for thermal mass, glazing, HVAC,
and interactions across building systems/components. Orthogonal testing for efficiency and
simplicity underpins the DesignBuilder-based dynamic simulations. The core concept is
utilizing an orthogonal array to streamline multi-factor studies by significantly reducing
experiment numbers while ensuring uniform data distribution across the test range [95].
Data preparation involving noise removal, standardization, and transformations to enhance
training usefulness for machine learning models is a prerequisite after data collection. Finally,
it is possible to produce a better dataset to support the data-driven study of energy efficiency
in green buildings. This methodology detail is explained in Algorithm 1 below:
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Figure 1. The optimization procedure’s workflow.

In this algorithm the comprehensive process involves BIM, Bayesian optimization
with LGBM modeling, and MOO to derive optimal and reliable solutions from a Revit
model. Initially, a Revit-based 3D model was created and simulated to generate results and
parametric features. These features help define objectives and prepare datasets for model
training. The next phase employs Bayesian optimization to fine-tune hyperparameters for
training a predictive LGBM model, which is then evaluated for performance. To enhance
model interpretability, LIME is applied, followed by Monte Carlo simulations to assess pre-
diction robustness. The final phase focuses on formulating a multi-objective optimization
problem using the defined objectives and design parameters. The AGE MOEA algorithm is
executed to determine the Pareto front, from which optimal solutions are selected. These
solutions undergo further evaluation to establish probability constraints, ensuring their
reliability. The algorithm systematically combines simulation, machine learning, and opti-
mization techniques to achieve optimal design solutions while considering performance
variability and reliability.
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Algorithm 1 Pseudocode for Research.

Input: Revit model, Target objectives, Design parameters
Output: Optimal solutions, Probability constraints

3.1. Predicting Building Energy Performance Using Ensemble Learning with Hyperparameter
Optimization

A branch of artificial intelligence called “machine learning” is focused on learning from
and adapting to large volumes of data. For predictive analytics, the framework makes it possi-
ble to simulate the nonlinear correlations accurately and automatically between important
parameters and energy performance objectives. When compared to a single model, ensemble
learning provides superior prediction accuracy and resilience by combining the predictive out-
puts of many base learners into a strong learner. The widely used ensemble learning method
known as gradient boosting decision tree (GBDT) offers superior interpretability, accuracy,
and efficiency. With GBDT, decision trees are built additively rather than independently as in
typical random forests. It trains each tree by fitting the residual errors from the prior iteration,
resulting in faster and more precise predictions. Introduced in 2017, LightGBM (LGBM) is
an effective GBDT implementation designed to handle large-scale data with high feature
dimensionality efficiently [96]. Model performance is enhanced in terms of quicker training
durations, less memory use, more accuracy, and better scalability by using tree-based learning
algorithms in LGBM, a distributed and extremely effective gradient boosting framework [97].
Motivated by these advantages, the metamodel used in this study to forecast building energy
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performance is LGBM. Equations (1) and (2) demonstrate how the mean absolute percent-
age error (MAPE) and coefficient of determination (R2) are used to quantitatively assess the
performance of the LGBM-based prediction:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(1)

MAPE =
1
n ∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (2)

where yi is the predicted value, ŷi is the measured value, and yi is the mean of the measured value.
Gradient-based One-side Sampling (GOSS) and Exclusive Feature Bundling (EFB)

are two novel concepts that LGBM integrates. During instance down-sampling based on
gradients, GOSS, a unique sampling technique, randomly discards instances with lesser
gradients and keeps examples with bigger gradients, resulting in a more accurate estima-
tion of information gain with a significantly reduced data size. EFB successfully avoids
unnecessary actions on zero feature values by lowering feature dimensions, recognizing
and combining mutually incompatible features into fewer dense features, and doing so with
almost lossless Ly. Algorithms related to LGBM can achieve good prediction performance
with a much faster and simpler training process. The mean absolute percentage error
(MAPE) and coefficient of determination (R2) are used to objectively assess the performance
of the LGBM-based prediction [98]. The goodness of fit is measured by R2, and scale
independence and interpretability are provided by MAPE, which is the average absolute
percentage error. As in Equation (3), higher R2 values nearer one and lower MAPE values
nearer zero denote better prediction performance.

x∗ = argmax
x∈X

f (x) (3)

where f (x) is the objective function.
Furthermore, finding an improved hyperparameter setup helps create a machine learning

model that performs better in predictions. In this sense, optimizing model design now
heavily depends on hyperparameter adjustment. Conventional manual parameter searches
can be time-consuming and tedious. An automated hyperparameter optimization (HPO)
procedure is required to solve this problem and improve the machine learning model’s
reproducibility and usefulness while requiring fewer human interactions [99]. Surprisingly,
Bayesian optimization (BO) has become a potent hyperparameter tuning method that makes it
possible to effectively optimize costly black-box functions globally [100]. LGBM incorporates
two innovative concepts: Exclusive Feature Bundling (EFB) and Gradient-based One-side
Sampling (GOSS). The estimated variance Ṽj(d) is obtained from Equation (4):

∼
V jd =

1
n

(
∑ i∈A

xij≤d
gi + (1 − b)∑ i∈B

xij≤d
gi

)
2

njjd
+

(
∑ i∈A

xij>d
gi + (1 − b)∑ i∈B

xij>d
gi

)
2

njrd
(4)

where the sum of gradients throughout dataset B with occurrences in lower gradients is
standardized using the coefficient (1 − a)/b. Using a Gaussian process to assess surrogate
uncertainty, Bayesian optimization, as opposed to random and grid searching, builds a
probability model of the objective function. Its distinctive features include its ability to save
historical assessments and rapidly determine, in fewer configuration space iterations, the
ideal set of hyperparameters.
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3.2. Multi-Objective Optimization and Explainable Machine Learning for Green Building Design

The metamodel-determined nonlinear relationship between inputs and outputs re-
mains incompletely accounted for by the LGBM model, notwithstanding its exceptional
predictive capability. To generate an explainable machine learning solution, a method
known as LIME (Local Interpretable Model-agnostic Explanations), which was introduced
in 2017, measures each feature’s contribution to the LGBM-based prediction [101,102].
Managers can have more faith in the forecast findings because of LIME’s ability to provide
insights into the operation of the LGBM model. When it comes to providing attribution
values that are locally accurate, consistent, and unique based on game theory, LIME out-
performs traditional feature significance approaches [103,104]. The LIME value, which
may be computed, takes the meaning of a feature value’s marginal contribution over all
conceivable feature combinations [105].

ϕi = ∑S⊆N∖{i}

(
|S|!(M−|S|−1)!

M!

)
[ fx(S ∪ {i})− fx(S)] (5)

where S is the subset of input features that excludes the ith feature, fx (S ∧ (i)) is the model
output with the ith feature, and fx(S) = E(f (x)|xS) is the model output without the ith feature
(the expected value of the function conditioned on S). However, the computation efficiency
of calculating E(f (x)|xS) is low, and the LIME value calculation is exponentially complex.
Therefore, a speedier estimate version called tree LIME was created, which is better able to
understand how each feature influences the outcome and comprehend tree-based machine
learning models like LGBM. Tree LIME reduces the computational complexity from O(TL2M)
to O(TLD2) when T is the number of trees, L is the maximum number of leaves a tree may
have, and D is the maximum depth of the tree. The integration of LIME into LGBM facilitates
the advancement of traditional machine learning models towards more transparency, hence
augmenting the model’s usefulness and decision-making trust.

Multi-objective optimization (MOO) can also be defined as the problem of finding
the most effective data-driven design strategies for green buildings. Energy consumption,
carbon emissions, and interior thermal comfort are three goals connected to green buildings
that may be optimally optimized at the same time by applying the MOO process to the
established BO-LGBM metamodel. The MOO issue and optimization constraints may be
stated mathematically as follows:

minF(X) =
[

fenergy (X), fcarbon (X), fcomfort (X)
]T

subject to X ∈ D ⊆ Rn, X = (x1, x2, . . . , x12)
T (6)

where X is a feature vector made up of twelve variables x from a feasible space D, and
F(X) stands for the prediction function from the BO-LGBM model. There is not a single
optimal answer to a MOO problem. Alternatively, it is possible to acquire the entire set of
Pareto-optimal solutions x′ = (x′1. . ., x′k), which satisfy:

fi(x) ≤ fi

(
x’
)
∀i ∈ {1, . . . , k} ∧

(
fi(x) < fi

(
x’
)
∃i ∈ {1, . . . , k}

)
(7)

As shown in Figure 2, these Pareto front-based solutions are non-dominated, which
means they outperform every other solution x = (x1. . ., xk) in the remaining search space.
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Figure 2. A Pareto front schematic diagram.

4. Case Study on Practical Implementation
4.1. Building Information Modeling and Simulation Configuration

The proposed technique’s effectiveness is validated through a case study involving a
residential building for energy efficiency prediction and optimization in green buildings.
First, using Autodesk Revit modeling software (2020) and architectural drawings, a 3D
model of the planned building is created, as shown in Figure 3. The primary structural
framework comprises reinforced concrete, incorporating elements such as doors, floors,
walls, ceilings, columns, and other critical components.

Figure 3. (a) Three-dimensional (3D) (b) Side view of the specified building’s Revit model.

The office arrangement is the same on every floor and includes familiar places for
teaching, toilets, lobbies, corridors, staircases, and more. The measurements of the construc-
tion area are 14.1 m in height, 29.0 m in length, and 41.1 m in width, totaling 2381.8 m2. A
centralized HVAC system that is powered by electricity can control the temperature inside.
Specifically, by combining multidisciplinary data and fundamental building characteristics
into a well-structured model, BIM-based simulation highlights its benefits. The efficacy
of BIM-based simulation hinges on robust interoperability and tight integration between
BIM platforms and simulation tools. These factors are governed by the seamlessness of
data exchange and communication across various BIM-based applications. A data-sharing
standard called Green Building XML (gbXML) is used to record building geometry and
performance measurements in areas such as thermal characteristics. A common format for
model import, this widely used schema is used by many sophisticated programs, such as
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DesignBuilder. The newly produced gbXML file may accurately and rapidly represent any
changes made in DesignBuilder and any subsequent simulation results when a building
parameter in the Revit model is changed. This eliminates the need to restart the modeling
process using the graphical user interface (GUI). This methodology for interacting with data
provides prospective knowledge and methodical feedback for data-driven improvement
and prediction. It may be used to investigate lighting, natural ventilation, energy, carbon
emissions, and other topics. DesignBuilder, a building energy simulation program that
combines a powerful simulation engine with a simple user interface, is used to conduct a
complete and accurate BIM-based energy simulation on the target building. The 3D Revit
model is first converted to the gbXML format and then loaded directly into DesignBuilder
for space division and parameter property assignment. As the foundation for the next data-
driven study, Figure 4 presents the derived gbXML format setup and simulation model.
One other crucial step is to establish several fundamental energy simulation parameters
based on the imported model. DesignBuilder has correctly established six building vari-
ables pertaining to power, temperature, and occupancy, as shown in Table 2. These factors
fulfil the Design Standard for Energy Efficiency of Public Buildings (GB 50189–2015) [106]
as well as the actual project needs {Guo, 2022 #766}.

Figure 4. Procedure for exporting Revit: (a) configure the gbXML format; (b) import the DesignBuilder
simulation model.

Table 2. Enhanced building parameters.

Parameter Value Unit Description

Average Outside Temperature 20 ◦C Baseline outdoor temperature
Design Temperature Indoors 25 ◦C Target indoor temperature

Power Density of the
Equipment 11.77 W/m2 Power usage of equipment

per square meter

Indoor Lighting Power 5 W/m2 per 100 L× Lighting power usage per lux
per square meter

Occupancy Density 0.11 people/m2 Number of people per square meter
Fresh Air Volume 8 L/s per person Air flow rate per person

4.2. Preparing Datasets from Building Energy Models

An evaluation index system, such as the one shown in Figure 5, must be meticulously
created to evaluate the building’s energy performance. Empirically, a green building’s total
energy performance may be summarized in three specific goals related to two primary
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areas. The goals of energy consumption and CO2 emissions are taken into consideration
from an environmental perspective.

Figure 5. Building energy performance study using an assessment index methodology. The acronym
for the coefficient of performance is CoP.

The goal of the discomfort degree, on the other hand, is to determine the level of
interior thermal comfort. This is the quantity of uncomfortable hours that occur when
indoor air temperature rises above the summer or winter thermal comfort range constraints.
The interior temperature is calculated by DesignBuilder using a 0.5 h time step. Determining
the influential factors for green building standards involves considering three types of
influential elements, each with several measured subfactors for the best possible design of
energy-efficient structures, which have a substantial impact on building energy efficiency.
Appropriate modifications of these significant variables are essential for managing the
energy usage and thermal comfort of a structure. The building envelope, which separates
the interior from the outside and controls the internal temperature and the functioning of
the mechanical system, is the first category. Building apertures are included in the second
category since they are thought to be weak spots in the structural thermal envelope. It is
preferable to enhance interior thermal quality with a well-designed glazing system since
doors and windows give off a substantial amount of heat. The major energy users in a
building fall under the third group, which is HVAC equipment. Proper HVAC settings
can significantly reduce building energy consumption while improving indoor air quality,
comfort, and energy efficiency.
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4.3. Preprocessing and Data Generation

Several simulations are run in DesignBuilder to explain the energy performance of
buildings under several scenarios, relying on the evaluation index system. Interestingly, a
total of twelve identified relevant factors are subjected to the orthogonal test, with the goal
of generating a variety of factor combinations that would yield representative and diverse
data. Table 3 lists the factor setting values for each. It includes details such as the external wall
and floor U-values, which determine the rate of heat transfer through the building envelope.
The infiltration rate represents the amount of air leakage impacting heating and cooling loads.
Glazing properties like U-value and solar heat gain coefficient (SHGC) influence heat gain
and loss through windows. Other factors like the window-to-wall ratio, heating and cooling
system efficiencies, and temperature set-points for heating, cooling, and natural ventilation
are also listed. Each feature has a description, units, range of values, and a baseline value,
allowing for the analysis and optimization of building energy consumption.

Table 3. Expanded orthogonal test settings.

Feature Description Unit Values Baseline Added Notes

x1 External U-Value of the
Wall W/m2-K

0.14, 0.16, 0.67,
0.69, 1.10 0.14 Impact on thermal

performance

x2 U-Value of the External
Floor W/m2-K 0.21, 0.30, 0.38, 0.80 0.38 Affects ground heat loss

x3 Infiltration Rate m3/hm2 0, 3, 6, 9, 12, 15, 18,
21, 24, 27, 30 12 Air changes per hour

x4 U-Value of Glazing W/m2-K 1.88, 6.66 1.99 Thermal transmittance

x5 Ratio of the Glazing
SHGC Window to Wall - 0.25, 0.40 0.40 Solar heat gain

coefficient

x6 Outside Window
Accessible Rate % 20, 40, 60 40 Window area as a

percentage of wall area

x7
Heating Set-point

Temperature for Heating
System CoP

% 0, 25, 35 20 Ventilation effectiveness

x8 Cooling System CoP - 0.50 to 5 in 0.5
increments 2.0 Efficiency of heating

system

x9 Set-point Temperature
for Cooling - 0.5, 2.0, 3.5, 5.0 2.0 Efficiency of cooling

system

x10 Temperature Set-point
for Natural Ventilation

◦C 16, 18, 20, 22, 24 16 Indoor heating
temperature set-point

x11 Wall’s External U-Value ◦C 22, 24, 26, 28 24 Indoor cooling
temperature set-point

x12 U-Value of the External
Floor

◦C 10, 15, 20, 25, 30 20 Natural ventilation
activation temperature

The feature type and its range of values define these values. The orthogonal test
of building energy consumption may be used to find 248 potential factor combinations
related to building energy performance. Figure 6, which shows each point as a potential
factor combination, shows the excellent representativeness of these tests with an equal
number of test combinations for each prospective value of the heating system CoP. Using
the proposed methodology, it is also possible to identify the 248 sets of simulations that
produced the highest building energy efficiency as the benchmark for comparing the
optimization impact. The optimal location (0, 0, 0) and the shortest distance (627,511.7)
discovered in the simulation results are the origins of the baseline shown in Table 4. It
provides insight into the central tendency (mean) and spread (standard deviation) of each
variable, as well as the minimum, maximum, and quantile values. For instance, the external
wall U-value (x1) has a mean of 0.3 W/m2-K, indicating the average thermal transmittance,
with a standard deviation of 0.3, reflecting the variability in the data. The infiltration rate
(x3) has a mean of 12.7 m3/hm2, with values ranging from 0 to 24 m3/hm2. The statistics
for glazing properties (x4, x5), the window-to-wall ratio (x6), and system efficiencies (x8,
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x9) provide a comprehensive understanding of the different factors influencing energy
consumption. Additionally, it includes information on temperature set-points for heating
(x10), cooling (x11), and natural ventilation (x12), allowing for an analysis of their impact
on energy usage. The goal of green construction is more likely to be accomplished when the
target building is constructed with the feature configuration that the baseline offers. The
optimization challenge therefore looks for the best design approach to reduce the distance
even more, to less than 627,511.7. The building energy dataset produced by the BIM-based
simulation ultimately has 248 valid lines, 3 output variables, and 12 input variables thanks
to the assistance of the orthogonal test and assessment index system. This provides a strong
database for the technical application of building green.

Figure 6. Orthogonal test combination settings diagram.

Table 4. Improved statistical overview of important elements for building energy efficiency.

Variable Mean Std. Dev. Min. Max.

Twenty-
Five

Percent
Quantile

Seventy-
Five

Percent
Quantile

Description

x1 3.0 0.3 0.12 1.05 0.12 0.62 Wall U-value variance and
its impact

x2 0.4 0.2 0.21 0.8 0.3 0.8 Floor U-value impact on
floor insulation

x3 12.7 7.2 0 24 6 18 Range of infiltration rates

x4 4.4 2.4 1.99 6.81 1.99 6.81 Glazing U-value impact on
heat loss

x5 0.3 0.1 0.25 0.4 0.25 0.4 SHGC, indicates solar gain

x6 40.2 15.9 20 60 20 60 Window-to-wall ratio effects on
lighting and heating

x7 21.3 15.3 0 40 0 40 Open rate of external windows
x8 2.7 1.4 0.5 5 1.5 4 Efficiency range of heating systems
x9 2.9 1.5 0.5 5 2 3.5 Cooling system CoP variability
x10 18.8 2.5 16 24 16 20 Variability in heating set-point

x11 24.5 2.0 22 28 22 26 Cooling temperature
set-point range

x12 20.0 7.4 10 30 15 25 Natural ventilation thresholds
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A significant amount of simulated information is examined to ensure dataset integrity
for a forecasting job. Table 5 contains a statistical overview of the generated dataset. The
search spaces and ideal values are given for different hyperparameters in a machine learn-
ing model that forecasts discomfort levels, energy utilization, and CO2 emissions. The
num_leaves hyperparameter controls the maximum number of leaves in the decision trees,
with an optimal value of 45 for energy prediction, 100 for CO2 prediction, and 65 for discom-
fort prediction. The max_depth hyperparameter sets the maximum depth of the trees, with
optimal values of 8, 11, and 5 for energy, CO2, and discomfort, respectively. The minimal
total of instance weights needed in a child node is determined by the min_child_weight
hyperparameter, whose ideal values vary across the various target variables from 5 to 101.
Moreover, a correlation matrix produced by calculating the Pearson correlation coefficients
between input pairs is shown in Figure 7. This indicates that no dataset contains highly
related data with absolute Pearson values lower than 0.5. The correlation matrix heatmap
reveals intricate relationships among the variables, with shades of red indicating positive
correlations, blues representing negative correlations, and lighter colors suggesting little to
no correlation. This visual representation highlights potential multicollinearity issues and
variable dependencies, serving as a valuable tool for initial data exploration and identifying
influential factors within the dataset.

Table 5. Enhancing the LGBM algorithm’s hyperparameters through Bayesian optimization.

Hyperparameter Search
Space Energy (y1) CO2 (y2) Discomfort

(y3) Notes

num_leaves [10, 100] 50 100 70 Optimal number
of leaves

max_depth [5, 11] 8 11 5 Max. tree depth
for boosting

min_child_weight [5, 300] 104 7 36
Minimum sum of
instance weight

needed in a child

Figure 7. Matrix of correlation coefficients for the selected influential elements.



Energies 2024, 17, 3295 19 of 36

4.4. Metamodeling for Building Energy Performance Prediction

Based on a thorough understanding of the dataset created by the BIM-based simula-
tion, BO-LGBM is a metamodel that simulates the nonlinear connections between major
components and energy performance objectives. The three goal targets, which reflect
building energy performance, are predicted by three distinct BO-LGBM prediction models.

4.4.1. Data Splitting and Preprocessing

The complete dataset is first separated into training and testing sets in a 3:1 ratio.
For fitting the model, 164 random subsets of data are chosen as the training set, and 96
observations are allocated to the test set. Data shuffling can also help to reduce overfitting
and increase the model’s capacity to generalize.

4.4.2. Hyperparameter Optimization

The process of optimizing hyperparameters to improve the prediction performance of
the LGBM model, which is greatly impacted by its hyperparameter settings, is automated
by the Bayesian optimization (BO) technique. In this the leaf-wise tree growth method,
which is renowned for its fast convergence speed, the primary hyperparameters considered
are the total number of leaves required to control the complexity of the model, the greatest
tree depth that impacts the ideal leaf count, and the smallest number of information points
in a leaf that will avoid overfitting in leaf-wise trees. Table 6 displays the configuration
space for LGBM hyperparameters, with a maximum of fifteen iterations allowed. The
ability to forecast energy consumption, CO2 emissions, and discomfort levels is evaluated
using the Bayesian optimization with LightGBM (BO-LGBM) model. The model performs
exceptionally well on the training set for energy consumption prediction, with an R-squared
value of 0.9999 and an extremely low mean absolute percentage error (MAPE) of 0.0001%.
The test set performance is still very good, with an R-squared of 0.9975 and a MAPE
of 0.33%. Similar high accuracy is observed for CO2 emissions and discomfort degree
predictions on both training and test sets. Bayesian optimization is an effective method
for determining the appropriate values of these three hyperparameters inside this preset
search space. The ideal hyperparameter settings via Bayesian optimization are shown
in Table 7, which may improve the LGBM model’s prediction accuracy. The enhanced
parameter settings are used for the AGE-MOEA algorithm, a multi-objective evolutionary
algorithm used for optimization. The population size is set to 20, and the algorithm runs
for 100 generations. The crossover operation employs the Simulated Binary Crossover
(SBX) with an eta value of 15 and a probability of 0.9. Mutation is performed using the
Polynomial Mutation (PM) with an eta value of 20. The number of offspring per generation
is dynamically determined, and a seed value of 1 is used for reproducibility purposes.

Table 6. Reevaluation of BO-LGBM-centered forecasting in training and testing data.

Unbiased Dataset R2 MAPE Additional
Metric

Energy
consumption Training set 0.9999 0.0001% -

Energy
consumption Test set 0.9975 0.33% -

CO2 emissions Training set 0.9999 0.0002% -
CO2 emissions Test set 0.9340 1.14% -

Discomfort
degree Training set 0.9999 0.0256% -

Discomfort
degree Test set 0.9914 2.20% -
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Table 7. Optimized algorithm parameter setups for the AGE-MOEA process.

Parameter Value Description

pop_size 25 Population size for the algorithm
n_gen 100 Number of generations

crossover SBX (eta = 20, prob = 0.8) Crossover type and parameters
mutation PM (prob = None, eta = 25) Mutation type and parameters

n_offsprings None Number of offspring per generation
(dynamic setting)

seed 1 Seed for random number generator
to ensure reproducibility

4.4.3. Performance Evaluation

These potential metamodels allow for the following analysis of the building energy
efficiency forecast results:

Prediction Performance Evaluation

The building energy performance forecasts made by the three BO-LGBM models are
very accurate. The predicted values and the simulated values from the training and test sets
are plotted in Figure 8, which shows a good agreement with the results from the BIM-based
energy simulation. A strong performance is shown by the comprehensive metric analysis on
several measures. The training and testing datasets for energy consumption show remarkably
high R2 values, which indicate good predictive power and correlation, together with low
MAPE values that imply little error. The energy consumption standard deviation and variance
figures are likewise quite low, indicating consistency and reliability in the projections. In
a similar vein, CO2 emissions show excellent R2 values, despite a minor decline in testing
dataset prediction accuracy. High R2 values for the discomfort degree parameter indicate great
predictive power; nevertheless, a discernible difference between the training and testing datasets
raises the possibility of overfitting. Even though MAPE values for energy consumption are
lower than those for CO2 emissions and discomfort level, they are still within acceptable bounds.
For CO2 emissions and the discomfort degree, the forecast variability is somewhat larger, but
generally, the model performs reliably across all assessed parameters.

Figure 8. Error in prediction for training and test sets.
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The three targets (y1–y3) have MAPE values of 0.33%, 1.14%, and 2.13%, respectively. The
prediction assessment metrics (R2 and MAPE) for the training and test sets are also included in
Table 8. The improved multi-objective optimization (MOO) overcomes the problem of being
unable to input feature constraints. It defines the permissible value ranges for each variable,
ensuring that the optimization algorithm explores solutions within these specified bounds.
For instance, the external wall U-value (x1) can range from 0.12 to 1.05 W/m2-K, while the
external floor U-value (x2) is constrained between 0.21 and 0.80 W/m2-K. Similarly, limits are
imposed on the infiltration rate (x3), glazing properties (x4, x5), window-to-wall ratio (x6), and
external window open rate (x7). The constraints also encompass the ranges for heating and
cooling system efficiencies (x8, x9), as well as temperature set-points for heating (x10), cooling
(x11), and natural ventilation (x12). These input feature constraints ensure the optimization
problem explores realistic and feasible solutions within practical bounds. The BO-LGBM
models provide R2 values more than 0.934 and MAPE values less than 2.13%, demonstrating
how well autonomous hyperparameter adjustment under Bayesian optimization contributes
to the three metamodels’ high fitting degree. The metamodel performs best at forecasting
energy consumption (y1) out of the three objectives; its MAPE is 1.80% less than that of
assessing the discomfort level (y3) and CO2 emissions (y2).

Table 8. Updated input feature constraint setting for the MOO issue.

Variable Value Range Description

x1 (0.15, 1.15) External Wall U-Value Range
x2 (0.25, 0.75) Range for External Floor U-Value
x3 (0, 24) Infiltration Rate Limits
x4 (1.99, 6.81) Range for Glazing U-Value
x5 (0.25, 0.40) Solar Heat Gain Coefficient Range

x6 (0, 60) Window-to-Wall Ratio
Permissible Range

x7 (0, 40) External Window Open Rate Range
x8 (0.5, 5) Range for Heating System CoP
x9 (0.5, 5) Cooling System CoP Range

x10 (16, 24) Heating Set-point
Temperature Range

x11 (22, 28) Cooling Set-point
Temperature Range

x12 (10, 30) Natural Ventilation Set-point
Temperature Range

4.4.4. Comparative Analysis

When compared to XGBoost (XGB), another well-liked GBDT method for building energy
performance forecasts, the BO-LGBM shows superior accuracy. An experiment is conducted to
evaluate the performance of the XGB and LGBM algorithms using the Bayesian optimization
technique. In Figure 9, a scatter plot is used to evaluate and analyze the prediction accuracy of
the two potential methods on the set of test data. The findings show that when compared to
the BO-XGB approach, the BO-LGBM-based prediction yields a higher R2 value and a smaller
mean absolute percentage error (MAPE). When contrasted against simulated data, an analysis of
the three factors (energy consumption, CO2 emissions, and discomfort level) yields informative
findings about the performances of the BO-LGBM and BO-XGB models. The scatter plot of energy
consumption indicates that there is close agreement between the two models for this specific
measure, as indicated by the tight clustering of points around the diagonal line. The discomfort
level and CO2 emissions show a similar trend, indicating consistent performance across all criteria.
Plots show little deviation from the diagonal line, suggesting that both models produced accurate
predictions. In general, the comparison shows that BO-XGB and BO-LGBM perform comparably
across the parameters that are assessed, demonstrating their efficacy in modeling and forecasting
discomfort levels and energy-related measures. The models’ dependability and resilience in
simulating and evaluating intricate datasets are highlighted by their consistent performance.
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Figure 9. A scatterplot comparing the performance of BO-LGBM with BO-XGB.

The BO-LGBM model outperforms the BO-XGB model in terms of R2 (4.27%, 1.46%,
and 7.26%), as well as MAPE (351.52%, 33.33%, and 232.86%). BO-LGBM is going to serve
as the metamodel for the next MOO challenge in green building design because of its
exceptional predictive power. The full MAPE distribution across data intervals of the
simulation data is given in Figure 10, which shows how the BO-LGBM model continuously
outperforms the BO-XBG model in terms of prediction performance throughout all data
intervals. Three metrics are compared between actual and expected values: energy, CO2
emissions, and discomfort. The results are displayed as a grouped bar plot with error
bars overlaying it to show two possibilities. The lower mean values in Scenario 1 indicate
that the expected values for energy, CO2, and discomfort are somewhat lower than in
Scenario 2. Error bars show the variation in expected values for each scenario; Scenario
2 shows a significantly broader dispersion. Both scenarios nearly match the actual mean
values despite these deviations, demonstrating the efficacy of the prediction models. The
performance of each scenario across several metrics is clearly shown by the grouped bar
plot, allowing for comparisons and insights into the models’ predictability and accuracy.

Figure 10. Analyzing the prediction performance of BO-LGBM using data intervals. The symbols in the
figure, such as red squares or green squares, represent different scenarios in the grouped bar plot with error
bars. Red Squares: These may represent the predicted values for Scenario 1. The red color differentiates
Scenario 1’s predicted values from the actual values. Green Squares: These may represent the predicted
values for Scenario 2. The green color is used to distinguish Scenario 2’s predicted values from the others.
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4.4.5. Feature Importance Analysis

The HVAC category characteristics are more significant in the building energy perfor-
mance prediction, according to the explainable machine learning technique. Specifically,
the well-known BO-LGBM model is explained naturally using the LIME technique, which
enhances machine learning interpretation and transparency while imposing crucial de-
cisions on green building design. The heatmap that was developed to demonstrate the
values of LIME for a small dataset comprises six features and three metrics, as shown
in Figure 11. Each cell in the heatmap represents the matched LIME value for a certain
feature–metric combination. The color intensity of the heatmap shows how much and
in which direction each feature affects the relevant metric’s forecast. Metrics are shown
along the y-axis, labeled as Metric 1 to Metric 3, while features are shown along the x-axis,
designated as Feature 1 to Feature 6. Warmer colors indicate stronger positive impacts
and cooler colors indicate higher negative impacts in the heatmap’s color gradient, which
is specified by the ‘parula’ colormap. This visual interpretation of the LIME values is
provided. Model interpretation and feature analysis are made easier by this representation,
which helps to grasp the relative value and contribution of each feature to the prediction of
various metrics. The red dots indicate greater values of the heating set-point temperature
(x10), which are strongly positively correlated with the model’s prediction skills. On the
other hand, the model’s ability to forecast is negatively impacted by lower values of this
feature, which are represented by the blue dots. Raise the heating set-point temperature,
and the effect is essentially more energy use and CO2 emissions. Conversely, there appears
to be an overall negative trend in the association between the cooling set-point temperature
(x11) and the goal variable y3 (pain degree), indicating that lower degrees of discomfort are
associated with higher cooling set-point temperatures.

Figure 11. Mean LIME value and LIME plot of feature importance.

Using sample convergence data, the graphic illustrates the convergence behavior
of an AGE-MOEA (Adaptive Genetic Algorithm-based Multi-Objective Evolutionary Al-
gorithm) [107]. The generation number is shown by the x-axis, while the goal function
value is represented by the y-axis. The mean objective function value across 100 gener-
ations and 10 separate runs is shown by the dark green line in Figure 12. Plotting the
method’s convergence across several generations shows how well the algorithm optimizes
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the objective function. One may evaluate the algorithm’s stability and rate of convergence,
which are crucial elements in determining how well it works, by looking at the curve’s
trend. By helping to comprehend the efficacy and efficiency of the optimization process,
the visualization directs future iterations and adjustments to the evolutionary algorithm.
The two most influential characteristics, with a much bigger mean LIME value than other
components, are the heating (x10) and cooling (x11) set-point temperatures. These findings
imply that, to maximize building energy performance and meet sustainability objectives,
these two HVAC system components must be given top priority [108,109].

Figure 12. Convergence of the AGE-MOEA algorithm. The red plus signs in the box plot represent
outliers in the data. In a box plot: The central line in each box represents the median of the data. The
top and bottom edges of the box represent the 25th (Q1) and 75th (Q3) percentiles, respectively. The
whiskers extend to the smallest and largest values within 1.5 times the interquartile range (IQR) from
the lower and upper quartiles. Data points that fall outside this range are considered outliers and are
marked with red plus signs.

4.5. Optimizing Building Energy Performance through Multi-Objective Evolutionary Algorithms

The three well-established BO-LGBM metamodels were immediately subjected to
the AGE-MOEA approach to solve the multi-objective optimization (MOO) problem and
identify the optimal designs for green buildings. As part of the optimization procedure, the
value ranges for the twelve pertinent components (Table 9) and the AGE-MOEA algorithm
parameters (Table 10) were established. Many MOO algorithms are efficient in decreasing a
total distance measure while maximizing energy consumption, greenhouse gas emissions,
and comfort levels. The baseline scenario serves as a reference point. The NSGA-II and
NSGA-III algorithms achieve improvements of 8.59% and 9.26%, respectively, over the
baseline. The MOEA/D and C-TAEA algorithms further enhance the optimization rate to
11.79% and 12.53%. However, the AGE-MOEA algorithm emerges as the top performer,
delivering a 13.43% optimization rate with the lowest aggregate distance of 543,245.7,
indicating the most favorable trade-off among the conflicting objectives. The AGE-MOEA
algorithm’s best solution’s feature values produce the lowest aggregate distance of 543,245.7.
The solution suggests an external wall U-value of 0.21 W/m2-K, an external floor U-value
of 0.56 W/m2-K, and an infiltration rate of 13 m3/hm2. The solar heat gain coefficient is
0.34 and the U-value is 5.96 W/m2-K for the glazing. The window-to-wall ratio is set at
12%, with an external window open rate of 30%. The heating and cooling system efficien-
cies are 3.7 and 4.8, respectively, while the temperature set-points are 16.3 ◦C for heating,



Energies 2024, 17, 3295 25 of 36

27.4 ◦C for cooling, and 25.5 ◦C for natural ventilation. AGE-MOEA iteratively looked
for locations that could be close to the perfect solution inside the search space. Figure 13
depicts the convergence behavior of the three metamodels, indicating the optimization
process achieved a convergence point after roughly 20 generations. The Pareto front is
generated in an ambiguous circumstance of AGE-MOEA (Multi-Objective Evolutionary
Algorithm-based Adaptive Genetic Algorithm) optimization. Plots of fifty randomly gener-
ated solutions, each with two goal values, are presented. The trade-off connection between
the two objectives is shown in a scatter plot, where the answers are indicated by light blue
markers. The Pareto front may be used to identify non-dominated solutions that provide
the best possible trade-offs between conflicting goals. Some solutions also have labels at-
tached to them to show where they fall on the Pareto front. In multi-objective optimization
issues, this visualization helps to discover the most promising solutions that offer the best
compromise between competing objectives, enabling well-informed decision-making. The
three metamodels are subjected to four additional well-known MOO algorithms (NSGA-II,
NSGA-III, MOEA/D, and C-TAEA) to compare their optimization performance [110,111].

Table 9. Detailed description of candidate MOO algorithm optimization results.

Algorithm Energy
(kWh) CO2 (kg) Discomfort

(hrs) Distance Optimization
Rate

Baseline 558,128.3 286,797.9 3258.5 627,511.6 0.00%
NSGA-II 513,253.5 256,111.7 2529.9 573,610.3 8.59%
NSGA-III 510,455.2 252,290.7 2551.0 569,404.6 9.26%
MOEA/D 496,591.3 244,446.9 2662.5 553,501.8 11.79%
C-TAEA 491,864.7 243,600.4 2679.6 548,889.1 12.53%

AGE-MOEA 488,521.2 237,603.6 2735.1 543,245.7 13.43%

Table 10. Characteristic values of the optimal solution ascertained by the AGE-MOEA method.

Distance x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

534,126.8 0.25 0.58 15 5.89 0.35 13 35 3.9 4.6 17.1 25.9 26.1

Figure 13. Uncertain scenario: Pareto front of AGE-MOEA optimization.
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(1) These five MOO algorithms produce Pareto front solution sets, as shown in
Figure 14, which indicate optimum solutions that concurrently decreased energy use,
CO2 emissions, and pain levels. Similarity in the relative placements and sizes of the
optimum front solution sets suggests that the evolutionary algorithms share a computa-
tional logic. The association between the objectives is graphically represented by the Pareto
fronts: the degree of discomfort has a negative correlation with the other two objectives,
but energy usage rises with CO2 emissions. Due to its closeness to the ideal location (0,0,0),
the optimal solution (highlighted in red) has an optimization rate of 13.43%. Table 11 offers
data-driven techniques for managing the development of green buildings and optimizing
sustainability potential by presenting the matching ideal profile of significant components.
The sensitivity analysis assesses how different architectural factors affect CO2 emissions
and energy use. Energy consumption and CO2 emissions are significantly influenced by
parameters such as the exterior wall U-value (x1), infiltration rate (x3), glazing U-value
(x4), window-to-wall ratio (x6), and system efficiencies (x8, x9). Additional variables with a
considerable influence are temperature set-points (x10, x11), the solar heat gain coefficient
(x5), and the exterior floor U-value (x2). The exterior window open rate (x7) and natural
ventilation set-point (x12) are two examples of parameters that affect thermal comfort yet
have a negligible effect on energy usage and emissions.

Figure 14. Optimization percentages of Pareto front solutions and comparison of optimization
percentages between scenarios.

(2) The AGE-MOEA algorithm yields greater gains in building energy efficiency and
realizes minimal energy usage, CO2 releases, and more comfortable indoor conditions than
the other four candidate algorithms [112]. It also proves to be more appropriate for the
existing metamodels. Every one of the five methods attains an optimization rate higher than
8.59%. In descending order, the algorithms can be ranked as follows: NSGA-III > NSGA-II
> AGE-MOEA > C-TAEA > MOEA/D [113]. However, due to trade-offs, the optimal
performance in all three target dimensions is not guaranteed by a higher optimization
rate. A cost–benefit analysis for various upgrades to building systems is carried out,
considering initial costs, annual savings, payback periods, and CO2 reductions [114].
Insulation upgrades require an initial investment of USD 20,000 but yield USD 3000 in
annual savings, with a payback period of 6.67 years and a potential CO2 reduction of
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15,000 kg/year. High-efficiency HVAC systems cost USD 30,000 upfront but offer USD
4500 in annual savings, a 6.67-year payback, and a 20,000 kg/year CO2 reduction. Window
replacements have a USD 15,000 initial cost, USD 2000 annual savings, a 7.5-year payback,
and a 10,000 kg/year CO2 reduction. Finally, solar panels require a USD 25,000 investment
but provide USD 5000 in annual savings, a 5-year payback, and a 25,000 kg/year CO2
reduction, as shown in Table 12.

Table 11. Sensitivity analysis for building parameters.

Parameter Impact on Energy
Consumption

Impact on CO2
Emissions Notes

x1 (External Wall
U-Value) High Medium Strongly influences

insulation performance

x2 (External Floor
U-Value) Medium Low

Less impact due to
ground insulation

properties

x3 (Infiltration Rate) High High Direct impact on heating
and cooling loads

x4 (Glazing U-Value) High Medium Affects heat loss and gain
through windows

x5 (SHGC) Medium Low
Impacts solar heat gain
but less effect on overall

emissions

x6 (Window-to-Wall
Ratio) High High

Larger ratios increase
surface area for heat

transfer

x7 (External Window
Open Rate) Low Low

Affects natural
ventilation, with minor

effect in controlled
environments

x8 (Heating System CoP) High High
Efficiency directly

reduces energy use and
emissions

x9 (Cooling System CoP) High High
As above, efficiency is

crucial for lower energy
consumption

x10 (Heating Set-point
Temperature) Medium Medium Affects heating duration

and intensity
x11 (Cooling Set-point

Temperature) Medium Medium Impacts cooling system
operation times

x12 (Natural Ventilation
Set-point) Low Low

Mostly affects comfort,
with less effect on energy

consumption

Table 12. Cost–benefit analysis of upgrades to building systems.

Upgrade Item Initial Cost Annual Savings Payback Period
(Years)

CO2 Reduction
(kg/Year)

Insulation
Upgrade USD 20,000 USD 3000 6.67 15,000

High-Efficiency
HVAC USD 30,000 USD 4500 6.67 20,000

Window
Replacement USD 15,000 USD 2000 7.5 10,000

Solar Panels USD 25,000 USD 5000 5 25,000
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(3) The optimization performance is significantly impacted by the two most notable
attributes discovered by the LIME XML method: the cooling set-point temperature (x11)
and the heating set-point temperature (x10). The optimization rate when a single feature
is changed alone is shown in Figure 14, showing that the relevance of each feature in
the metamodel correlates with its contribution to the optimization improvement. While
changing less significant elements like glazing-SHGC (x5) and exterior window openings
(x7) has a limited optimization effect, changing the top factors is essential for moving the
solution closer to the optimal point.

(4) The investigations depicted in Figure 15 involve the amalgamation of the two most
prominent attributes with additional noteworthy attributes. Just modifying x10 and x11
for the AGE-MOEA algorithm might produce around 57% of the intended optimization
result. Simultaneously adjusting x11 - x10 - x10 or x8 - x1 - x11 can yield an optimization
rate of more than 9%, demonstrating how easy it is to meet energy optimization goals.
After modifying the top six features (i.e., half of the total) simultaneously, the optimization
rate is close to 11.43%, the optimal performance determined by all twelve features. These
adaptable tactics with minor feature modifications might increase the application value of
the suggested strategy by ensuring that green building design goals are met even in the
face of time and resource restrictions.

Figure 15. Optimization rate heatmap.

A comparative analysis of feature selection techniques for optimizing algorithm per-
formance produces insightful results, as shown in Figure 16. Principal component analysis
(PCA) exhibits deviations between predicted and actual optimization rates, suggesting
potential limitations in accurate prediction. Recursive feature elimination (RFE), on the
other hand, demonstrates a closer alignment between predicted and actual rates, indicating
its effectiveness in identifying relevant features for optimization. Random forest regression
(RFR), used as a baseline, assumes predicted rates as the means of actual rates, provid-
ing a reference point. The error bars quantify the variability and uncertainty associated
with each technique’s predictions, highlighting the importance of considering prediction
robustness. Additionally, the investigation addresses missing data by assuming predicted
rates, showcasing the adaptability of the employed methods. These findings underscore
the significance of employing sophisticated feature selection strategies and the potential
advantages of techniques like RFE in enhancing algorithmic outcomes.
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Figure 16. Validation and comparison of feature selection techniques.

5. Discussion

Improving the dependability of optimization in data-driven building energy perfor-
mance forecast and optimization requires addressing both data and metamodel uncertainty.
Discrepancies in prediction findings, as measured by confidence intervals (CIs) and predic-
tion intervals (PIs), are referred to as metamodel uncertainty. The confidence level of the
BO-LGBM model is indicated by the PI in Figure 16, which is evaluated at a significance
level of 5%. The wider breadth of the PI indicates a higher coverage probability. The
unpredictability and error distributions present in simulated data, however, are the sources
of data uncertainty. Probability descriptions of characteristics under specified restrictions
are produced using Monte-Carlo simulation. Four characteristics (x8, x9, x7, and x3) greatly
susceptible to operational uncertainties are the focus of the uncertainty analysis, which is
predicated on their normal distribution. In Section 4, utilizing a metamodel that considers
these uncertainties, the multi-objective optimization (MOO) work under uncertainty was
compared to the deterministic situation, with the following outcomes:

1. As uncertainty increased, the BO-LGBM metamodel’s prediction accuracy steadily
decreased. We found reduced MAPE values for each of the three targets (y1–y3) in
the uncertain situation. Notably, the discomfort degree (y3) displayed a significant
2.6-fold increase in comparison to the deterministic scenario.

2. Decisions made by the optimization model were more dependable when the two
sources of uncertainty were considered, and outcomes were obtained within predeter-
mined bounds. The top three preferred options (red circles) had better optimization
performances than the other choices. The optimization rate rose from 12.79% to 17% in
comparison to the deterministic scenario, indicating how crucial it is to take uncertain-
ties into account to optimize sustainability potential. The third target’s indoor thermal
discomfort level decreased to less than 36% in the uncertain scenario compared to the
deterministic one.

3. In Figure 17, which shows how taking uncertainty into account may improve op-
timization performance, the optimization rates of new Pareto front points within
the permitted limit are contrasted with the original deterministic values. The me-
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dian optimization rate significantly increased from 10.85% (deterministic) to 12.70%
(uncertain) when all twelve input variables were changeable. The two areas with
the biggest improvements were energy consumption (y1) and pain level (y3), where
the mean and median values significantly outperformed the deterministic scenario.
The values of the CO2 emission optimization rate were more steadily distributed
around the median, even if the optimization rate’s median was constant. Even with
only four unknown variables altered, all methods improved the mean and median
optimization rates in comparison to the deterministic situation as shown in Figure 18.
This highlights the need to take uncertainty sources into consideration to develop
more effective green building design schemes.

Figure 17. Visualization of Pareto front in AGE-MOEA optimization under uncertainty with neural
network predictions.

Figure 18. The percentage of Pareto front solutions that are optimal in settings with both determinism and
uncertainty. Performance objectives (a), each confusing feature’s optimization (b), and their combination.
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6. Conclusions and Future Works

This study provides an automated approach to building energy efficiency analysis that
combines multi-objective optimization and explainable machine learning with artificial
intelligence and BIM technologies. The innovative data-driven approach has both theoret-
ical and practical significance, aiming to enhance decision-making for sustainable green
building design. The analytical results demonstrate the versatility and robustness of the
proposed framework through various approaches. The systematic framework comprises
three fundamental components:

1. Data Simulation and Mining: Building energy performance data are simulated using
DesignBuilder and serve as the inputs for data mining operations. This step ensures a
comprehensive dataset that captures the complexities of building energy dynamics.

2. Predictive Metamodeling: The hybrid Bayesian optimization–LightGBM (BO-LGBM)
technique constructs a predictive metamodel with high prediction accuracy, automat-
ing hyperparameter tuning. The Local Interpretable Model-agnostic Explanations
(LIME) approach enhances the interpretability of the metamodel, allowing stakehold-
ers to understand and trust the model’s predictions.

3. Multi-Objective Optimization: The metamodel undergoes optimization using the
Adaptive Generalized Evolutionary Multi-Objective Optimization Algorithm (AGE-
MOEA), which accounts for uncertainties and identifies optimal solutions across
multiple objectives. This step ensures the practical applicability of the framework by
providing optimal feature profiles for green building design.

The findings comprehensively address the questions raised in the introduction by
demonstrating how advanced computational methods can improve green building design.
Key insights from the case study include the following:

I. Prediction Accuracy: The hybrid BO-LGBM method achieved a highly accurate
metamodel with mean absolute percentage errors (MAPEs) of 0.33%, 1.14%, and
2.13% for energy consumption, CO2 emissions, and discomfort levels, respectively.

II. Feature Importance: LIME identified heating and cooling set-point temperatures as
the most critical features, guiding subsequent feature adjustments.

III. Optimization Performance: AGE-MOEA outperformed four widely used optimiza-
tion techniques, increasing the optimization rate by 13.43% and providing the best
feature settings and trade-off solutions. Adjusting the most crucial features improved
performance by 5.35%, aligning with LIME’s feature priority ranking.

IV. Incorporating Uncertainties: The optimization process integrated model and data
uncertainties through prediction intervals and Monte Carlo simulations, respectively.
This novel step resulted in optimal solutions, with the top three scenarios outperform-
ing the deterministic scenario in terms of optimization rate and rebuilding the Pareto
front to meet objective function probability constraints.

The proposed framework offers a reliable and objective tool for optimizing green
building design, supporting the development of energy-efficient and environmentally
friendly buildings. By replacing dependence on specialized knowledge and engineering
experience, this data-driven approach generates strategic implications for sustainable
building development early in the construction process. Future research should focus on
the following:

a. Comparing predicted and observed reductions in energy consumption, CO2 emis-
sions, and discomfort levels, as well as validating the real-world importance by
applying ideal feature combinations to actual buildings.

b. Examining the applicability of the approach to both commercial and residential
buildings.

c. Incorporating generative design capabilities using parametric programming tools
like Grasshopper and Dynamo to help develop an automated design system. This
system should aim to reduce subjectivity and manual intervention in green building
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design by combining intelligent algorithms, parametric modeling, intelligent BIM
3D models, and user-friendly interfaces.
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