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Abstract: The broad acceptance of sustainable and renewable energy sources as a means of integrating
them into electrical power networks is essential to promote sustainable development. Microgrids
using direct currents (DCs) are becoming more and more popular because of their great energy
efficiency and straightforward design. In this work, we discuss the control of a PV-based renewable
energy system and a battery- and supercapacitor-based energy storage system in a DC microgrid. We
describe a hierarchical control approach based on sliding-mode controllers and the Lyapunov stability
theory. To balance the load and generation, a fuzzy logic-based energy management system has been
created. Using a neural network, maximum power defects for the PV system were determined. The
global asymptotic stability of the framework has been verified using Lyapunov stability analysis.
In order to simulate the proposed DC microgrid and controllers, MATLAB/SimulinkR (2019a)
was utilized. The outcomes show that the system operates effectively with changing production
and consumption.

Keywords: renewable energy generation; DC microgrid; fuzzy logic system; sliding mode controller;
Lyapunov stability

1. Introduction

The Distributed Generation concept has played an essential role in the transition from
traditional power production to clean power energy over the last two decades. Wind and
solar and energy are abundant across the world, and they are the primary contributors
to decreasing carbon emissions and ensuring environmental sustainability [1,2]. They
are used with REs and loads to build MGs. The major benefits of MGs are improved
dependability, autonomous control, and the capacity to satisfy load needs in both grid-
connected and islanded modes [3,4]. They are divided into two types, namely AC and DC.
Because of their superior efficiency, lower cost, and lack of reactive power, DCMGs have
been largely deployed in remote locations [5]. The MG requires an appropriate control
strategy to deliver continuous and adequate energy for the load demand while balancing
all power fluxes [6,7], and it may be linked to or disconnected from the main network.
Because of its simplicity, linear control is the most commonly used technique for regulating
MGs. It is also well known in both industry and academics. Significant studies have been
performed to this end utilizing various linear control approaches. Complex optimization
approaches were used to solve the DCMG’s stability problem with constant power loads [8].
An observer-based droop control was used to manage the DC bus voltage of a simple MG
with two storage units [9]. An expanded model for DG resources [10] was used to examine
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a robust control approach for regulating energy units in a DCMG, with stability analysis
being carried out using a defined set of eigen-values for a linearized model.

Research on the nonlinear nature of power converters integrated with DG units has
been undertaken utilizing various linear control techniques [11,12], as well for nonlinear
systems with fuzzy logic control [13]. Substantial research has been performed using the
nonlinear control approaches to overcome the difficulties outlined in the case of linear
control systems. The traditional MPPT method for PV array voltage was used to build
a robust nonlinear controller for power source management in a DCMG with a PV solar
panel [14]. A passivity-based nonlinear controller was investigated, and it was discovered
that the bus voltage did not remain constant, and no global stability of the system was
demonstrated [15]. The use of SE has been examined as a single DG unit using a nonlinear
adaptive backstepping controller for islanded DCMGs [16]. A sliding mode nonlinear
control has been examined in [17]; the variations’ bus voltages were identified as a result of
the lack of an ES device capable of providing quick energy transients under load demand.
Considering the drawbacks of past studies and researching the control and operation of
RESs coupled with storage energy systems, control is planned globally and implemented
locally [18–20].

In order to overcome the difficulties faced by the aforementioned studies (among
others), the MG is used in this study to integrate DG to time-varying demands, with storage
system components operating on distinct time scales (battery and supercapacitor). The
DCMG’s control strategy is divided into two layers. The low-layer controller is based
on the sliding-mode controller and Lyapunov stability, and ensures that each element
is exponentially stable in relation to its own reference. Artificial neural networks are
employed by the PV coupled with the MG to operate during MPPT, achieving optimum
efficiency throughout the day despite disturbances from environmental changes.

Furthermore, high-level controllers based on fuzzy logic systems provide references
based on various objectives, such as MPPT and maintaining the power equilibrium by
delivering the desired currentof the battery and the reference current of SC, according to
the load power needs. A constructive Lyapunov function explicitly analyzes the system’s
stability and ensures the exponential stability of the entire system under moderate condi-
tions, which define the grid’s operating conditions. The resulting system will then provide
excellent dynamic performance and adaptability. Computer simulations are then used to
validate the developed nonlinear control strategy.

The paper is structured as follows. Section 2 describes the system design and describes
the DC microgrid model, Section 3 provides issue formulation and control goals, and
Section 4 proposes an MPPT approach for the PV system, utilizing an artificial neural net-
work. Section 5 analyzes the design of the proposed controller utilizing a fuzzy logic energy
management system, and Section 6 investigates the stability analysis of the connected
DC MG system. Section 7 contains the case studies and simulation results, followed by
Section 8’s conclusions

2. Components of DC Microgrid System

Figure 1 shows the DC microgrid system under examination. It is made up of a
PV-generating source, a battery, and a supercapacitor energy storage unit that are all linked
together by a Three-Input DC-DC Boost Converter. The PV input is connected to the DC
microgrid by a single unidirectional leg, while the storage components are connected via
two bidirectional legs. A power transmission line connects the load and DC bus.
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tery voltage is not. The signals monitored are the 2LI  and 2CV  states, as well as the bat-
tery voltage VBAT. The duty cycle u2 is used as the control input. 

Figure 1. The DCMG system configuration.

2.1. PV Energy System

A solar panel is made up of PV modules, which absorb sunlight and convert it into
direct current energy. Figure 2 depicts the layout of the PV energy system. The PV array
was coupled to a DC-DC converter to exchange power with the DC bus, which was thought
to be in continuous conduction mode. The system model requires two state variables in
order to operate correctly as follows: The solar panel voltage is unknown, but the positive
capacitance, resistance, and inductor values are known as C1, R1, R01, R02, L1, respectively.
The PV array voltage VPV ∈ ℜ+ states IL1 and VC1 as the detected signals. The control
input, u1, is defined as the circuit’s duty cycle; its objective is to properly integrate the
power flowing from the source. This is referred to as MPPT, and it consists of regulating
the voltage VC1 to its reference VC1ref , which is provided by a higher-level controller and is
supposed to remain constant across the time period T.
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2.2. Battery Storage System

The battery is connected to the DC bus by the DC-DC converter. For the converter, we
select two state variables as follows: the capacitor voltages VC2 and the inductor current
IL2. C2, R2, L2, R03, and R04 are well-known positive circuit variables, whereas the battery
voltage is not. The signals monitored are the IL2 and VC2 states, as well as the battery
voltage VBAT. The duty cycle u2 is used as the control input.

2.3. Supercapacitor Storage System

The SC is connected to the DC bus through the DC-DC converter. The inductor current
IL3 and the capacitor voltage VC3 are significant. We know the positive values of C3, R3, L3,
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R05, R06, and the VSC disturbance at each time t. (SC voltage). The system’s control input is
the duty cycle u3. Its mission is to govern the VDC. The voltage of a capacitor is directly
linked to the grid. The observed signals are the SC voltage VSC> 0, as well as the states VC3
and IL3. In this case, VCD indicates the voltage of the capacitor CCD, which is the DCMG in
Figure 2. This voltage is determined by the connections with the load and the sources, with
RL ∈ ℜ+ denoting the load resistance.

3. Problem Formulation and System Modeling
3.1. System Modeling

As shown in Figure 2, the mathematical model is obtained based on the power elec-
tronics averaging technique [21–23], controlled using PWM, and can be expressed using
the following equations:

dVC1
dt = − 1

R1C1
VC1 − 1

C1
IL1 +

1
R1C1

VPV
dIL1
dt = 1

L1
VC1 − [(R01−R02)u1+R02]

L1
IL1 − (1−u1)

L1
VDC

dVC2
dt = − 1

R2C2
VC2 − 1

C2
IL2 +

1
R2C2

VBAT
dIL2
dt = 1

L2
VC2 − [(R03−R04)u2+R02]

L2
IL2 − (1−u2)

L2
VDC

dVC3
dt = − 1

R3C3
VC3 − 1

C3
IL3 +

1
R3C3

VSC
dIL3
dt = 1

L3
VC3 − [(R05−R06)u3+R06]

L3
IL3 − (1−u3)

L3
VDC

dVDC
dt = 1

CDC
[(1 − u1)IL1 + IL2 + IL3 − iLoad]

(1)

Let
[
x1 x2 x3 x4 x5 x6 x7

]T
=

[
VC1 IL1 VC2 IL2 VC3 IL3 VDC

]T , then
the system (1) can be rewritten as follows:

dx1
dt = − 1

R1C1
x1 − 1

C1
x2 +

1
R1C1

VPV
dx2
dt = 1

L1
x1 − [(R01−R02)u1+R02]

L1
x2 − (1−u1)

L1
x7

dx3
dt = − 1

R2C2
x3 − 1

C2
x4 +

1
R2C2

VBAT
dx4
dt = 1

L2
x3 − [(R03−R04)u2+R02]

L2
x4 − (1−u2)

L2
x7

dx5
dt = − 1

R3C3
x5 − 1

C3
x6 +

1
R3C3

VSC
dx6
dt = 1

L3
x5 − [(R05−R06)u3+R06]

L3
x6 − (1−u3)

L3
x7

dx7
dt = 1

CDC
[(1 − u1)x2 + x4 + x6 − iLoad]

(2)

3.2. Analysis of the DCMG System

To understand the system’s behavior, a thorough examination of the controller design
necessary for DCMG control is carried out as follows:

3.2.1. Dynamical Behavior

The DCMG system includes a wide range of nonlinear dynamics due to the power
sources and electromagnetic interactions between them, as well as numerous switching
components exhibited in converters (boost-buck). Moreover, the dynamic characteristics
of the converters has been categorized as including bifurcation and/or chaos [24,25]. To
avoid the failure in the circuits, a mathematical modeling of the system has been suggested,
while Lyapunov stability has been proven to be effective in regard to avoiding bifurcation.

3.2.2. Nonlinear Characteristics

The system is very nonlinear due to the interconnection and switching between the con-
verters. Nonlinearity in converters may be addressed successfully using Lyapunov-based
methods, which provide high sensitivity, robustness, and superior transient response [26].
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3.2.3. Non-Minimum Phase Nature

The inductor shows this type of behavior when the current lags behind the desiredsig-
nal in DC-DC converters [27]. The current’s control systems, which utilize an indirect
control method to force currents to follow their respective references, are used to prevent
this tendency. The mentioned facts need the construction of a nonlinear controller capable
of handling the nonlinear dynamic behavior of power converters. Furthermore, in the next
section, the parameters of the proposed control strategy based on a nonlinear controller are
built in such a way that they govern the nonlinearities.

3.3. Problem Formulation

The purpose of this work is to maintain the DCMG voltage at its nominal value, while
also ensuring the total system’s stability. The DCMG control is divided into two layers to
achieve this goal.

3.3.1. High-Level Control

The PV high-level controller is based on an intelligent technology that uses an artificial
neural network (ANN) [7] to harvest the most power from the solar panel. In DCMG,
power flow management serves as a high-level controller for the storage system. The
DCMG voltage VDC is compared to its reference value VDCref, and the total current required
by the storage to fulfill the power flow and guide the DC grid voltage to its reference is
calculated. To correct an equation, a Proportional Integral (PI) corrector is utilized. The
objective of a fuzzy logic system (FLS) [28] is to generate the reference currents of a battery
and a SC (IL2ref and IL3ref , respectively).

3.3.2. Low-Level Control

The control of power converters is required to regulate the input and output flow
of the current based on reference signals provided by a sliding-mode control algorithm.
Figure 3 shows the control approach and integration with a DC bus. The objective of this
strategy is to stabilize the DCMG voltage and deliver adequate power to the load while
decreasing battery charge/discharge cycles.
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4. MPPT for a PV Subsystem Using Artificial Neural Network

To increase the capacity of a solar panel, its operating point must be controlled in order
to obtain the maximum energy from it. This work optimized an artificial neural network
MPPT controller to create the maximum peak power voltage, which delivers a reference
voltage VC1ref to be tracked by the lower level controller. Variations in meteorological
conditions such as fog, heat, dust, and other particles floating in the air cover the panel over
time, reducing the efficiency of the PV system’s power conversion process significantly.
Because the values generated by the neural network closely match the goal values, it may
be used to estimate future indicator values of VC1ref from previous data and to recognize
trends in irradiance and temperature regardless of the variables indicated above. The data
used to train and target the neural network was derived from a Simulink model of a PV
array with variable temperature and irradiance data points.

As illustrated in Figure 4, the neural network described in this workhas two inputs,
temperature and solar irradiance, and one output, VC1ref .
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The number of neurons in the hidden layer has been used to regulate the network’s
performance. The input data have been sent to the hidden layers, which have calculated the
output data. To train the neural network, the Levenberg–Marquardt method [7] was used to
solve nonlinear issues, such as fluctuations in irradiance and temperature. The regression
plot constructed using the neural network toolbox in MATLAB (2019a), displayed in
Figure 5, shows that the output value of VC1ref accurately reflects the target data. The solid
line in the regression plot indicates the perfect correlation between the predicted and target
data, while the dashed line represents the best fit provided by the neural network method.

Table 1 shows a comparison between VC1ref target values and neural network-produced
values. The findings of the artificial neural network MPPT controller provide reliable fore-
casts throughout a wide range of operating modes, particularly for very rapid changes in
weather conditions, which produces a reference voltage VC1ref .

Table 1. A comparison of the VC1ref ’s trained and simulated values.

G (w/m2) T(◦C)
VC1ref (V)

Trained Simulated Value
640 21 294.2523 293.385
700 26 287.681 286.163
500 31.6 280.308 281.629
900 37.4 272.673 270.944

1000 42 266.610 266.713
855 36 274.654 273.496
740 33 278.496 278.911
615 30 282.472 281.911
515 27.2 286.177 287.385
445 25 289.085 288.219
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5. DC Microgrid Control and FLS Energy Management
5.1. Fuzzy Logic Energy Management System

The artificial neural network MPPT controller provides a reference voltage VC1ref
that the lower level controller may track. A Li-ion battery and a SC are employed in
the proposed storage system. The control’s goal is to charge and discharge the storage
component while maintaining a steady grid voltage during transients. The current going
from/to the storage to/from the DC-link capacitance represents the power necessary to
complete the power flow. Due to the buck-boost converter’s non-minimum phase behavior,
the DC bus voltage VDC cannot be set directly to VDCref. To keep the bus voltage at the
reference voltage VDCref, the PI corrector calculates the DC bus reference current Idcref.

The FLS (Figure 6) delivers the battery and SC reference currents (IL2ref and IL3ref ,
respectively). These reference currents will allow the DC bus voltage to stay constant
regardless of the load behavior or variations in the PV generator power drawn.

To divert unexpected power variations into the SC, a low-pass filter is applied to the
Idc current. The Idcref current is transmitted through this low filter to create the battery’s
current desired Idcref. The difference between the Idcref and IL2ref

′ determines the SC current
reference IL3ref

′.



Energies 2024, 17, 3345 8 of 23

Energies 2024, 17, x FOR PEER REVIEW 8 of 26 
 

 

Table 1 shows a comparison between VC1ref target values and neural network-
produced values. The findings of the artificial neural network MPPT controller provide 
reliable forecasts throughout a wide range of operating modes, particularly for very rap-
id changes in weather conditions, which produces a reference voltage VC1ref. 

Table 1. A comparison of the VC1ref’s trained and simulated values. 

G (w/m2) T(°C) 
VC1ref(V) 

Trained Simulated Value 
640 21 294.2523 293.385 
700 26 287.681 286.163 
500 31.6 280.308 281.629 
900 37.4 272.673 270.944 
1000 42 266.610 266.713 
855 36 274.654 273.496 
740 33 278.496 278.911 
615 30 282.472 281.911 
515 27.2 286.177 287.385 
445 25 289.085 288.219 

5. DC Microgrid Control and FLS Energy Management 
5.1. Fuzzy Logic Energy Management System 

The artificial neural network MPPT controller provides a reference voltage VC1refthat 
the lower level controller may track. A Li-ion battery and a SC are employed in the pro-
posed storage system. The control’s goal is to charge and discharge the storage compo-
nent while maintaining a steady grid voltage during transients. The current going 
from/to the storage to/from the DC-link capacitance represents the power necessary to 
complete the power flow. Due to the buck-boost converter’s non-minimum phase behav-
ior, the DC bus voltage VDC cannot be set directly to VDCref. To keep the bus voltage at the 
reference voltage VDCref, the PI corrector calculates the DC bus reference current Idcref. 

The FLS (Figure 6) delivers the battery and SC reference currents (IL2ref and IL3ref, re-
spectively). These reference currents will allow the DC bus voltage to stay constant re-
gardless of the load behavior or variations in the PV generator power drawn. 

 
Figure 6. A block diagram demonstrating the fuzzy logic system. 

To divert unexpected power variations into the SC, a low-pass filter is applied to the 
Idc current. The Idcref current is transmitted through this low filter to create the battery’s 
current desired Idcref. The difference between the Idcref and IL2ref′ determines the SC current 
reference IL3ref′. 

Figure 6. A block diagram demonstrating the fuzzy logic system.

The SoC of the battery and the SC must be considered while developing the reference
currents. To choose the exact reference current, three switches are utilized, which are
controlled by the FLS in function of IL2ref *, IL2ref **, and IL3ref *.

Switch 1: Lets you choose between Idcref and IL2ref
′.

If Idcref is Negative and SoCSC is 95%, IL2ref
′′ equals Idcref; else, IL2ref

′′ equals IL2ref
′.

If Idcref is Positive and SoCSC is 25%, IL2ref
′′ equals Idcref; else, IL2ref

′′ equals IL2ref
′.

Switch 2: Lets you to choose between IL2ref
′′ and 0.

If Idcref is Negative and SoCba is 95%, IL2ref equals zero; else, IL2ref equals IL2ref
′′.

If IL2ref
′′ is Positive and SoCba is 25%, IL2ref equals zero; else, IL2ref equals IL2ref

′′.
Switch 3: Lets you choose between IL3ref

′ and 0.
If IL3ref

′ is Negative and SoCSC is 95%, IL3ref equals zero; else, IL3ref equals IL3ref
′.

If IL3ref
′ is Positive and SoCSC is 25%, IL3ref equals zero; else, IL3ref equals IL3ref

′.

- If the storge reference currentIL2ref is Negative, then the PV generator will produce
greater power than the load and the SoC of SC is greater that 95%, meaning the IL3ref
must be null.

- If the storge reference current IL2ref is positive, then the PV generator will fail to deliver
sufficient power and the SoC of SC is 25%, meaning the IL3ref must be null.

- If the Supercapacitor’s SoC exceeds 25%, the SC will start to discharge.
- When the PV panels supply the power required by the load, the IDCref is zero.

The aim of utilizing a FLS in this study is to regulate the total system power flow while
keeping the SoCba and the SoCSC at their allowable intervals of their SoC. As illustrated in
Figures 7 and 8, the FLS employed in this work comprises four inputs and three outputs.

The fuzzy logic system’s inputs are the storage reference current Idcref, the SoCba, the
SoCSC, and IL3ref .

The outputs are IL2ref * for the control of switch 1, IL2ref **for the control of switch 2, and
IL3ref * for the control of switch 3.

The FLS calculates the control of the three switches utilized for DC bus regulation
using the data from these four inputs, as shown in the flowchart.

Membership functions:
The described methodology’s objective is to develop membership functions for the

FLS’s input and output variables. The input membership functions are used to switch
between the various operational modes. Figures 7 and 8 depict them. To accommodate the
needs of the proposed strategy, the membership functions of the storage levels (Figure 7a,d)
are based on two levels; N stands for negative, and P stands for positive, where they
represent the sign of the reference current Idcref and IL3ref ’,with N and P representing the
charge and discharge of the SC and battery, respectively. Between 100 and −100 A, the
reference currents IL3ref

′ and Idcref are considered.
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The described methodology’s objective is to develop membership functions for the
inputs and outputs variables of the FLS. The membership functions are employed to switch
between the various operational modes. Figures 5 and 6 depict them. To satisfy the
demands of the suggested approach, the membership functions are based on two levels, N
and P (Figure 7a–d).
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functions of IL2ref **, and (c) membership functions of IL3ref *.

The membership of the SoCba and the SoCSC is depicted in Figure 7b,c. Similarly, three
levels are defined as follows:

• The SoC is represented by a low level of 25% (between 0 and 25%).
• The SoC is represented by a middling level of 25 to 95%.
• The SoC is represented at a high level of >95%.

The membership functions of the outputs are illustrated in Figure 8a–c, with switch1
controlling IL2ref *, switch2 controlling IL2ref **, and switch 3 controlling IL3ref *. These func-
tions are divided into two tiers, N and P, which indicate the sign of the switch commands.

Rules of FLS:
The rules of the FLS generated for energy management storage are derived from

system behavior analysis. It must be recognized in their formulation that utilizing differ-
ent control rules based on operational situations might increase the performance of the
energy management storage. The rules that link the FLS are shown in the following tables
(Tables 2–4):
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Table 2. Rules of the current IL2ref *.

SoCba

Low Medium High

Idcref N P P N

P N P P

Table 3. Rules of the current IL2ref **.

SoCsc

Low Medium High

Idcref N P P N

P N P P

Table 4. Rules of the current IL3ref *.

SoCsc

Low Medium High

Idcref
′ N P P N

P N P P

5.2. PV Subsystem Controller

Lets us look at the control u1 that is used to stabilizex1 and x2; it is created via utilizing
a sliding-mode approach to create an x1ref desiredvalue to x1 that is employed to guide VC1
to its equilibrium point after imposing a desirable dynamic behavior. From system (2),{ dx1

dt = − 1
R1C1

x1 − 1
C1

x2 +
1

R1C1
VPV

dx2
dt = 1

L1
x1 − [(R01−R02)u1+R02]

L1
x2 − (1−u1)

L1
x7

(3)

Let us first establish the output tracking error as e1 = x1 − x1re f ; the control input’s u1
goal is to correctly incorporate the PV energy while also obtaining the maximum power pos-
sible from the PV generator. This is known as MPPT, and it consists of regulating the voltage
VC1 (x1) to its reference VC1ref (x1ref ) delivered by a higher-level controller and deemed
constant throughout each time period T. The desired dynamic for x1 is introduced as

.
e1 =

.
x1 −

.
x1re f (4)

From Equations (3)and (4), we can then design

x2re f =
1

R1

[
VPV − x1re f

]
(5)

To track the state x2 to its reference value x2ref , we establish the following error term
for the controller’s design:

e2 = x2 − x2re f (6)

To develop an SMC, an SF was chosen that allows the system to reach the SF and
achieve the required desired value. Since the PV energy subsystem’s state space model has
just only one control law input u1, the SF has been defined as follows:

S2 = a2

(
x2 − x2re f

)
= a2e2 (7)

where a2 is a positive constant for the SF design parameter. If we derive the time of
Equation (7), we obtain the following:
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.
S2 = a2

( .
x2 −

.
x2re f

)
= a2

.
e2 (8)

Equation (6)’s time derivative provides the following equation:
.
e2 =

.
x2 −

.
x2re f (9)

Replacing
.
x2 from Equation (3) into Equation (9) yields

.
e2 =

1
L1

x1 −
[(R01 − R02)u1 + R02]

L1
x2 −

(1 − u1)

L1
x7 −

.
x2re f (10)

Substituting
.
e2 from Equation (10) into Equation (8) yields

.
S2 = a2

[
1
L1

x1 −
[(R01 − R02)u1 + R02]

L1
x2 −

(1 − u1)

L1
x7 −

.
x2re f

]
(11)

The control law u1 was selected in a manner so that it achieves global asymptotic
stability, as indicated below:

u1= uSC1+ uNC1 (12)

where uSC1 denotes the switching control that keeps the track on the SF and uNC1 denotes
the nominal control that brings the trajectory state to the SF. Using

.
S2 = 0 to obtain the

value of uNC1 yields

uNC1 =
a2L1

(R01 − R02)x2 − x7

[
1
L1

x1 −
1
L1

x7 −
R02

L1
x2 −

.
x2re f

]
(13)

and

uSC1 =
L1

(R02 − R01)x2 + x7

[
−k1|S2|αsgn

(
S2

ϕ1

)
− k2

∫
sgn

(
S2

ϕ1

)
dt
]

(14)

In Equations (13) and (14), the condition (always met in practice) (R01 − R02)x2 − x7 ̸= 0,
α is a constant ranging from 0 to 1 that converges the subsystem (3) to the SF, ϕ1 is the degree
of nonlinearity used to prevent chattering, and k1 and k2 are gains (positive) that are used
to modify the control law u1. Sgn is the Signumfunction, which is in the following form:

sgn(S) =


−1 i f S ≤ 0
0 i f S = 0
1 i f S > 0

(15)

Substituting the value of u1 in (12), (13), and (14) results in the following:

.
S2 = −k1|S2|αsgn

(
S2

ϕ1

)
− k2

∫
sgn

(
S2

ϕ1

)
dt (16)

For stability analysis, rearrange (16) as follows:
.
S2 = w2 + z2 (17)

where w2 = −k1|S2|αsgn
(

S2
ϕ1

)
and

.
z2 = −k2sgn

(
S2
ϕ1

)
.

To evaluate the subsystem’s (2) stability, the following Lyapunov candidate function
was used:

V1,2(x) = 2k2|S2|+
1
2

z2
2 +

1
2

(
k1|S2|αsgn

(
S2

ϕ1

)
− z2

)2
+

R1

2
e2

1 (18)

The Lyapunov function in (18) has a quadratic form as follows:

V1,2(x) = XT
1 P1X1 + XT

2 P2X2 (19)
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where XT
1 =

[
e1 0

]
, XT

2 =
[
|S2|αsgn

(
S2
ϕ1

)
z2

]
, P1 =

R1
2

[
1 0
0 0

]
, and P2 =

1
2

[
4k2 + k2

1 −k1
−k1 2

]
.

Its time derivative along the solution of (16) yields the following results:

.
V1,2(x) = − 1

2|S2|α
XT

1,2Q1,2X1,2 (20)

where k1 and k2 are positive and Q1,2 = k2
2

[
2k2 + k2

1 +
2
k2

−k1

−k1 1

]
.

In this case, if the controller gains k1 and k2 are positive, then Q1,2 > 0. The controller
u1 fits the Lyapunov stability condition, as demonstrated by (18), ensuring that the error
convergence is zero in the limited time. It also shows that the PV subsystem can provide
maximum power throughout the day.

.
V1,2(x) ≤ 0 (21)

5.3. Design of the Battery’s Current Control

We must create a control law u2 to direct IL2 toward its reference x4ref = IL2ref . It is
developed using a sliding-mode technique. From system (1),{

dx4

dt
=

1
L2

x3 −
[(R03 − R04)u2 + R02]

L2
x4 −

(1 − u2)

L2
x7 (22)

To track the state x4 to its referencevalue x4ref , we establish the following error term
for the controller’s design:

e4 = x4 − x4re f (23)

To develop an SMC, an SF was chosen that allows the system to reach the SF and
achieve the required desired value. Since the current battery subsystem’s state space model
just has only one control law input u2, the SF has been defined as follows:

S4 = a4

(
x4 − x4re f

)
= a4e4 (24)

where a4 is a positive constant for the SF design parameter. We derive the time of
Equation (24), obtaining the following:

.
S4 = a4

( .
x4 −

.
x4re f

)
= a4

.
e4 (25)

Equation (23)’s time derivative provides the following equation:
.
e4 =

.
x4 −

.
x4re f (26)

Substituting the value of
.
x4 from Equation (22) into Equation (26) yields

.
e4 =

1
L2

x3 −
[(R03 − R04)u2 + R02]

L2
x4 −

(1 − u2)

L2
x7 −

.
x4re f (27)

Substituting
.
e4 from Equation (27) into Equation (25) yields

.
S4 = a4

[
1
L2

x3 −
[(R03 − R04)u2 + R04]

L2
x4 −

(1 − u2)

L2
x7 −

.
x4re f

]
(28)

The control law u2 was selected in a manner that achieves global asymptotic stability,
as indicated below:

u2= uSC2+ uNC2 (29)
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where uSC2 denotes the switching control that keeps the track on the SF and uNC2 denotes
the nominal control that brings the trajectory state to the SF. Using

.
S4 = 0 to obtain the

value of uNC2 yields

uNC2 =
a4L2

(R03 − R04)x4 − x7

[
1
L2

x3 −
1
L2

x7 −
R04

L2
x4 −

.
x4re f

]
(30)

and

uSC2 =
L2

(R04 − R03)x4 + x7

[
−k3|S4|βsgn

(
S4

ϕ2

)
− k4

∫
sgn

(
S4

ϕ2

)
dt
]

(31)

In Equations (30) and (31), the condition (always met in practice) (R04 − R03)x4 + x7 ̸= 0,
β is a constant ranging from 0 to 1 which converges the subsystem (22) to the SF, ϕ2 is the
degree of nonlinearity used to prevent chattering, and, k3 and k4 are gains (positive) that
are used to modify the control law u2. Substituting the value of u2 in (29), (30), and (31)
results in the following:

.
S4 = −k3|S4|βsgn

(
S4

ϕ2

)
− k4

∫
sgn

(
S4

ϕ2

)
dt (32)

For stability analysis, rearrange (32) as follows:
.
S4 = w4 + z4 (33)

where w4 = −k4|S4|βsgn
(

S4
ϕ2

)
and

.
z4 = −k4sgn

(
S4
ϕ2

)
.

To evaluate the system’s stability, the following Lyapunov candidate function was used:

V4(x) = 2k4|S4|+
1
2

z2
4 +

1
2

(
k3|S4|βsgn

(
S4

ϕ2

)
− z4

)2
(34)

The Lyapunov function in (34) has a quadratic form V4(x) = XT
4 P4X4, where

XT
4 =

[
|S4|βsgn

(
S4
ϕ2

)
z4

]
(35)

and

P4 =
1
2

[
4k4 + k2

3 −k3
−k3 2

]
(36)

Its time derivative along the solution of (34) yields the following results:

.
V4(x) = − 1

2|S|β
XT

4 Q4X4 (37)

where k3 and k4 are positive and Q4 = k4
2

[
2k4 + k2

3 −k3
−k3 1

]
.

In this case, if the controller gains k3 and k4 are positive, then Q4 > 0.
The controller u2 fits the Lyapunov stability condition, as demonstrated by (38), en-

suring that the error convergence is zero in the limited time. This controller guarantees
that the battery is effectively managed and that the DCMG operates consistently under
different load situations. .

V4(x) ≤ 0 (38)
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5.4. Control Law Design for Supercapacitor

We must design a control law u3 to control the dynamics IL3 to ensure that the superca-
pacitor charges and discharges as required. It is developed using a sliding-mode technique.
From system (1), {

dx6

dt
=

1
L3

x5 −
[(R05 − R06)u3 + R06]

L3
x6 −

(1 − u3)

L3
x7 (39)

To track the state x6 to its referencevalue x6ref , we establish the following error term
for the controller’s design:

e6 = x6 − x6re f (40)

To develop an SMC, an SF was chosen that allows the system to reach the SF and
achieve the required desired value. Since the current supercapacitor subsystem’s state
space model has only one control law input u3, the SF has been defined as follows:

S6 = a6

(
x6 − x6re f

)
= a6e6 (41)

where a3 is a positive constant for the SF design parameter. We derive the time of
Equation (41), obtaining .

S6 = a6

( .
x6 −

.
x6re f

)
= a6

.
e6 (42)

Equation (40)s’ time derivative provides the following equation:
.
e6 =

.
x6 −

.
x6re f (43)

Substituting the value of
.
x6 from Equation (39) into Equation (43) yields

.
e6 =

1
L3

x5 −
[(R05 − R06)u3 + R06]

L3
x6 −

(1 − u3)

L3
x7 −

.
x6re f (44)

Substituting
.
e6 from Equation (44) into Equation (42) yields

.
S6 = a6

[
1
L3

x3 −
[(R05 − R06)u3 + R06]

L3
x4 −

(1 − u3)

L3
x7 −

.
x6re f

]
(45)

The control law u3 was selected in a manner that achieves global asymptotic stability,
as indicated below:

u3= uSC3+ uNC3 (46)

where uSC3 denotes the switching control that keeps the track on the SF and uNC1 denotes
the nominal control that brings the trajectory state to the SF. Using

.
S6 = 0 to obtain the

value of uNC3 yields

uNC3 =
a6L3

(R05 − R06)x6 − x7

[
1
L3

x5 −
1
L3

x7 −
R06

L3
x6 −

.
x6re f

]
(47)

and

uSC3 =
L3

(R05 − R06)x6 + x7

[
−k5|S6|δsgn

(
S4

ϕ3

)
− k6

∫
sgn

(
S6

ϕ3

)
dt
]

(48)

In Equations (47) and (48), the condition (always met in practice) (R05 − R06)x6 + x7 ̸= 0,
δ is a constant ranging from 0 to 1 that converges the subsystem (39) to the SF, ϕ3 is the
degree of nonlinearity used to prevent chattering, and k1 and k2 are gains (positive) that are
used to modify the control law u3. Substituting the value of u3 in (46), (47), and (48) results
in the following:

.
S6 = −k5|S6|δsgn

(
S6

ϕ3

)
− k6

∫
sgn

(
S6

ϕ3

)
dt (49)
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For stability analysis, rearrange (49) as follows:

.
S6 = w6 + z6

.
S6 = w6 + z6 (50)

where w6 = −k6|S6|δsgn
(

S6
ϕ3

)
and

.
z6 = −k6sgn

(
S6
ϕ3

)
.

To evaluate the system’s stability, the following Lyapunov candidate function was used:

V6(x) = 2k6|S6|+
1
2

z2
6 +

1
2

(
k5|S6|δsgn

(
S6

ϕ3

)
− z6

)2
(51)

The Lyapunov function in (51) has a quadratic form V6(x) = XT
6 P6X6,where

XT
6 =

[
|S6|δsgn

(
S6
ϕ3

)
z6

]
(52)

and

P6 =
1
2

[
4k6 + k2

5 −k5
−k5 2

]
(53)

Its time derivative along the solution of (51) yields the following results:

.
V6(x) = − 1

2|S|δ
XT

6 Q6X6 (54)

where k5 and k6 are positive and Q6 = k6
2

[
2k6 + k2

5 −k5
−k5 1

]
.

In (54), P6 is a positive definite matrix with positive k5 and k6 values. By carrying
out the Lyapunov function stability analysis as described in the preceding paragraph, it is
possible to deduce that the control law u3 renders the subsystem (39) asymptotically stable,
as demonstrated by (55). These controllers guarantee that the supercapacitor is effectively
managed and that the DCMG operate consistently under different load situations.

.
V6(x) ≤ 0 (55)

6. Interconnected System Stability Analysis

In the previous section, we designed the decentralized nonlinear controllers based on
the sliding mode for the controlled variable states x1, x2, x4, x6, and x7, which represent
photovoltaic, battery, and supercapacitor energy systems with the FLS-based power man-
agement system, which has been proposed for sharing load demands and to stabilize the
VDC voltage of the DC bus directly to VDCref.

However, for the uncontrolled variables, VC2 (x3) and VC3 (x5) cannot be directly
controlled due to non-minimum phase behavior (zero-dynamics); regulation is only valid
when the system is operating near its steady state operating point or in a neighborhood
of equilibrium.

Let us now shift our consideration to the internal dynamics (zero-dynamics). The
zero-dynamics equations of DCMG-system (1) may be rewritten as follows:{

dx3
dt = − 1

R2C2
x3 − 1

C2
x4 +

1
R2C2

VBAT
dx5
dt = − 1

R3C3
x5 − 1

C3
x6 +

1
R3C3

VSC
(56)

The equilibrium Ve
C2
(

xe
3
)

and Ve
C3
(
xe

5
)

can be yielded by computing the nonlinear

system of Equation (56)
(

dx3
dt = 0 dx5

dt = 0
)

as follows:{
0 = − 1

R2C2
x3 − 1

C2
x4re f +

1
R2C2

VBAT

0 = − 1
R3C3

x5 − 1
C3

x6re f +
1

R3C3
VSC

(57)
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In fact, a direct calculation gives xe
3 = R2C2

[
− 1

C2
x4re f +

1
R2C2

VBAT

]
xe

5 = R3C3

[
− 1

C3
x6re f +

1
R3C3

VSC

] (58)

As a result, a distinct equilibrium xe =
[
x1re f x2re f xe

3 x4re f xe
5 x1re f x1re f

]T

of system (1) may be found. The errors e3 and e5 are defined as follows:{
e3 =

(
x3 − xe

3
)

e5 =
(
x5 − xe

5
) (59)

The following Lyapunov function V3,5(x) is proposed:

V3,5(x) = eT
3 P3e3 + eT

5 P5e5 (60)

where P3 = R2C2
2

[
1 0
0 0

]
and P5 = R3C3

2

[
1 0
0 0

]
.

Its time derivative yields the following results:

.
V3,5(x) = −e2

3 − e2
5 (61)

The Lyapunov function’s derivative
.

V3,5(x) is negative definite, ensuring the zero
dynamics’ exponential stability.

These partial conclusions may now be grouped together in the following theorem,
which establishes the total stability characteristic.

Theorem 1. Considering the DCMG system (1) and the equilibrium points that it has established,
xe =

[
x1re f x2re f xe

3 x4re f xe
5 x1re f x1re f

]T , assuming that the following conditions are
met each time: 

(R01 − R02)x2 − x7 ̸= 0
(R03 − R04)x4 − x7 ̸= 0
(R05 − R06)x6 − x7 ̸= 0

(62)

Proof of Theorem 1. If control laws u1, u2, and u3, provided by (12), (29), and (46),
hold conditions (62), then there exist the design parameters α, β, δ, the positive gains
k1, k2, k3, k4, k5, k6, and the degree of nonlinearity used to prevent chattering ϕ1, ϕ2, ϕ3; as a
result, the closed-loop DCMG-system (1) is exponentially stable. □

Finally, we may define the creative Lyapunov function for the total DCMG system (1)
V1,2,3,4,5,6,7(x) = V1,2(x) + V3,5(x) + V4(x) + V6(x) + V7(x) as follows:

V1,2,3,4,5,6,7(x) = 2k2|S2|+ 1
2 z2

2 +
1
2

(
k1|S2|αsgn

(
S2
ϕ1

)
− z2

)2
+ R1

2 e2
1

+2k4|S4|+ 1
2 z2

4 +
1
2

(
k3|S4|βsgn

(
S4
ϕ2

)
− z4

)2
+ R2C2

2 e2
3 +

R3C3
2 e2

5

2k6|S6|+ 1
2 z2

6 +
1
2

(
k5|S6|δsgn

(
S6
ϕ3

)
− z6

)2
+ 1

2 e2
7

(63)

Its time derivative is then
.

V1,2,3,4,5,6,7(x) = − 1
2|S|α XT

1,2Q1,2X1,2 − 1
2|S|β

XT
4 Q4X4

− 1
2|S|δ

XT
6 Q6X6 − e2

3 − e2
5 − e2

7
(64)
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7. Simulations Results

The DCMG was created with the SimPowerSystem toolbox from Matlab/Simulink.
Table 5 shows the parameters that have been utilized in the DCMG. The DC-bus is modeled
in this simulation as a capacitor; the intended voltage on the DC-bus is VDCref = 40 V and
the switching frequency is 100 kHz. The PV generator is constituted by two modules in
series; the number of cells per module is sixty and there are four parallel connected strings.
The voltage in open-circuit VOC = 363 V, current in short-circuit IOC = 8 A, voltage at the
maximum power point Vmpp = 17 V, current at the maximum power point Impp = 7.1 A, and
the power in the maximum point per module Pmp =120.7 W.

Table 5. The simulated DCMG parameters.

R02,R04,R06 45 mΩ
R01,R03,R05 44 mΩ

R1,R2,R3 14 mΩ
C1,C2,C3 4700 µF

CDC 1500 µF
L1,L2,L3 100 µH

The suggested supercapacitor bank has a total capacitance of 29 F and a rated voltage
of 32 V. The battery is an Li-ion battery with a 24 V nominal voltage. The maximum charge
current is 17.5 A, while the maximum discharge current is 30 A. The current capacity is
14 Ah.

The major aim is to show that the suggested control approach performs effectively
in circumstances of variable solar irradiation and load fluctuations. It is planned that
the voltage of the DC-bus will be regulated with a subsystem battery and subsystem
SC in such a way that the SC will rapidly provide the elements of the needed DC-bus
voltage compensated current, while the subsystem battery device will provide the slow
variable components.

The gains utilized in the simulated nonlinear controllers are as follows: a2 = 0.1,
a4 = 0.45, a6 = 0.13, α = 0.2, β = 0.5, δ = 0.2, k1 = 960, k2 = 1000, k3 = 900,
k4 = 1000k5 = 750, k6 = 900, ϕ1 = 0.6, ϕ2 = 0.9, and ϕ3 = 0.8. To validate the ef-
fectiveness of the solar energy subsystem, the suggested controller (12) has been simulated.
Figure 9 depicts the power generated by the PV subsystem in relation to the desired voltage
VC1ref determined from the MPPT algorithm, which assures the maximum power from the
solar energy subsystem under variable environmental circumstances.

To create the battery and SC reference currents (IL2ref and IL3ref ), as well as the energy
management system, the fuzzy logic system was applied. Figure 10 shows the varying DC
load current used for the controllers. The suggested controllers in Equations (29) and (46)
have also been tested to ensure that the battery current IL2 and SC current IL3 are tracked
under load demands and are high.

Figures 11 and 12 show how the proposed controllers track the battery and SC current.
The discontinuous structure of the PV subsystem energy, along with the load changes,
cause the rapid variations in the battery reference current. The load need reduces from
t = 10 until t = 14 s, but the intermittent power provided by the PV subsystem also declines,
thus the battery and SC satisfy the load requirement.

Figure 13 shows that the suggested controllers meet the goal of DC-bus voltage man-
agement with peak overshoot and less misses, resulting in the greatest power contribution
from the PV system, battery, and SC. It is possible to evaluate the DC-bus voltage tracked
to its desired value without overrun.
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Figure 12. Evolution of the SC current (IL3 and IL3ref ).

Figure 11 shows one of the overshoots during t = 6 s with a maximum voltage at
40.5 V, yet it is within the allowed range of values, since the voltage of the DC-bus has been
monitored at all times. The overshoot and misses of the target are caused by variations in
the load demand and produced power.
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8. Conclusions

This research study proposed a renewable energy source consisting of photovoltaic
(PV) panels, a battery, and a supercapacitor (SC), combined with a DC bus. Sliding-mode
controllers were employed to manage the power sources, allowing them to operate at
their maximum power point tracking (MPPT) capacity, while maintaining the power
balance between the PV and the energy storage system (ESS). To balance the load and
generation, a fuzzy logic-based energy management system was developed. Using a
neural network, the maximum power points for the PV were determined. The proposed
control technique allows for power management between the battery, SC, and PV to meet
the load requirements. Lyapunov analysis was used to confirm the global asymptotic
stability of the DC microgrid (DCMG) system. To validate the performance of the proposed
framework, the SMC and FLS-based energy management system was simulated. Numerical
simulations of the DC microgrid with the suggested controllers demonstrated excellent
dynamic performance under various operating conditions caused by significant random
changes in power generation and consumption. In the future, this work could be extended
to include an AC-DC microgrid, and wind sources could be integrated into the microgrid.
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Nomenclature

DG Distributed Generation
RES Energy Renewable Source
ESS System Energy Storage
SoC State of Charge
SMC Sliding-ModeController
SF Sliding Surface
SE Solar Energy
DC Direct Current
AC Alternating Current
MG Microgrid
DCMG Direct Current Microgrid
MPPT Maximum Power Point Tracking
SC Supercapacitor
PWM Pulse Width Modulation
PV Photovoltaic
PI Proportional Integral
FLS Fuzzy Logic System
PWM Pulse Width Modulation
ANN Artificial Neural Network
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