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Abstract: In this paper, four probability functions are compared with the purpose of establishing a
methodology to improve the accuracy of wind energy estimations in a desert city in Northwestern
Mexico. Three time series of wind speed data corresponding to 2017, 2018, and 2019 were used for
statistical modeling. These series were recorded with a sonic anemometer at a sampling frequency
of 10 Hz. Analyses based on these data were performed at different stationarity periods (5, 30, 60,
and 600 s). The estimation of the parameters characterizing the probability density functions (PDFs)
was carried out using different methods; the statistical models were evaluated by the coefficient of
determination and Nash–Sutcliffe efficiency coefficient, and their accuracy was estimated by the
measured quadratic error, mean square error, mean absolute error, and mean absolute percentage
error. Weibull, using the energy pattern factor method, and Gamma, using the Method of Moments,
were the probability density functions that best described the statistical behavior of wind speed
and were better at estimating the generated energy. We conclude that the proposed methodology
will increase the confidence of both wind speed estimation and the energy supplied by small-scale
wind installations.

Keywords: short-term wind variability; probability density function; small wind energy estimation

1. Introduction

The global climate emergency has given rise to great interest in the energy transition,
which should contribute to mitigating CO2 emissions caused by energy generation using
conventional sources. Renewable energies play a significant role in this transition. It
is necessary to estimate accurately the energy obtained from these sources to achieve
this transition.

Global electricity demand decreased in 2020 but grew by 6% in 2021, representing one
of the most significant annual growth rates since the 2010 monetary crisis [1]. Electricity
consumption is expected to average 2.7% annual growth during the 2022–2024 period [1].
Considering the potential future demand, and the high costs of conventional energy re-
sources and their environmental impact, the interest in using alternative energy sources
has increased, further raising the need to evaluate the technical characteristics of these
sources [2]. In the case of wind energy, estimations are made using a methodology based
on medium-term average values (of the order of minutes) [3]. This methodology specifies
a sampling frequency of 1 or 2 Hz to obtain mean velocities every 10 min. However,
instantaneous wind speeds with a higher magnitude than the ten-minute average wind
speed will not have the impact on the power calculated using the mean value that they
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would if instantaneous power were calculated because power is directly proportional to
the cube of the speed. Thus, the procedure underestimates power when using mean wind
speed compared to the cumulative power of instantaneous wind speed values. In other
words, the methodology minimizes wind variations in the order of seconds (short-term
variability) and, consequently, wind power generation, which results in an underestimation
of the wind resource [4].

Renewable energy has several advantages over fossil fuels, such as the availability of
renewable resources to implement distributed generation systems, the access and modu-
larity of its technologies, and the potential for each user to generate their own energy [5].
Therefore, wind energy is one of the most widely used renewable sources, and by 2021,
it contributed with an installed capacity of 840 GW to the global electricity system [6].
Small wind energy (defined as wind energy that uses wind turbines with sweep areas of
less than 200 m2 [3]), or low-power wind energy, is a novel contribution to the electricity
system, and the use of this technology is expected to increase complementing photovoltaic
systems in distributed generation. As of the end of 2019, mini-wind power had an installed
capacity of 1.72 GW worldwide [7]. Small wind installations have particular features,
such as their capacity to provide energy in a distributed manner, feasible operation with
moderate winds, requirement of small sites, and suitable integration in urban, semi-urban,
industrial, and agricultural environments, and they are often used for the generation of
energy close points [8].

Implementing wind energy requires accurate resource assessment [9,10], which can
be achieved through a probability density function describing wind behavior. Typically,
the Weibull probability density function can be used for this task. However, it is important
to consider that other functions may better represent different wind regimes. According to
Chang [11] and Cheng [12], the wind speed distribution for a particular location determines
the available wind energy and the performance of an energy conversion system. Therefore,
determining the function that best represents the wind regime at a location will contribute to
a better estimation. Several studies have used different probability density functions, such
as Weibull, Gamma, Raleigh, Beta, log-normal, and their combinations [11–29]. According
to Wais [13,14], the two-parameter Weibull distribution is commonly used to model wind
speed distribution in the wind industry. However, it may not always be sufficient for evalu-
ating available wind energy. On the other hand, Wais suggests that the three-parameter
Weibull distribution is advantageous because it fits better than the typical Weibull dis-
tribution with certain wind patterns. The literature also states that combined functions
tend to have better statistical behavior compared to methods using a single function [19].
These combined distributions can be more efficient than single-function distributions for
some wind regimes, although despite their advantages, the main drawbacks of combined
distributions are their complexity and the computational time required in estimating the
associated parameters [24]. In this regard, it is crucial to select the probability density
function(s) appropriate to the data measured in the study area to obtain reliable energy
estimations [9,11]; as stated by Cheng [12], the analysis must consider high-frequency wind
data samples, i.e., short-term wind variability must be borne in mind.

Probability density functions are characterized by their statistical parameters of shape
and scale, which can be obtained by different numerical methods; among the most used
are the Maximum Likelihood Method (ML), Method of Moments (MM), Justus Empir-
ical Method (EJ), Lysen Empirical Method (EL), Energy Pattern Method (EP), Graphi-
cal Method (GP), Standard Deviation Method (SD) and Modified Maximum Likelihood
Method (MLM) [30]. Researchers use these methods to compare statistical model adjust-
ment to measured data [30–39]. Using monthly data, Tizgui et al. [32] have found that EJ
and MLM achieve a better estimation for the Weibull PDF, while Bilir et al. [19] consider EJ
to be more accurate for annual estimation with hourly data and the Weibull PDF.

To evaluate the wind resource, the International Standard IEC-61-400-12-1 [3] estab-
lishes that wind potential estimates must be obtained using the ten-minute wind speed data,
of average wind velocity recorded with a specific sampling frequency (e.g., 1 Hz) every
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10 min. The averaging time, or stationarity period, defined as the time interval in which the
wind velocity can be considered statistically constant, plays an important role in estimating
wind potential. As the stationarity period increases, wind variability recorded in the time
series decreases, negatively impacting the energy estimate. Rodriguez-Hernandez et al. [8]
estimate an energy difference of 17% between stationarity periods of 1 and 10 min, while
Arredondo et al. [4] find that the available energy density using 600 s (10 min) as the
stationarity period results in underestimations of 1%, 8%, 10%, 13.7%, 19.4%, and 22.7% for
stationarity periods of 300, 60, 30, 5, 1, and 0.1 s, respectively.

Consequently, improving the methodology for estimating wind energy considering
short-term wind variability, the probability density function, and the appropriate method
would help to increase the certainty of the energy that can be generated, thus contributing
to the penetration of wind energy in the residential and commercial sectors. Therefore, this
study aimed to determine the methodology that best estimates the energy obtained from a
small wind turbine. This paper is structured as follows: Section 2 describes data collection
and analysis, the determination of the probability density functions, the calculations for
energy estimation and the statistical tests to validate such estimates. Section 3 presents the
results obtained, and Section 4 presents the study’s conclusions.

2. Methodology

The data used in this study were measured during 2017, 2018, and 2019 using a
Campbell Scientific CSAT3 sonic anemometer, which records the orthogonal components
ux, uy, and uz of wind speed. The wind speed magnitude was obtained using the equation

v =
√

ux2 + uy2 (1)

where ux and uy are the easterly and northerly velocity components, respectively, and v is
the velocity magnitude in the horizontal plane.

The anemometer can record at sampling frequencies from 1 to 100 Hz, with mea-
surement errors of ±8.0 cm/s and ± 4.0 cm/s in the horizontal and vertical components,
respectively [40]. The instrument was placed 20 m above ground level at the UABC
Engineering Institute in Mexicali B.C., which is geographically located at coordinates
32◦37′52.32′′ N and 115◦26′40.48′′ W. Mexicali’s climate is classified as dry desert (BW),
with extreme summer (average maximum temperature between 41 °C and 43 °C) and win-
ter (average maximum temperature between 11 °C and 13 °C) temperatures. The average
annual temperature is between 21 °C and 23 °C [41]. In 2022, the population of Mexicali was
1,049,792 residents [42], and its electricity consumption was 4736.29 GWh until 2016 [43].
A sampling frequency of 10 Hz was used in this study, thus obtaining 864,000 daily data
equivalents to more than 3 × 108 data per year. From the original time series, time series of
average values were obtained every 5 s, 30 s, 60 s and 600 s, which would be equivalent to
recording the wind with those average sampling times.

2.1. Probability Density Functions and Methods for Statistical Parameter Estimation

Four different probability density functions (Weibull, Gamma, Rayleigh, and a com-
bination of the three) were used to describe the data’s statistical behavior. The PDFs take
on a wide variety of shapes depending on the value of the shape parameter (α) and the
level of stretch or squeeze indicated by the scale parameter (β). The (α) and (β) values for
a dataset are unique, but there are diverse methods to determine them depending on the
PDF used as explained in the following subsections.

2.1.1. Weibull Probability Density Function

The Weibull likelihood function was used to determine the characterization of the
wind resource because it reliably describes wind behavior in different regions [27]:

f (v) =
α

β
(

v
β
)α−1e−( v

β )
α

(2)
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The two parameters, shape (α) and scale (β), were determined by the empirical
methods of Justus, Lysen, and the energy pattern.

Empirical Justus Method (EJ)

In this method, parameters α and β are calculated using the following expressions

α = (
σ

v̄
)−1.086 (3)

β =
v̄

Γ(1 + 1
α )

(4)

where v̄ is the mean wind speed and σ is the standard deviation, while Γ is the Gamma
function [44].

Empirical Lysen Method (EL)

In this method, parameter α is calculated by means of Equation (3), while parameter β
is calculated using the following expression [45]

β = v̄(0.568 +
0.433

α
)
−1
α (5)

Energy Pattern Factor Method (Ep f )

In this method, it is necessary to determine the energy pattern factor (Ep f ) on which
the shape factor depends; the equation is used for the scale factor. Factor Ep f is the ratio
between the total power available in the wind and the power corresponding to the cube of
the average wind speed [46,47]:

Ep f =
v3

v̄3 (6)

α = 1 +
3.69

(Ep f )2 (7)

2.1.2. Rayleigh Probability Density Function

The Rayleigh probability density function is a special form of the Weibull distribution,
in which the shape parameter always equals 2, and only the dispersion parameter (standard
deviation) is used [23]:

f (v) =
v
σ2 e−

v2

2σ2 (8)

2.1.3. Probability Density Function Gamma

The shape and scale parameters of the Gamma PDF are obtained using the methods of
moments and maximum likelihood [48]:

f (v) =
( v

β )
α−1e−

v
β

βΓ(α)
(9)

Method of Moments (MM)

In the Method of Moments, the parameters are obtained as follows [48]:

α =
v̄2

σ2 (10)

β =
σ2

v̄
(11)
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Maximum Likelihood Method (ML)

In this method, the parameters are obtained as follows:

α =
1 +

√
1 + 4D

3

4D
(12)

β =
v̄
α

(13)

where D is given by [48]

D = ln(v̄)− 1
n

n

∑
i=1

ln(vi) (14)

2.1.4. PDF Mix

The PDF Mix was conceived as a function to describe the statistical behavior of the
wind in each speed interval exactly, an objective that cannot be obtained with typical densi-
ties. From the Weibull, Gamma, and Rayleigh distributions obtained before, the PDF with
the best performance is selected in each speed interval to achieve the goal. The distribution
obtained is a continuous function by intervals.

2.2. Energy Estimation with PDF

The annual energy estimate for each year (2017, 2018 and 2019) and each time series
(0.1, 5, 30, 60 and 600 s) were calculated using the PDFs and power curve of a wind turbine.
The probability that the wind speed fell in the i-th interval [a, b] was calculated, first using
the equation

p(a < v̂i < b) = F(v) =
∫ b

a
f (v)dv = F(b)− F(a) (15)

where f (v) is the PDF used, while a and b are the lower and upper bounds, respectively,
of the i-th class of the velocity frequency histogram, v̂i is the mean value of each class,
and the function F(v) is the cumulative probability function given by equation

F(v) =
∫ v

0
f (x)dx (16)

It is necessary to point out that a and b belong to the set of natural numbers such that
b − a = 1 is the histogram class size.

The interval probability found represents the percentage of the time, in the complete
series, in which wind speed v̂i occurred. This percentage is converted to hours (∆t) by
multiplying it by the total number of hours in the time series.

As a second step, the power curve of the wind turbine was used to determine the
power that, according to the manufacturer, the wind turbine delivers when the wind
is flowing at speed v̂i. Then, the two previous values were multiplied (duration times
power) to obtain the energy delivered by the small wind turbine with the wind flowing at
wind speed v̂i. This procedure was repeated for each of the n intervals or classes. Finally,
the estimation of the total energy generated per year Ew was obtained by summing the
estimated energies in each speed interval as indicated by the equation

Ew =
n

∑
i=1

P(v̂i)∆t (17)

where P (v̂i) is the power corresponding to the mean interval velocity.

Comparison between Estimated and Generated Energy

A 200 W small wind turbine was used hypothetically to evaluate the performance of
the different statistical models in estimating energy. To compute the power based on wind
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speed measurements obtained from the ultrasonic anemometer, we utilized the power
curve provided by the manufacturer in the datasheet. The wind turbine can operate at slow
wind speeds, starting from 1 m/s up until a survivor speed of 50 m/s. Typically, a power
curve is only strictly valid for a subset of all atmospheric conditions, known as the inner
range [49]. The outer range is the complementary subset of atmospheric conditions where
wind turbines also operate. This uncertainty associated with wind spatial variability was
not analyzed in this study.

The generated energy was obtained considering the instantaneous power correspond-
ing to each of the m values of wind speed in each series using the following equation

Er =
m

∑
i=1

P(vi)∆te (18)

where ∆te is the time corresponding to the stationarity period, and P (vi) is the instanta-
neous power delivered by the wind turbine when the wind has the speed vi.

Energy comparisons were performed for each measured year and each stationarity
period to determine which PDF resulted in a more accurate estimation compared to the
energy produced by a wind turbine. The estimation error percentage was obtained from
the expression [32]

%E =
Er − Ew

Er
× 100% (19)

2.3. Statistical Tests

The performance of the probabilistic models obtained was evaluated using the sta-
tistical tests described below, where yi is the relative frequency of the observed velocity
values, ȳ is the mean relative frequency, and xi is the expected frequency calculated with
the theoretical distributions.

2.3.1. Coefficient of Determination (R2)

The coefficient of determination is a measure of the relationship between a predicted
probability density function and measured data. Mathematically, it is obtained as fol-
lows [50]:

R2 = 1 −


n

∑
i=1

(yi − xi)
2

n

∑
i=1

(yi − ȳ)2

 (20)

Its maximum value is 1, so the closer it is to 1, the better its fit.

2.3.2. Chi-Square (X2)

The chi-square test is a simple and common goodness-of-fit test. It essentially compares
a data histogram with the probability density function. The closer the result is to 0, the more
accurate it is considered [32]:

X2 =
n

∑
i=1

(yi − xi)
2

xi
(21)

2.3.3. Nash–Sutcliffe Efficiency Coefficient (NSEC)

The efficiency coefficient is another way to determine the accuracy of a prediction
model; it is performed between the values of the probability density function and the
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relative frequency of measured values. As with the R2, the closer to 1, the more accurate
the value is considered [51]:

NSEC = 1 −

n

∑
i=1

(xi − ȳ)2

n

∑
i=1

(yi − ȳ)2
(22)

2.3.4. Root Mean Square Error (RMSE)

The root mean square error is an error that estimates the accuracy of the method by
comparing the difference between the estimated values and the actual values. The closer
the value is to zero, the more accurate the method [36]:

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (23)

2.3.5. Mean Square Error (MSE)

The mean square error is a method that calculates the difference of the mean square
error between the estimated values and the true value. As with the RMSE, the closer to
zero the value, the more certain the result [36]:

MSE =
1
n

n

∑
i=1

(xi − yi)
2 (24)

2.3.6. Mean Absolute Error (MAE)

The mean absolute error is an absolute test of the difference between two variables. It
is the average of the absolute errors between the frequency of each PDF and the relative
frequency of the measured data. The closer to zero, the better the result [36]:

MAE =
1
n

n

∑
i=1

| (xi − yi)
2 | (25)

2.3.7. Mean Absolute Percentage Error (MAPE)

The mean absolute percent error is a relative measure that indicates the percentage
error between the PDF and the relative frequency of the measured data. As with MAE,
the lower the MAPE value, the more accurate the result [52]:

MAPE =
1

100

n

∑
i=1

| xi − yi
yi

| (26)

3. Results and Discussion

The results of the behavior of the statistical parameters, statistical tests, and energy
comparison behavior are described below.

3.1. Results of Statistical Parameters

Table 1 describes the annual data of the statistical parameters in the respective sta-
tionarity periods for each year analyzed; as can be observed, the average wind speeds
are 2.09 m/s, 2.17 m/s, and 2.19 m/s, and they do not change in the different stationarity
periods, which is consistent with the unbiased property of the mean of the sample means.
On the contrary, the standard deviation decreases as the sample sizes (stationarity periods)
increase, indicating that data dispersion around the mean decreases; that is, the wind
velocity variability will become negligible as the stationarity period increases. Considering
that the velocity dispersion is associated with the turbulent part of the flow, increasing the
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period of stationarity represents a less turbulent and, therefore, less energetic flow. As can
be seen, the highest values of the standard deviation correspond to the year 2019, which
implies a larger data dispersion and may represent a higher amount of energy because it
had a similar mean velocity to that of the other years.

Table 1. Statistical parameters for the different stationarity periods for 2017, 2018 and 2019.

0.1 s 5 s 30 s 60 s 600 s Year

v σ v σ v σ v σ v σ

2.09 1.54 2.09 1.47 2.09 1.39 2.09 1.36 2.09 1.26 2017
2.17 1.54 2.17 1.47 2.17 1.39 2.17 1.35 2.17 1.25 2018
2.19 1.62 2.19 1.54 2.19 1.46 2.19 1.42 2.19 1.31 2019

Table 2 presents the shape (α) and scale (β) parameters defining the PDF for each
year. The statistical parameters of the PDFs were determined using diverse methods.
For the Weibull PDF, the EJ, EL, and Epf methods were used, which resulted in the WEJ,
WEL, and WEPF distributions, respectively. The RSD distribution was obtained using
the SD method with the Rayleigh PDF. For the Gamma PDF, the MM and ML methods
were used to obtain the GMM and GML distributions, respectively. According to the
shape and scale parameters equations in each method, there is an inversely proportional
relationship between (α) and (σ) such that if the variability of the data decreases, the alpha
parameter increases.

Table 2. Shape (α) and scale (β) parameters for the different stationarity periods for 2017, 2018
and 2019.

Method 0.1 s 5 s 30 s 60 s 600 s Year

α β α β α β α β α β

EJ
1.367 2.304 1.463 2.309 1.550 2.325 1.593 2.331 1.729 2.346 2017
1.451 2.396 1.526 2.411 1.620 2.420 1.667 2.431 1.820 2.444 2018
1.388 2.403 1.464 2.420 1.554 2.437 1.598 2.444 1.735 2.460 2019

EL
1.367 2.305 1.463 2.311 1.550 2.327 1.593 2.333 1.729 2.348 2017
1.451 2.398 1.526 2.413 1.620 2.428 1.667 2.433 1.820 2.446 2018
1.388 2.405 1.464 2.422 1.554 2.439 1.598 2.446 1.735 2.462 2019

Ep f

1.332 2.293 1.370 2.286 1.453 2.307 1.495 2.315 1.615 2.334 2017
1.360 2.374 1.435 2.343 1.526 2.411 1.573 2.419 1.717 2.436 2018
1.296 2.373 1.372 2.397 1.454 2.418 1.496 2.427 1.618 2.447 2019

MM
1.851 1.129 2.017 1.036 2.243 0.932 2.359 0.886 2.744 0.762 2017
1.980 1.090 2.178 0.997 2.430 0.893 2.562 0.847 3.016 0.720 2018
1.830 1.197 2.020 1.085 2.253 0.972 2.372 0.923 2.760 0.793 2019

ML
2.332 0.897 2.477 0.843 2.678 0.78 2.790 0.845 3.283 0.637 2017
2.380 0.910 2.559 0.848 2.779 0.781 2.900 0.748 3.430 0.632 2018
2.302 0.952 2.466 0.888 2.676 0.819 2.789 0.785 3.264 0.671 2019

Figure 1 shows the behavior of the shape and scale parameters for the analyzed
period using each of the methods mentioned above. It can be observed that the behavior
is similar for each parameter during the three years. The importance of the short-term
wind variability considered in each stationarity period can also be observed as reported
in other studies [4,8] because both parameters (α and β) present different values in the
diverse periods. In fact, as we mentioned above, both parameters change their value, as
the dispersion of the data decreases when the stationarity period increases. This results
in a different function even using the same method as shown by the analysis performed
by other authors using a single function with different methods [10,27]. The consequence
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of this result is that the estimated energy in the different stationarity periods varies even
when using the same PDF with a specific method as shown in the following subsection.

Another noteworthy aspect is that two of the five methods, MM and ML, are very
sensitive to short-term variability. The graphic in Figure 1 illustrates the most significant
variations in MM and ML observed across different stationarity periods. By referring to the
data presented in Table 2, we can confirm that the errors for alpha and beta parameters with
MM are approximately 50%, over the range of the stationarity periods shown. Therefore,
using these methods to determine the statistical parameters of the densities could result in
a more significant energy estimation error.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Shape and scale parameters. (a) Shape parameters for 2017. (b) Scale parameters for 2017.
(c) Shape parameters for 2018. (d) Scale parameters for 2018. (e) Shape parameters for 2019. (f) Scale
parameters for 2019.

Figure 2 shows two important aspects. First is the adjustment of each statistical
model with the measured data for the stationarity periods of 5 and 600 s for the three years
analyzed, and second, the performance of each model in each speed interval. As can be seen,
the different methods are prone to overestimate or underestimate certain speed intervals.
For example, Rayleigh has the best performance in the second class in the two stationarity
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periods for the three years but overestimates in the first class and underestimates in the
remaining one. On the contrary, GMM and GML have a good approximation in the upper
classes (wind velocity ≥ 5 m/s ) for the two stationarity periods and the three years, which
can favor energy estimation when the highest velocities occur.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Comparison of relative frequencies with the stationarity periods indicated. (a) 5 s for 2017.
(b) 600 s for 2017. (c) 5 s for 2018. (d) 600 s for 2018. (e) 5 s for 2019. (f) 600 s for 2019.

The distributions that best fit the measured data in each speed interval were selected
for the construction of the PDF mix. For example, in Figure 2f, the best-fit density for
the first class (0–1 m/s) is the GML function, for the second class (1–2 m/s) it is the RSD
function, and for the third class (2–3 m/s) it is the WEp f distribution. This procedure was
followed for each stationarity period of every year.

3.2. Statistical Test Results

The parameters to estimate the goodness of fit between the observed and calculated
data are presented in Tables 3 and 4 (5 s y 600 s, respectively) and the Appendix A.
The results are grouped by stationarity period, indicating the method and year of the
data series.
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Table 3. Results of goodness-of-fit test/errors between observed and predicted data at 5 s.

Methods R2 NSEC x2 RMSE MSE MAE MAPE Year

PDF WEJ
0.92412 0.92114 0.07885 0.02767 0.00077 0.01091 66.8784 2017
0.93596 0.93286 0.06714 0.02630 0.00069 0.01120 60.9770 2018
0.91871 0.91540 0.08459 0.02757 0.00076 0.01054 66.9761 2019

PDF WEL
0.92408 0.92105 0.07895 0.02768 0.00077 0.01092 66.8227 2017
0.93589 0.93274 0.06726 0.02632 0.00069 0.01120 60.9140 2018
0.91866 0.91531 0.08469 0.02759 0.00076 0.01055 66.9149 2019

PDF WEp f

0.90144 0.89913 0.10087 0.03129 0.00098 0.01141 56.1221 2017
0.91746 0.91445 0.08555 0.02969 0.00088 0.01157 51.3477 2018
0.89541 0.89281 0.10719 0.03104 0.00096 0.01113 56.4037 2019

PDF GMM
0.95177 0.94891 0.05109 0.02227 0.00050 0.00855 41.5378 2017
0.96562 0.96299 0.03701 0.01953 0.00038 0.00806 34.7031 2018
0.94893 0.94566 0.05434 0.02210 0.00049 0.00823 39.6690 2019

PDF GML
0.97245 0.97108 0.02892 0.01676 0.00028 0.00717 64.2016 2017
0.97804 0.97704 0.02296 0.01538 0.00024 0.00711 54.8807 2018
0.96951 0.96781 0.03219 0.01700 0.00029 0.00719 63.3709 2019

PDF RSD
0.97012 0.96475 0.03525 0.01850 0.00034 0.00818 81.5834 2017
0.97664 0.96655 0.03345 0.01856 0.00034 0.00944 78.8445 2018
0.96595 0.96090 0.03910 0.01875 0.00035 0.00889 82.1526 2019

PDF Mix
0.99849 0.99833 0.00167 0.00402 0.00016 0.00197 37.7363 2017
0.99635 0.99602 0.00398 0.00641 0.00017 0.00268 36.1189 2018
0.99593 0.99527 0.00473 0.00652 0.00004 0.00291 38.0726 2019

Table 4. Results of goodness-of-fit test/errors between observed and predicted data at 600 s.

Methods R2 NSEC x2 RMSE MSE MAE MAPE Year

PDF WEJ
0.88586 0.87805 0.12195 0.04604 0.00212 0.02483 55.1617 2017
0.91137 0.90533 0.09467 0.03841 0.00148 0.02000 56.7452 2018
0.87419 0.86513 0.13487 0.04742 0.00225 0.02535 53.4893 2019

PDF WEL
0.88583 0.87797 0.12203 0.04606 0.00212 0.02485 55.1464 2017
0.91118 0.90507 0.09493 0.03846 0.00148 0.02002 56.6542 2018
0.87401 0.86487 0.13513 0.04747 0.00225 0.02537 53.3943 2019

PDF WEp f

0.86432 0.85520 0.14480 0.05017 0.00252 0.02527 44.2167 2017
0.89855 0.89042 0.10958 0.04132 0.00171 0.02005 46.9639 2018
0.85274 0.84197 0.15803 0.05134 0.00264 0.02541 42.8839 2019

PDF GMM
0.93902 0.93149 0.06855 0.03452 0.00119 0.01820 25.1186 2017
0.96143 0.95665 0.04335 0.02599 0.00068 0.01319 28.4373 2018
0.93223 0.92348 0.07652 0.03572 0.00128 0.01867 28.8496 2019

PDF GML
0.95445 0.95165 0.04835 0.02899 0.00084 0.01660 45.4149 2017
0.96826 0.96670 0.03330 0.02278 0.00052 0.01256 38.2368 2018
0.93372 0.92536 0.07464 0.03528 0.00124 0.01857 30.2912 2019

PDF RSD
0.91035 0.89512 0.10488 0.04270 0.00182 0.02312 77.6386 2017
0.87896 0.84829 0.15171 0.04862 0.00236 0.02514 83.0592 2018
0.90280 0.88828 0.11172 0.04316 0.00186 0.02489 78.4083 2019

PDF Mix
0.99323 0.99281 0.00719 0.01118 0.00013 0.00666 19.9490 2017
0.99499 0.99430 0.00570 0.00942 0.00089 0.00552 24.4279 2018
0.98198 0.97968 0.02033 0.01842 0.00034 0.01003 25.7630 2019

In general, all densities show good fits, highlighting the GMM and GML functions
with the best fits in almost all the stationarity periods and years analyzed, while the
RSD function presents the largest errors in the three years for all stationarity periods.
Additionally, the dependence of the adjustment with the stationarity period is shown.
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As can be seen in Tables 3 and 4, as the stationarity period increases, R2 and NSEC decrease,
and X2 increases, and of the statistics that estimate the errors, RMSE, MSE, and MAE
increase, while MAPE decreases. The above indicates that the best fit occurs with the
shortest stationarity period.

On the other hand, per its definition, the goodness-of-fit tests and error statistics for
the PDF Mix function corroborate its excellent performance. Thus, taking PDF Mix as a
benchmark, we can identify bins where a specific density does not adjust properly or bins
where it has a better performance.

3.3. Estimated vs. Generated Energy

Table 5 shows the amount of generated energy obtained from the power curve of the
Aelos 200 W wind turbine [53], as well as the energy estimated by each of the PDFs with
their different methods for the three years of study. As can be observed, the estimated
energy decreases as the stationarity period increases because of decreased variability.
For example, when using the Weibull PDF with the Justus method for the year 2017,
differences of 1.9%, 4.3%, 5.4%, and 8.26% occur in the periods of 5, 30, 60, and 600 s,
respectively, with respect to the period of 0.1 s. In the case of the Rayleigh PDF, the decreases
are 5.5%, 12.6%, 15.1%, and 23.3%, while for the Gamma PDF in either of its two methods,
energy differences of 1%, 2.2%, 3.1%, and 5.6%, approximately, can be observed. In the
case of the PDF Mix function, decreases of 3%, 6.2%, 6.4%, and 14.9% can be observed.
It is important to note that these decreases depend not on the methods used but on the
short-term variability loss as indicated by the standard deviation values in Table 1, all of
which result in a lower energy estimate.

Table 5. Generated and estimated energy (kWh) results for the different stationarity periods for 2017,
2018, and 2019.

0.1 s 5 s 30 s 60 s 600 s Year

Aeolos 200 W
227.11 227.11 227.11 227.11 227.11 2017
177.93 177.93 177.93 177.93 177.93 2018
267.73 267.73 267.73 267.73 267.73 2019

Method

PDF WEJ
225 220.6 215.2 212.76 206.2 2017

175.1 171 166.5 165.2 159.8 2018
244.7 239 233 230.2 222.8 2019

PDF WEL
225.3 220.9 215.6 213.06 206.4 2017
175.4 171.6 167.4 165.4 160 2018
245.1 239.3 233.4 230.5 223.1 2019

PDF WEp f

231.4 227 220.3 218.49 211.6 2017
179.7 176.1 171.4 169.2 163.2 2018
251.8 245.7 238.8 236.8 229.1 2019

PDF GMM
222.7 220.2 217.8 215.7 210.2 2017
175.9 172.9 169.1 167.51 163 2018
244.9 240.4 235 232.62 226.6 2019

PDF GML
215.9 213.5 210.7 209.4 204.5 2017
169.9 167.6 165.2 163.8 159.4 2018
234.5 231.5 227.9 225.88 220.2 2019

PDF RSD
172.9 163.3 151.1 146.7 132.5 2017
129.4 121 112 107.7 97.2 2018
188.2 174.5 161.5 155.6 140.9 2019

PDF Mix
229.6 222.69 215.2 214.7 195.3 2017
178 172.6 169.5 167.8 166.1 2018

252.4 241.3 232.8 230.33 218.7 2019
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As indicated in Section 3.1, 2019 is the year with the most significant data dispersion.
This is reflected in the energy values for that year, which were the highest for the energy
computed with the wind turbine power curve and for the energy estimated with each of
the seven statistical models used.

Table 6 shows the percentage error between the generated and estimated energy for
each PDF, with its respective method, in the different stationarity periods and for each study
year; the negative sign indicates an estimate greater than the generated energy. The table
suggests that, based on percentage errors, the WEp f PDF and the GMM PDF are associated
with the smallest errors, making them more suitable for energy estimations. For example,
for the year 2019, the GMM PDF has energy estimation percentage errors of 8.53, 10.21,
12.23, 13.11, and 15.36, while the WEp f PDF presents a percentage errors of 5.95, 8.23,
10.81, 11.51, and 14.43 with respect to the generated energy, for each stationarity period.
In addition, the PDF Mix could be considered because it has relatively small errors of 5.73,
9.87, 13.05, 13.97, and 18.31 with respect to the generated energy. Rayleigh PDF is the
distribution with the highest error, which discards it as an adequate option for estimating
energy in the study area.

Table 6. Energy estimation percentage error for the different stationarity periods for 2017, 2018,
and 2019.

Methods vs. Aeolos 200 W 0.1 s 5 s 30 s 60 s 600 s Year

PDF WEJ
0.929 2.866 5.244 6.319 9.207 2017
1.591 3.895 6.424 7.154 10.19 2018
8.602 10.73 12.97 14.02 16.78 2019

PDF WEL
0.797 2.736 5.068 6.186 9.119 2017
1.422 3.558 5.918 7.042 10.08 2018
8.453 10.62 12.82 13.91 16.67 2019

PDF WEp f

−1.889 0.048 2.999 3.796 6.829 2017
−0.995 1.028 3.670 4.4906 8.279 2018
5.950 8.228 10.81 11.55 14.43 2019

PDF GMM
1.942 2.162 4.099 5.024 7.446 2017
1.141 2.827 4.963 5.856 8.391 2018
8.527 10.21 12.23 13.11 15.36 2019

PDF GML
4.936 5.993 7.226 7.798 9.956 2017
4.513 5.806 7.154 7.941 10.41 2018
12.41 13.53 14.88 15.63 17.75 2019

PDF RSD
23.87 28.10 33.47 35.41 41.66 2017
27.27 32.00 37.05 39.47 45.37 2018
29.71 34.82 39.68 41.88 47.37 2019

PDF Mix
−1.096 1.946 5.244 5.464 14.01 2017
−0.039 2.996 4.738 5.693 6.649 2018
5.726 9.872 13.05 13.97 18.31 2019

When comparing the error percentage of the energy estimates between the different
statistical models in the same stationarity period, the differences can be an order of mag-
nitude smaller than those obtained when comparing the error percentage of the energy
estimates of the same PDF at different stationarity periods. For example, in the stationarity
period of 600 s, the error percentage difference of the estimations between WEp f and GMM
for the year 2018 is 0.112 %, while the error percentage difference of the estimations between
600 and 5 s is 7.25 % for WEp f , and 5.56 % for GMM. In general, it is shown that the error
percentage difference between the estimations of the different statistical models in the same
stationarity period is smaller than the error percentage difference of the estimations of a
PDF in different stationarity periods. The above does not hold for the RSD function due to
the large error percentage it presents.
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4. Conclusions

This study used four probability density functions to estimate the energy that a
small wind turbine installed for domestic use in a desert city in Northwest Mexico can
generate. When the energy calculated from the wind turbine power curve was used as
a reference, the results indicated that the accuracy of the energy estimates decreases as
the stationarity period increases due to the short-term wind variability in the averaging
process being neglected.

On the other hand, using different numerical methods to calculate shape and scale
statistical parameters leads to different ways of the probability density functions, resulting
in differences in estimated energy. In general, these differences are lower than those
obtained when using a PDF in different stationarity periods. This means that the short-term
temporal variability of the wind represents a higher uncertainty than that associated with
the statistical models used in the energy estimate, except for the RSD function. However,
the combined effect of both aspects causes the highest uncertainty.

Statistical modeling of the wind data showed that the globally most used distribution
to describe the behavior of the wind, PDF WEJ, is not the best in the study area. Instead,
the WEp f , GMM, and Mix PDFs have, in general, lower errors, which is why they are
considered better options for energy estimation in this region. The comparison between the
estimated energy and the energy calculated from the wind turbine power curve confirm
the above. Moreover, based on the analysis of the seven statistical models, we can infer
that an inaccurate depiction of the statistical behavior of the data at high velocities leads to
a severe underestimation of the energy, as is the case with the PDF RSD.

The above conclusion highlights the importance of selecting the probability density
function and the numerical method a priori to determine the shape and scale parameters,
to be used in the feasibility analysis of a small wind energy project.

In this regard, the use of the Weibull probability distribution as a probabilistic model
and ten-minute data to estimate energy generation, established by the International Stan-
dard IEC61400-12-1 [3], leads to unreliable evaluations as a result of the underestimation of
the resource [54]. This results in a lower penetration of small wind energy in locations such
as Mexicali, where electricity consumption is above the national average due to its intense
hot season. Therefore, increasing the reliability of energy estimates using small wind
turbines will increase the viability of small wind energy projects due to greater certainty,
promoting greater penetration of this renewable source, particularly in the residential and
commercial sectors.
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Abbreviations
The following abbreviations are used in this manuscript:

PDF Probability Density Function
PDF W Weibull Probability Density Function
EJ Empirical Justus Method
EL Empirical Lysen Method
Ep f Energy Pattern Factor Method
Ew Energy estimation
Er Actual energy
PDF R Rayleigh Probability Density Function
PDF G Gamma Probability Density Function
MM Method of Moments
ML Maximum Likelihood Method
PDF Mix Mix Probability Density Function
R2 Coefficient of Determination
x2 Chi-Square
NSEC Nash–Sutcliffe Efficiency Coefficient
RMSE Root Mean Square Error
MSE Mean Square Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error

Appendix A

Table A1. Results of goodness-of-fit test/errors between observed and predicted data at 0.1 s.

Methods R2 NSEC x2 RMSE MSE MAE MAPE Year

PDF WEJ
0.92285 0.92036 0.07964 0.02710 0.00073 0.01041 66.4059 2017
0.93750 0.93506 0.06494 0.02380 0.00057 0.00917 65.5379 2018
0.91842 0.91580 0.08420 0.02717 0.00074 0.01022 63.6357 2019

PDF WEL
0.92282 0.92029 0.07971 0.02712 0.00073 0.01041 66.3419 2017
0.93750 0.93497 0.06503 0.02382 0.00057 0.00918 65.4738 2018
0.91842 0.91573 0.08427 0.02718 0.00074 0.01023 63.5873 2019

PDF WEp f

0.89940 0.89781 0.10219 0.03070 0.00094 0.01092 55.6649 2017
0.91837 0.91636 0.08364 0.02701 0.00073 0.00968 57.0964 2018
0.89130 0.88978 0.11022 0.03108 0.00097 0.01138 51.6974 2019

PDF GMM
0.94768 0.94500 0.05500 0.02252 0.00051 0.00858 39.3980 2017
0.96301 0.96080 0.03921 0.01850 0.00034 0.00693 45.7116 2018
0.94442 0.94177 0.05823 0.02259 0.00051 0.00828 42.1631 2019

PDF GML
0.97249 0.97100 0.02899 0.01635 0.00027 0.00690 66.3538 2017
0.97858 0.97756 0.02244 0.01399 0.00020 0.00593 63.0985 2018
0.97109 0.96942 0.03057 0.01637 0.00027 0.00696 64.3871 2019

PDF RSD
0.95583 0.95144 0.04857 0.02117 0.00045 0.00967 82.8553 2017
0.96865 0.96134 0.03866 0.01837 0.00034 0.00797 81.8300 2018
0.94752 0.94329 0.05671 0.02230 0.00050 0.01070 82.2250 2019

PDF Mix
0.99521 0.99351 0.00649 0.00774 0.00001 0.00338 33.8132 2017
0.99779 0.92036 0.00234 0.00452 0.00000 0.00199 44.7972 2018
0.99268 0.93506 0.01049 0.00959 0.00001 0.00412 38.8530 2019
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Table A2. Results of goodness-of-fit test/errors between observed and predicted data at 30 s.

Methods R2 NSEC x2 RMSE MSE MAE MAPE Year

PDF WEJ
0.92201 0.91838 0.08162 0.03017 0.00091 0.01286 64.0270 2017
0.93539 0.93203 0.06797 0.02794 0.00078 0.01266 59.3342 2018
0.91267 0.90812 0.09188 0.03177 0.00101 0.01381 55.4190 2019

PDF WEL
0.92193 0.91825 0.08175 0.03020 0.00091 0.01286 63.9369 2017
0.93498 0.93141 0.06858 0.02807 0.00079 0.01268 58.9407 2018
0.91259 0.90798 0.09202 0.03179 0.00101 0.01382 55.3578 2019

PDF GMM
0.95480 0.95145 0.04855 0.02328 0.00165 0.00970 41.5393 2017
0.96901 0.96634 0.03366 0.01966 0.00136 0.00868 25.9264 2018
0.95009 0.94587 0.05413 0.02438 0.00059 0.01031 23.2579 2019

PDF WEp f

0.90443 0.90092 0.09908 0.03325 0.00111 0.01329 54.4361 2017
0.91966 0.91562 0.08438 0.03113 0.00097 0.01298 49.2061 2018
0.89027 0.88594 0.114056 0.03539 0.00125 0.014216 54.5651 2019

PDF GML
0.97032 0.96896 0.03104 0.01861 0.00035 0.00841 56.1773 2017
0.97728 0.97634 0.02366 0.01648 0.00027 0.00786 47.0188 2018
0.96593 0.96401 0.035987 0.01988 0.00040 0.009364 47.6466 2019

PDF RSD
0.97273 0.96432 0.03568 0.01995 0.00040 0.01076 80.7793 2017
0.96792 0.95220 0.04780 0.02343 0.00071 0.01800 79.7015 2018
0.96740 0.95942 0.04058 0.02111 0.00045 0.01182 69.4238 2019

PDF Mix
0.99724 0.99719 0.00282 0.00561 0.00031 0.00278 31.3789 2017
0.99903 0.99696 0.00303 0.00591 0.00046 0.00401 23.2060 2018
0.99741 0.99727 0.00273 0.00548 0.00030 0.00266 18.8184 2019

Table A3. Results of goodness-of-fit test/errors between observed and predicted data at 60 s.

Methods R2 NSEC x2 RMSE MSE MAE MAPE Year

PDF WEJ
0.90673 0.89857 0.10143 0.03782 0.00143 0.01856 48.3084 2017
0.93364 0.92991 0.07009 0.02923 0.00085 0.01371 58.2624 2018
0.90966 0.90465 0.09535 0.03434 0.00118 0.01578 57.4877 2019

PDF WEL
0.90656 0.89833 0.10167 0.03787 0.00143 0.01858 48.2022 2017
0.93352 0.92974 0.07026 0.02927 0.00086 0.01568 58.1640 2018
0.90956 0.90449 0.09551 0.03437 0.00118 0.01805 57.4260 2019

PDF WEp f

0.89074 0.88165 0.11835 0.04085 0.00167 0.01927 30.5040 2017
0.91972 0.91512 0.08488 0.03217 0.00103 0.01387 48.4072 2018
0.88848 0.88326 0.11674 0.03800 0.00144 0.01618 44.7211 2019

PDF GMM
0.95192 0.94767 0.05233 0.02717 0.00074 0.01323 25.1835 2017
0.96457 0.95895 0.04105 0.02237 0.00050 0.00100 23.4617 2018
0.94864 0.94693 0.05307 0.02562 0.00066 0.01149 40.9010 2019

PDF GML
0.95630 0.95391 0.04609 0.02550 0.00065 0.01288 40.3172 2017
0.97684 0.97592 0.02408 0.01713 0.00029 0.00836 43.7285 2018
0.96708 0.96599 0.03401 0.02051 0.00042 0.01031 41.1514 2019

PDF RSD
0.96603 0.95506 0.04494 0.02517 0.00063 0.01564 75.3075 2017
0.95533 0.93529 0.06471 0.02809 0.00079 0.01614 80.1333 2018
0.96145 0.95148 0.04852 0.02450 0.00060 0.01447 77.8835 2019

PDF Mix
0.99654 0.99625 0.00375 0.00727 0.00005 0.00390 16.7428 2017
0.99899 0.99554 0.00446 0.00788 0.00006 0.00428 22.2970 2018
0.99752 0.99740 0.00260 0.00567 0.00003 0.00299 29.6507 2019
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