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Abstract: This paper presents a comprehensive bibliometric review and visualization of smart and
sustainable energy consumption, delving into the challenges and opportunities of developing renew-
able and non-renewable energy sources. The study examines research trends and emerging themes
about integrating smart solutions and sustainable energy resource consumption. The analytical
methods used involve thoroughly analyzing empirical data, case studies, and review papers to map
the research landscape. The results highlight dominant research topics, influential authors, and
publication timelines in this field. The review identifies the key challenges in harnessing renewable
and non-renewable energy sources, including the need for reliable energy sources, energy storage
systems, and smart grid technologies. The paper concludes with insights into the most effective
practices for promoting smart and energy-efficient methods while emphasizing the complexity of
sustainable energy solutions.
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1. Introduction

Green or renewable energy is perpetually available through natural processes such
as hydroelectricity, solar, wind, and tidal energy. These energy resources have minimal
environmental impact, making them an attractive option for businesses and academicians
seeking to reduce our reliance on fossil fuels and contribute to developing a cleaner, more
sustainable energy future [1]. However, compared to fossil energy, the specificity of these
energies is automatically recycled in nature [2]. There is a counterargument that renewable
energy consumption may not be as environmentally friendly as it appears due to its
reliance on scarce earth metals and its carbon footprint during energy manufacturing and
production processes [3]. It is worth considering that non-renewable energy resources are
more reliable and consistent, making them a better choice for meeting energy demands
in emergencies [4]. Due to their high upfront costs and intermittent energy output, there
is a claim that renewable energy sources are not economically feasible or sustainable in
the long term [5]. The global focus has shifted towards developing a sustainable energy
infrastructure to tackle climate change and growing energy demands. This shift is driven
by a need to reduce carbon emissions and increase the use of renewable energy sources.
Policymakers and businesses are investing in new technologies and infrastructure to
support this trend.

There are many challenges in harnessing electricity from renewable or non-renewable
sources, and it is essential to recognize that the end users must use the energy fed into
the grid from the generation side in real time [6,7]. It is important to note that energy

Energies 2024, 17, 3336. https://doi.org/10.3390/en17133336 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17133336
https://doi.org/10.3390/en17133336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8212-4012
https://orcid.org/0000-0002-4995-7650
https://doi.org/10.3390/en17133336
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17133336?type=check_update&version=1


Energies 2024, 17, 3336 2 of 14

consumption constantly changes, meaning that power generation must always keep up
with the demand. Due to varying consumption patterns, the network may face unexpected
and significant requirements that could lead to insufficient energy supply or excess energy
production and redirection [8]. The development of energy storage systems is currently
in progress, but addressing the capacity maintenance of such large-scale systems remains
challenging [9]. Khazali et al. [10] introduced a powerful strategy for maximizing the
potential of combined wind and storage units in day-ahead nodal energy markets. Infor-
mation gap decision theory (IGDT) was implemented to manage the uncertainties caused
by wind generation and the price uncertainty of the system. An integrated approach was
proposed to manage profit distribution for a wind storage system, including a risk-averse
decision-making framework and various risk measurements such as the Conditional Value
at Risk (CVaR), Value at Risk (VaR), and Shortfall Probability (SP) [11].

One key challenge remains the need for a practical approach to clarifying and refining
the academic practice of conducting literature reviews [12]. Studies must demonstrate how
smart and green technologies contribute to promoting sustainable energy consumption.
However, there is still room for improvement in this area, as it can be awkward to compare
policy frameworks and regulatory approaches designed to support the development of
smart and sustainable energy programs.

Still, how best to reduce electricity consumption and establish a sustainable energy
supply needs to be clarified. These include optimizing energy efficiency, using smart
energy systems, and implementing smart solutions [13]. However, it is essential to combine
these methods, as using them in isolation will lead to failure. Smart energy involves
developing technologies for sustainable generation, transportation, and the consumption
of electricity within the distribution system [14]. The future of sustainable energy lies
in renewable resources, which are continuously replenished by nature without human
intervention [15]. However, renewable energy sources cannot maintain stable energy levels
during production, so fossil-fueled power plants are needed for consistency [16].

Considering the features above, a pressing need arises to evaluate the varying research
perspectives that aid in comprehending the most effective ways to facilitate smart and
energy-efficient practices. Two fundamental research questions guide the current research.
The first question (RQ1) seeks to identify the factors enabling smart and sustainable energy
consumption development. The second (RQ2) explores the contextual approaches, method-
ologies, frameworks, and tools that can facilitate the integration of smart solutions and the
sustainable consumption of energy resources.

A bibliometric review is a powerful and insightful tool for analyzing current research
trends, identifying existing gaps, and gaining valuable insights for future research endeav-
ors. Previously, a scientific review was conducted to assess the current progress of Smart
Energy Meters (SEMs) alongside other metering technologies such as Smart Gas (SG), Smart
Heat (SH), and Smart Electricity (SE) meters [17]. Izam et al. [18] presented perspectives
regarding solar energy technologies, focusing on photovoltaic (PV) systems. Additionally,
their study encompassed a comprehensive review of the literature about the performance of
solar energy technology to discern prevailing global trends in the adoption of solar energy
for sustainable development. Some professionals have systematically analyzed the inter-
connections between smart grid technologies, energy storage capabilities, infrastructure
expansion, and their integration within residential settings [19]. We thoroughly searched
and assessed the extensive body of literature on smart and sustainable energy consumption.
Our approach included examining empirical studies, case studies, and review papers. In
contrast to other reviews, our visualization analysis enables us to discern patterns, trends,
and gaps in the literature, offering a comprehensive and lucid view of the research field.

Section 2 presents the materials and methodologies employed in this study. When
coupled with visualization analyses, this provides a comprehensive portrayal of the re-
search landscape, highlighting the diverse perspectives and approaches researchers across
various fields adopt in their exploration of future energy consumption. We thoroughly
evaluated a wealth of published evidence, including empirical evidence, case studies, and
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review papers. In Section 3, our analysis identified dominant research topics, influential
authors, publication timelines, and emerging research themes. This paper discusses and
underscores (Section 4) the importance of comprehending the multifaceted complexity of
sustainable and smart energy consumption solutions by combining systematic bibliometric
review and visualization techniques with suggestions and limitations.

2. Materials and Methods

As Scopus is a popular source for literature searches it was chosen as the database for
this study [20]. Scopus content is recommended as it can differentiate between publications
by authors with the same name due to its filtering and indexing techniques. Scopus tools
provide much broader and more comprehensive content coverage than similar competitors
(Web of Science, PubMed) [21]. Furthermore, as a bibliometric database, Scopus provides
free access to author and source information, including metrics [22].

A systematic literature network analysis (SLNA) was used to select and evaluate the
literature. This approach consists of two main components (Figure 1). First, a systematic
literature review (SLR) is conducted, followed by a bibliographic network and visualization
data analysis. Keyword Co-occurrence Network (CONK) and Burst Detection analyses,
after examining the Global Citation Score (GCS) and Co-Couplings of key articles, allows
for the identification of emerging research directions.
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Based on the research questions identified in the introductory chapter, we conducted a
keyword search of the literature on the research directions of smart and sustainable energy
consumption. From a bibliographic research perspective, we first focused on building a
query to consider the most appropriate publications. The query also included the different
terms, synonyms, and expressions related to the keywords “smart”, “sustain*”, and “green”
related to energy consumption. The following query command (TITLE) was applied to the
publication titles, considering the above query terms: TITLE ((smart OR sustain* OR green)
AND energy AND consumption).

The first search returned 1545 documents from between 1997 and 2024. For further
analysis, only English-language articles were included in the query. The outcome included
articles (61.8%), conference papers (28.7%), book chapters (4.2%), reviews (3.1%), erratum
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(1.3%), and others (e.g., editorials, notes, retracted, data papers, and books) published by
the press, respectively.

The data were cleansed of duplicates, second or multiple copies published by authors
with the same title but in distinct sources (e.g., preprints, conference proceedings). We also
excluded sources where the authors could not be identified. The remaining number of
sources was 1527 in total.

The analysis included a review of the most cited literature on smart and sustainable
energy consumption using the Global Citation Score (GCS), a normalized bibliometric tool
provided by Scopus. As a first step, this methodology can provide insight into identifying
leading experts and networks of collaboration in the field [23]. Subsequently, CiteSpace
(version 6.2.R6) can identify and visualize key trends and transitions in the literature [24].
CiteSpace is designed to identify seminal research that has fundamentally impacted the growth
of a particular scientific discipline or body of knowledge. The open access software package
VOSviewer (version 1.6.20) provides almost unlimited analysis possibilities for bibliometric
mapping and the visualization of data downloaded from Scopus and other databases [25].

3. Results of Bibliographic Network Analyses and Visualizations
3.1. Global Citation Score (GCS) Analysis

A GCS analysis can identify studies of emerging importance. The GCS value is the total
number of citations received by a given publication across the entire Scopus database, and
the normalized GCS is used to classify papers based on their last cited year (2023) and the
number of years since their acceptance in Scopus [26]. This type of bibliometric analysis is used
to identify the most cited and published papers since their first publication in the scientific
community (Table 1) and to rank (TOP10) the most cited promising new papers in the field.

Table 1. Top 10 most cited articles, ranked by normalized GCS *.

Rank Title(s) Pub. Year References GCS GCS *

1 Endorsing sustainable development in BRICS: The role of
technological innovation 2023 [27] 200 200.0

2 Autonomous demand-side management based on game-theoretic
energy consumption scheduling for the future smart grid 2010 [28] 2281 162.9

3
Alternative energy and natural resources in determining

environmental sustainability: a look at the role of government final
consumption expenditures in France

2023 [29] 137 137.0

4 Do renewable energy consumption and financial development matter
for environmental sustainability? New global evidence 2021 [3] 284 94.7

5
Do renewable energy consumption and financial globalization

contribute to ecological sustainability in newly
industrialized countries?

2022 [30] 185 92.5

6 The role of renewable energy consumption and financial development
in environmental sustainability: implications for the Nordic Countries 2023 [31] 90 90.0

7
Economic growth, renewable energy consumption, and ecological

footprint: Exploring the role of environmental regulations and
democracy in sustainable development

2022 [32] 176 88.0

8 Clean energy consumption, economic growth, and environmental
sustainability: What is the role of economic policy uncertainty? 2022 [33] 174 87.0

9
Unleashing the dynamic impact of the tourism industry on energy

consumption, economic output, and environmental quality in China: A
way forward towards environmental sustainability

2023 [34] 83 83.0

10
Towards sustainable production and consumption: Assessing the

impact of energy productivity and eco-innovation on
consumption-based carbon dioxide emissions (CO2) in G-7 nations

2021 [35] 245 81.7

* Based on the top three most cited articles of each cluster.



Energies 2024, 17, 3336 5 of 14

Various aspects of sustainable development, renewable energy consumption, eco-
nomic growth, and environmental sustainability in different contexts are covered by the top
10 research papers. The first investigates the interaction (positive) effects of technological in-
novation, renewable energy consumption, and natural resources on limiting CO2 emissions
in BRICS countries to contribute to the 13th Sustainable Development Goal (SDG) of taking
urgent action to combat climate change and its impacts [27]. Alternative and nuclear energy,
natural resources, and the final consumption expenditure of the government are uncertain
and have a negative link with CO2 emissions [29]. While economic growth increases our
Ecological Footprint (EF), financial globalization and the renewable energies positively
impact environmental quality [30]. Meanwhile, democracy and environmental regulations
reduce EFs, contributing to ecological sustainability [32]. Nevertheless, Mohsenian-Rad
et al. [28] proposed a game-theoretic approach to manage energy consumption among
users in a smart grid to minimize energy costs while preserving user privacy.

3.2. Bibliometric Co-Coupling Network (CCN) Analysis

The CCN analysis complements previous studies by showing the networks of the most
cited publications. A bibliometric coupling link is a connection or relationship between
two elements, such as the links between publications, co-authorship, and co-occurrences
between researchers and terms.

A Co-Coupling Network Map (Figure 2) of the most cited studies contains one type
and one pair of links between two items. Each pair of links has a positive value. The higher
the value is, the stronger the link is. The number of pairs of cited references in the same
match equals the number of bibliographic coupling links between two documents.
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Figure 2. Co-Coupling Network Map (network visualization).

In this case, the construction of the network is from the level of individual documents
to the aggregate level. Standardized citation weights are used to correct the fact that older
documents have had more time to be cited than more recent ones. The normalized citation
count of a document is equal to its number of citations divided by the average number of
citations of all documents published in the same year and included in the data [36]. The
higher the citation value, the bigger the size of the node.

The articles published on the given topic were divided into eight clusters (see Table 2).
The top 3 cited articles in each cluster were considered in detail based on the CCN analysis.
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Table 2. Results of the CCN cluster analysis *.

Clusters Author(s) References Citations Pub. Year

1

Khan, I.; Zakari, A.; Ahmad, M.; Irfan, M.; Hou, F [37] 131 2022
Wang, R.; Usman, M.; Radulescu, M.; Cifuentes-Faura, J.;

Balsalobre-Lorente, D. [38] 58 2023

Bibi, A.; Zhang, X.; Umar, M. [39] 50 2021

2
Miao, Y.; Razzaq, A.; Adebayo, T.S.; Awosusi, A.A. [30] 163 2022

Adebayo, T.S [40] 87 2022
He, Y.; Li, X.; Huang, P.; Wang, J. [41] 57 2022

3

Mughal, N.; Arif, A.; Jain, V.; Chupradit, S.; Shabbir, M.S.;
Ramos-Meza, C.S.; Zhanbayev, R. [42] 148 2022

Ulucak, R.; Danish; Ozcan, B. [43] 144 2020
Nathaniel, S.P.; Adeleye, N. [44] 132 2021

4
Ding, Q.; Khattak, S.I.; Ahmad, M. [35] 235 2021

Ahmed, Z.; Ahmad, M.; Rjoub, H.; Kalugina, O.A.; Hussain, N. [32] 162 2022
Zafar, M.W.; Saeed, A.; Zaidi, S.A.H.; Waheed, A. [45] 76 2021

5
Saint Akadiri, S.; Alola, A.A.; Akadiri, A.C.; Alola, U.V. [46] 227 2019

Paramati, S.R.; Apergis, N.; Ummalla, M [47] 86 2018
Zaharia, A.; Diaconeasa, M.C.; Brad, L.; Lădaru, G.R.; Ioanăs, C. [48] 58 2019

6

Zaman, K.; Moemen, M.A. el [49] 288 2017
Rehman, A.; Ma, H.; Ozturk, I.; Ulucak, R [50] 93 2022

Anser, M.K.; Usman, M.; Godil, D.I.; Shabbir, M.S.; Sharif, A.;
Tabash, M.I.; Lopez, L.B. [51] 62 2021

7
Xue, C.; Shahbaz, M.; Ahmed, Z.; Ahmad, M.; Sinha, A. [33] 156 2022

Vasylieva, T.; Lyulyov, O.; Bilan, Y.; Streimikiene, D. [52] 146 2019
Qudrat-Ullah, H.; Nevo, C.M. [53] 53 2021

8
Adebayo, T.S.; Ullah, S.; Kartal, M.T.; Ali, K.; Pata, U.K.; Ağa, M. [27] 165 2023

Ikram, M.; Zhang, Q.; Sroufe, R.; Shah, S.Z.A. [54] 158 2020
Jiang, Z.; Lyu, P.; Ye, L.; Zhou, Y.W. [55] 95 2020

* Based on the top 3 most cited articles of each cluster.

In the first cluster, articles present research findings and insights on the relationship
between energy transitions, energy consumption, and environmental sustainability from
different aspects and regions. The focus is on OECD countries [37], European developing
countries [38], and the United States [39]. The papers highlight the complex interplay
between energy consumption, technological innovation, economic development, and envi-
ronmental sustainability. The focus is on the importance of sustainable energy practices
and technological innovation for mitigating environmental degradation and promoting
long-term environmental sustainability.

The research in the second cluster clarifies the required magnitude of renewable en-
ergy consumption, political stability, financial globalization, and other factors in achieving
environmental sustainability in particular countries. Insights into the relationships be-
tween energy use, economic growth, and environmental degradation provide valuable
information for stakeholders addressing environmental challenges [30,40,41].

The third cluster underlines the intricacy of the relationship between energy consump-
tion and environmental sustainability [42]. These studies highlight the importance of
introducing renewable energy, using resources sustainably [43], and adopting strategic
policies to achieve long-term environmental protection and sustainable development at
regional and global levels [44].

The documents in the fourth cluster look at different aspects of the relationship between
natural resources, the consumption of renewable energy, the quality of the environment,
and sustainable development. These studies provide valuable insights into the complex
dynamics between energy consumption, environmental quality, and the policies needed to
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achieve sustainable development objectives [32,45]. They provide insights for policymakers
to address environmental challenges [35] effectively.

The relationship between renewable energy consumption, economic activities, and
sustainable development is investigated in the fifth cluster. These studies highlight the
positive long-term relationship between environmental sustainability, renewable energy
consumption, and economic growth as causal relationships between renewable energy
consumption and other growth determinants [46]. GHGs and GDP correlate with energy
consumption, while female population growth and health spending do not [47,48].

The sixth cluster of studies examines the relationship between energy consumption,
carbon dioxide (CO2) emissions, and economic development and the implications for
sustainable growth and environmental quality. These papers highlight the need for com-
prehensive policies and strategies to achieve sustainable growth while mitigating green
degradation concerning energy consumption [49,50], and they stress the necessity of miti-
gating the negative impacts of global warming [51].

The seventh cluster explores how clean energy consumption relates to ecological
sustainability and other factors. Some consider economic policy uncertainty (EPU) and
explore how using clean energy affects CO2 emissions, which drive economic growth [33].
Others accepted that weakening controls on corruption increases GHG emissions [52].
However, scholars claim that solving sustainability issues through emissions reduction is
not currently a priority for inclusive development in Africa [53].

The final and eighth group of sources looks at different aspects of the relationship
between the consumption of clean energy, economic growth, environmental sustainability,
and policy uncertainties. These findings have the power to shape the way organizations
make decisions and investments, leading to a reduction in CO2 emissions and a boost in
ecological sustainability [54]. The transformation of structure is of greater significance
than the overall progress of energy innovation in driving economic growth and addressing
energy consumption disparities [55].

3.3. Burst Detection Analysis (BDA)

The Burst Detection Analysis (BDA) seeks to identify research areas and progress
patterns over time to reveal the dynamics of academic articles [56]. Figure 3 shows the top
seven keywords of Kleinberg’s Burst Detection algorithm’s strongest citation bursts [57].
All word marks were converted to lowercase as part of the normalization process. End
words were excluded, and periods and hyphens were removed from abbreviations and
initials. The BDA lists the authors’ keywords that indicate significant interest this topic
between 1997 and 2024. The focus of scientific research has shifted from smart grid(s)
to energy efficiency and demand side management (2012–2018). Importantly, keywords
such as “energy consumption and scheduling” were frequent between 2013 and 2020.
Environmental sustainability (strength: 4.86) and green building (4.30) are tied to the
leading bursts in current years (2021–2024).
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New technologies can enhance energy efficiency and reduce carbon footprints, creating
more sustainable energy consumption aligned with environmental goals and economic
objectives [58]. As advanced technologies are integrated into our lives, the possibilities
for innovative progress are endless. Artificial intelligence (AI) is leading the charge in
revolutionizing energy production and a wide range of industries [59]. The integration of AI
and big data has the potential to enhance the precision of energy consumption dimensions,
a crucial aspect for the success of smart grids. These advanced systems are designed to
constantly monitor energy usage, minimize waste, and utilize machine learning to optimize
consumption, reducing daily peaks [60].

Smart homes and green buildings are designed to reduce energy consumption and
minimize environmental impact. Sustainable materials and green buildings meet present
needs without sacrificing future generations. Green buildings are a proven solution to save
energy and minimize water usage with their sustainable features [61]. Moreover, the smart
city concept is an extension of smart homes, with optimization techniques implemented on
a much larger scale to manage urban traffic, street lighting, and waste effectively [62].

3.4. Co-Occurrence Network of Keywords (CONK) Analysis

Figure 4 provides more detailed knowledge on the keywords and clusters generated
by the CONK method. By default, we performed clustering based on the total strength
of the citations, which normalizes the association between each element [63]. Clusters do
not overlap, i.e., an item can only belong to one cluster. However, clusters do not have to
cover all items. Therefore, there may be keywords that do not belong to any cluster. Serial
numbers identify the clusters. This cluster analysis resulted in five different research topics.
The co-occurrence of keywords in the dataset determines the order of the research topics.
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Cluster 1 examines renewable energy’s influence on economic advancement, sus-
tainable development, and environmental stability. Adebayo et al. [27] indicated that
technological advancements and using renewable energy can decrease CO2 emissions,
while utilizing natural resources can also aid in reducing emissions. Nevertheless, their
research emphasizes the need for additional exploration of different factors related to
environmental stability beyond CO2 emissions and suggests comparing results from other
regions. However, the study also noted the need for further investigation into the spe-
cific mechanisms and policies that can increase the use of renewable energy in the EU-28
countries to maximize their impact on economic growth and environmental sustainability.

Cluster 2 is focused on developing smart grid technologies to optimize energy man-
agement, demand response, and forecasting. There are three primary energy management
strategies for smart homes, for instance, (1) DA-GA, (2) DA-Game Theory, and (3) DA-
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GmEDE. Hafeez et al. [64] conducted a study to investigate the impact of these strategies on
electricity billing and peak-to-average rates (PARs) when home appliances are scheduled in
response to price signals predicted for the day. The results indicated that the DA-GmEDE
strategy particularly effectively reduces PARs and costs. Furthermore, the role of smart
cities and the importance of integrating socio-behavioral factors into adopting smart tech-
nologies is emphasized. A broader consideration of technological innovations and social
dynamics is necessary to promote smart city benefits such as social inclusion and security.
Their study highlights the need for more inclusive research considering multiple significant
factors [65].

Cluster 3 focuses on applying machine learning, deep learning, Internet of Things (IoT)
technologies, and big data analytics in the context of smart cities and buildings. Divina
et al. [66] implied that machine learning models, especially ensemble techniques and neural
networks, are more effective in predicting energy consumption patterns than traditional
statistical methods. Pham et al. [67] demonstrated that particle swarm optimization and
genetic algorithms can substantially improve energy efficiency and user satisfaction in
dynamic pricing systems in smart grids. Meanwhile, Muralidhara et al. [68] showed
that support vector machines and neural networks can more accurately predict energy
consumption, leading to more efficient energy management and planning for building
energy requirements. Imran et al. [69] introduced a predictive control system for optimizing
thermal comfort and energy consumption in residential buildings, significantly reducing
energy usage and improving living comfort. IoT-based climate control systems for smart
greenhouses also reduced energy consumption compared to traditional systems while
optimizing conditions for crop cultivation [70].

Cluster 4 focuses on mitigating the impact of global warming by promoting energy
efficiency, green energy sources, energy saving, and sustainable consumption. A study
in France from 1987 to 2019 examined the effects of clean energy consumption on CO2
emissions, considering factors such as urbanization and economic growth, and found
that economic policy uncertainty (EPU) and economic growth increase emissions and
that urbanization supports environmental quality [33]. Furthermore, the efficiency of coal
utilization and the uncertainty surrounding climate policies can reduce CO2 emissions by
various rates and over an extended period. Additionally, the consumption of green energy
and the implementation of green innovations have been shown to enhance ecological quality
by reducing CO2 emissions in the short-to-medium term [71]. This research delves into
strategies to reduce energy consumption and CO2 emissions in different neighborhoods,
focusing on the role of renewable energy and efficient building designs.

Moreover, significant improvements can be achieved through technological and pol-
icy adaptations by 2050 [72]. Furthermore, for optimizing energy consumption and data
transmission predisposed to delay in clustered wireless sensor networks (WSNs), a new al-
gorithm was invented that minimizes energy use while ensuring efficient data handling [73].
However, there remains a gap in our understanding of the real-world application and scal-
ability of the proposed algorithm in diverse operational environments, such as different
types of IoT applications.

Cluster 5 focuses on sustainable architectural solutions, such as green roofs and energy-
saving technologies, to reduce energy consumption. Kirikkaleli and Adebayo [3] analyzed
the impact of financial development and renewable energy consumption on environmental
sustainability globally, using advanced econometric methods. The results revealed a sig-
nificant long-term positive effect of both financial development and renewable energy on
environmental sustainability, suggesting that global policies should promote these factors
to enhance environmental quality. Ulucak et al. [43] delved into the impact of renewable
and non-renewable energy consumption, GDP per capita, and natural resource rents on en-
vironmental degradation across OECD countries. Their econometric models, incorporating
the Environmental Kuznets Curve (EKC) hypothesis, tested these relationships and found
that environmental degradation can decrease when per capita income reaches a threshold
level. Additionally, Yumashev et al. explored the influence of energy consumption, the
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Human Development Index (HDI), and environmental factors on sustainable development.
The utilization of the three-stage least squares (3SLS) method offered insights into the
impact of renewable energy sources on economic conditions and sustainable development
levels, highlighting the intricate interplay among these factors and the HDI [74].

4. Discussion and Conclusions

This study provides a comprehensive bibliometric review and visualization of smart
and sustainable energy consumption, addressing the challenges and opportunities in de-
veloping renewable and non-renewable energy sources. The study methodically examines
research trends and emerging themes and integrates intelligent solutions for sustainable
energy resource consumption.

The findings of this study align with previous reviews [75,76], highlighting the intri-
cate and multifaceted process of transitioning to sustainable energy consumption. The
results of this study underscore the importance of incorporating smart technologies and
implementing efficient energy management practices. Furthermore, identifying critical
research areas and influential works serves as a guide for future studies and illustrates
potential opportunities for collaboration.

Several dominant areas that contribute to developing smart energy consumption
behavior, load forecasting, and smart grid technologies have been identified. There is
a clear trend towards incorporating the Internet of Things (IoT) for improved energy
management. In addition, this review maps the contributions of leading researchers and
tracks publication trends over recent decades, highlighting pivotal works that have shaped
the current landscape.

Despite the benefits of sustainable energy programs, some challenges and limitations
must be addressed. Ongoing support and a continuous energy supply are essential, and
efficient storage solutions are crucial for balancing supply and demand, especially for
renewable energy sources. Advancements in smart grid infrastructure are necessary for
integrating renewable energy and enhancing our overall energy efficiency.

Energy optimization means achieving the same output with less energy consump-
tion [77]. It can be accomplished using energy-efficient technologies, such as LED lighting
or more efficient heating and cooling systems. By adopting these energy-saving measures,
businesses and individuals can significantly reduce their energy consumption and costs [78].
By deploying intelligent grid systems, the real-time monitoring of energy consumption
data is enabled, allowing for prompt interventions to minimize energy usage [79]. De-
veloping more sophisticated and enduring energy consumption practices is not solely a
technological challenge but also a necessary reaction to imminent environmental issues.
Intense population growth has been an ongoing trend and is expected to continue in the
foreseeable future. As a result, there will be an increasing demand for industrial production,
which in turn will lead to an amplified reliance on natural resources [80]. It is crucial to
recognize that the long-term viability of industrial production and economic growth hinges
on balancing resource needs and preserving natural ecosystems [81].

The integration of smart infrastructure and IoT is revolutionizing energy optimization,
and the smart home is emerging as a leading example of this trend. IoT devices, including
advanced sensors, are deployed throughout homes to capture, store, and analyze real-time
data [82]. These data are then leveraged to optimize energy usage and improve overall
efficiency. The data collected from smart homes are routed to a central processing unit
which can intervene in the processes of the home. The development of such smart homes
serves to mitigate energy consumption in urban settings [83]. Improved data management
enables the better monitoring of carbon emissions, providing a clearer picture of their
ecological impact [84].

The concept of smart cities is closely associated with the rise of Artificial Neural
Networks (ANNs). Bourhnane et al. [85] have described a model for predicting the energy
consumption of appliances in a smart grid. This model is part of a larger research project
to improve energy management systems in smart grids, utilizing various technological
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tools such as machine learning and renewable energy sources. The ANN model is designed
to assist in planning and optimizing energy use efficiently across different devices and
periods. The authors emphasize that while existing models for predicting and timing
energy consumption exist, they often only perform well on limited datasets and may not
be applicable in real-world situations.

Their research suggests that decision-makers may need to fully consider diverse cul-
tural and economic factors, which can greatly affect the effectiveness of sustainable energy
initiatives. It also points out a potential oversight of technological and infrastructural
limitations in various regions. In addition, critics argue that these studies fail to ade-
quately consider the long-term environmental and social impacts of implementing these
technologies, particularly regarding resource consumption and waste management [86].

There are several limitations to this study. First, the results of bibliometric analyses can
vary depending on the chosen database. Second, the limited access to certain documents
excluded critical writings that could be valuable for future researchers studying the subject.
Research should focus on the advancement of affordable and high-capacity energy storage
systems. Additionally, exploring smart grid technologies to improve their reliability and
efficiency is advised. Further exploration of utilizing IoT and big data for predictive
maintenance and real-time energy management is also warranted.
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