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Abstract: As global maritime cargo transportation intensifies, managing CO2 emissions from ships
becomes increasingly crucial. This article explores optimizing bulk carrier fleets for transporting
polymetallic nodules (PMNs) from the Clarion-Clipperton Zone (CCZ) to reduce CO2 emissions. Our
analysis shows that larger bulk carriers, despite greater drifting forces from environmental conditions,
emit less CO2 over the entire transport mission, including loading and transit. Deploying large ships
in global maritime trade could significantly reduce CO2 emissions. This study also introduces a novel
artificial neural network (ANN) model to estimate drifting forces during loading operations and
proposes a new method for estimating CO2 emissions, considering environmental conditions and
ship seakeeping properties. These findings highlight the importance of fleet size optimization and
effective operational planning in achieving environmental sustainability in maritime transport.

Keywords: maritime carbon management; polymetallic nodules transportation; fleet optimization;
artificial neural networks; CO2 emissions

1. Introduction

The 2021 United Nations Conference on Trade and Development report [1] highlights
maritime transport as the cornerstone of international trade and the global economic
framework. The report indicates that over 80% of global trade volume, particularly in
goods, occurs via sea routes. This significant reliance on maritime transportation, in the
context of expanding international trade and coupled with numerous pollution control
measures targeting other sources, has led to an increasingly substantial contribution of ship
emissions to total anthropogenic emissions [2]. Nunes et al. [3] observed that the maritime
sector is likely to continue its significant growth alongside global trade. However, the full
extent of its impact on the environment, societal aspects, and human health remains unclear.
Moreno-Gutiérrez et al. [4] identified the combustion of fuel in ship engines as the primary
source of ship-emitted pollutants. Hoang et al. [5] argue that the pursuit of intelligent
strategies through the utilization of renewable energy sources, clean fuels, smart grids,
and measures for efficient energy use is beneficial for achieving the main IMO objectives,
particularly reductions in future CO2 emissions. Fan et al. [6], in their analysis of ship
energy management, justified that managing energy savings and emission reductions is
a systemic issue that should be comprehensively considered from multiple perspectives,
such as ship design, operational management, and performance assessment. The technical
modernization of the ship can also contribute to reducing CO2 emissions. Barone et al. [7]
conducted simulations on a ship equipped with five electric chillers, two auxiliary boilers,
two reverse osmosis devices, and two multi-stage flash desalination devices. The simulation
results show remarkable energy savings obtained through the proposed optimization
approach, corresponding to a fuel consumption reduction of 2.5 kt/y (−1.6 M$/y) and
to avoided CO2 emissions of 8.0 kt/y. The application of solar and wind energy devices
affects the reduction in CO2 emissions. Nyanya et al. [8], in their analysis using a bulk
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carrier as an example, demonstrated that considering the optimal sail angle and optimizing
the available deck area through the installation of solar and wind systems allowed for the
maximum utilization of renewable energy, which contributed to a 36% reduction in carbon
dioxide emissions when compared to the same ship without innovative technologies. The
conclusions showed that if the ship’s speed were reduced to 56% of its original speed,
the ship could sail exclusively on renewable energy collected on board. Ytreberg et al. [9]
reported that maritime shipping contributes to several environmental challenges, including
deteriorations in air quality and human well-being, leading to numerous quantifiable and
unquantifiable harms. Their findings demonstrate that transporting goods solely in the
Baltic Sea incurs costs due to air quality deterioration, which exceed those associated with
climate change impacts.

It is worth noting that oceans and seas serve not only as crucial transport routes
for global trade, but also as valuable sources of natural raw materials upon which many
industries depend. Recent studies suggest that the deep-sea floor at depths of 4000–6000 m
represents a significant source of polymetallic nodules (PMNs), comprising minerals such
as manganese (Mn), copper (Cu), cobalt (Co), nickel (Ni), and some rare earth elements [10].
These nodules are considered a promising source of metallic raw materials, with diverse
mining systems currently being developed for their extraction [11]. Cunningham [12]
concluded that the extraction of nodules from the ocean floor could provide a more stable
and decentralized alternative to the current cobalt supplies. The increased cobalt sup-
ply from nodule extraction may offset the harmful impacts on the marine environment.
Studies by Gollner et al. and Bonifácio et al. [13,14] noted that the extraction process
could have adverse environmental effects, impacting biodiversity in the area. Nodule
extraction disrupts the composition of seabed sediments, which may lead to long-term
negative consequences considering the slow pace of natural habitat recovery. The CC zone
features 300 morphotypes, including numerous groups of invertebrates such as corals,
crustaceans, and fish [15]. Stratmann [16] argues that conducting extraction operations
could lead to an 18% loss of organisms (taxa). B. Li et al. [17] suggests the application of
ore separation technology on extraction ships and transporting the separated sediments to
land for comprehensive utilization on a separate ship. However, Katona et al. [18] argues
that the long-term environmental impact of nodule extraction on marine ecosystems might
be lesser when compared to terrestrial mining.

According to recent findings [19], it is anticipated that nodules extracted from the
ocean floor will be directly loaded onto high-capacity extraction vessels and transferred to
transport ships that will deliver the cargo to destination ports.

During the transfer of nodules from the extraction unit to the transport ship on the
ocean surface, the marine environment, i.e., wind and waves, interacts with the transport
ship. This can lead to excessive ship swaying, bending, or a loss of stability, as indicated
by Kacprzak [20]. In such events, it becomes necessary to suspend the transfer, potentially
disrupting the extraction of the nodules from the ocean floor and the operation of the
extraction system. Therefore, the transport ship should have the appropriate maritime
characteristics to ensure high-efficiency loading and the ability to operate in challenging
weather conditions for as long as possible over the mining field, thus minimizing the
risk of downtime. An inappropriate selection of transport ships might disrupt the entire
extraction system.

According to Kacprzak [21], the transport of PMNs to the destination port can be
achieved by both small and large bulk carriers. Research by this author shows that loading
onto smaller bulk carriers would lead to shorter loading times and good longitudinal
strength, which are significant advantages. However, the disadvantage of these units is
their smaller transport capacity, increased ship movement, and poorer stability. On the
other hand, large bulk carriers have the advantages of high transport capacity, minimal
ship movement, and good stability, with the downside being longer loading times and
reduced longitudinal strength.
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In addition to the technical limitations with regard to safe loading, a key aspect is the
environmental pollution caused by the transporting ship during loading and transport
operations. The total CO2 emissions into the marine environment by the transporting
ship depends on the amount of fuel being burned [22]. This amount mainly depends
on the power of the dynamic positioning (DP) system which stabilizes the bulk carrier
at the loading site, as well as environmental conditions. The required power of the DP
system depends on many factors, including the technical parameters of the ship and
environmental conditions. Among the technical properties, the size of the ship is most
important; according to Jurdziński [23], larger bulk carriers are characterized by a larger
windage area, exposed to wind action, and a larger wetted surface, exposed to wave action,
which may result in greater drift force. An increase in drift force leads to an increase in the
energy needed to maintain the ship position, and thus an increase in pollutant emissions.

In turn, the amount of fuel burned during transport depends on the technical–operational
parameters and environmental conditions. The most important technical–operational
parameters include ship speed, capacity, the hydro-mechanical properties of the hull,
engine efficiency, propulsion system and propeller, type and quality of fuel, draught, trim
and hull, and the propeller condition from the fouling process, as mentioned in [24–26].
Environmental conditions affecting fuel consumption include waves, wind, ocean currents,
air, and water temperature, as noted in [27]. The reloading and transport of PMNs can be
carried out by a fleet of small, medium, and large bulk carriers. Research by Kacprzak [21]
has shown that transporting a specified amount of PMNs from the Clarion-Clipperton
Zone (CCZ) to the destination requires the consideration of the environmental impact on
the technical properties of ships, including stability, motions, and longitudinal strength.
Therefore, the bulk carrier fleet should consist of appropriately selected units of various
sizes. The key concern is what impact the use of the entire fleet to transport the specified
amount of PMNs to different destinations, on routes of varying distances, will have on
emissions to the marine environment. Will the use of a fleet of small, medium, or large
bulk carriers ensure lower exhaust emissions? How does the distance to the destination
port from the CCZ affect this choice? Therefore, the main goal of this study is to answer
these questions, i.e., to determine which fleet of bulk carriers (small, medium, large) will be
most efficient in terms of environmental CO2 emissions during the loading and transport
of PMNs from the CCZ to various ports around the world.

Studies [28,29] have shown that a large ship can transport a larger amount of cargo at
once, burning relatively less fuel during transport to the destination, which translates into
less environmental pollution. Therefore, to assess the energy efficiency of the ship, many
indicators have been developed, such as

• the energy efficiency operational indicator (EEOI), which is calculated as the ratio of
CO2 emissions to the amount of cargo carried and the distance traveled [30],

• the energy efficiency design index (EEDI), which is expressed as the amount of carbon
dioxide CO2 emitted into the environment based on the estimated fuel consumption
in relation to ship capacity and speed [31],

• the annual efficiency ratio (AER), which was created to measure the energy efficiency
of a ship based on its annual activity, taking into account the total fuel consumption
and distance traveled [32],

• the deadweight tonnage (DWT) efficiency, which determines the efficiency of a ship
by the ratio of its cargo capacity (carrying capacity) to fuel consumption,

• the carbon intensity indicator (CII), which measures CO2 emissions per unit of trans-
port and distance [33].

Chen et al. [34] argue that the ship’s EEOI calculated at full load is naturally lower
than the equivalent at partial load. The energy efficiency of the fleet shows a slight increase
(at least by 1%) due to the implementation of the Ship Energy Efficiency Management Plan.
Lee [35] evaluated the possibility of achieving the 40% CO2 emission reduction target by
2030 through the implementation of the EEDI and the EEXI for three types of ships as
follows: bulk carriers, container ships, and tankers. The results show that achieving the 40%
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CO2 emission reduction target by 2030 is possible for ships regulated by the EEDI, while
the calculated CO2 emissions for ships regulated by the EEXI range from 17.4% to 24.6%.
This difference arises from the fact that these calculations are based on the maximum speed
limit of the EPL’s engine output, which exceeds the actual operational speed.

These indicators can be used to assess CO2 emissions during the transport of nodules.
However, they do not consider the energy supplied to the system stabilizing ship movement
during reloading operations. During this operation, the transport ship is stationary or
moves at a low speed along with the extraction ship, and the DP system stabilizes any
ship movement caused by the drift force resulting from wave and wind action. There is
no appropriate indicator which assesses the energy efficiency of this process. Therefore,
the second goal of the research is to develop a method for estimating CO2 emissions that
considers the impact of environmental conditions on ship loading operations at sea with a
cargo of nodules.

2. Materials and Methods
2.1. Data

The subject of the study was a fleet of bulk carriers comprising small, medium, and
large ships. Representatives of the three groups of ships were selected for the study. The
parameters of these ships are presented in Table 1.

Table 1. Technical parameters of the studied bulk carriers, where L—length between perpendiculars,
B—breadth, T—draught, CB—block coefficient, D—displacement, DWT—deadweight, and AW—
lateral plane of the vessel above the plane of draught.

Main Particulars
Ship Size

A B C

L [m] 103.9 185 217
B [m] 18.2 24.4 32.26
T [m] 7.057 11.01 14.02

L/B [-] 5.71 7.58 6.73
B/T [-] 2.58 2.22 2.30
L/T [-] 14.72 16.80 15.48
CB [-] 0.80 0.82 0.85
D [t] 11,036 41,900 85,700

DWT [t] 7600 32,000 73,600
AW [m2] 746 1711 1977

To compare the efficiency of the different ship types, assumptions regarding the
mining system and the locations of the destination ports to which the mined PMNs could
be transported were made. It was assumed that the loading of PMNs would take place
in the CCZ and would be carried out by the mining ship Hidden Gem. The technical
characteristics of this ship are presented in Table 2.

Table 2. Parameters of the mining ship Hidden Gem.

L [m] 228
B [m] 42
T [m] 12
CB [-] 0.82
D [t] 96,504

DWT [t] 61,042
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Assumptions regarding the mining system were adopted in accordance with [36] and
are presented below:

• the number of planned days for transshipment operations—250 days,
• the assumed annual transport of PMNs—2,000,000 tons,
• the mining capacity of the mining ship—333 tons/h,
• the cargo carrying capacity of the mining ship Hidden Gem—20,000–25,000 t.

It was assumed that the transportation of PMNs from the CCZ would be carried out
to the destination ports along the routes described in Figure 1.

Figure 1. Location of destination ports.

The distribution of wave parameters in the CCZ was developed based on data
from [37] and is presented in Table 3. These distributions relate to the occurrence fre-
quency of these parameters throughout the year.

Table 3. Annual frequency of wave parameter occurrence pwave in the CCZ. Data adapted from [37],
where Hs—significant wave height and Tz—average zero-up-crossing wave period.

Hs (m)
Tz (s)

<4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 10 to 11 11 to 12 12 to 13 >13

7 to 8 0 0 0 0 0 0.0001 0.0001 0.0001 0.0001 0.0001 0
6 to 7 0 0 0 0 0.0002 0.0005 0.0007 0.0006 0.0004 0.0002 0.0001
5 to 6 0 0 0 0.0003 0.0014 0.0027 0.0031 0.0023 0.0013 0.0006 0.0002
4 to 5 0 0 0.0003 0.0025 0.0081 0.0129 0.012 0.0077 0.0037 0.0014 0.0005
3 to 4 0 0.0001 0.0023 0.015 0.037 0.0455 0.0339 0.0176 0.007 0.0023 0.0006
2 to 3 0 0.0008 0.0143 0.0623 0.1054 0.0928 0.0514 0.0204 0.0064 0.0017 0.0004
1 to 2 0.0001 0.0057 0.0474 0.11 0.1092 0.0605 0.0223 0.0062 0.0014 0.0003 0
0 to 1 0.0005 0.0064 0.0191 0.0185 0.0082 0.0021 0.0004 0.0001 0 0 0

The distribution of wind parameters in the CCZ was adopted in accordance with data
from [38] and is presented in Table 4.

To estimate the drift force (Fwy), results from ship model tests, the dimensions of which
are presented in Table 5, were utilized. These results are based on the studies [39–44] and
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include the nondimensional drift force coefficient (Cwy), calculated using the following
equation:

Cwy =
Fwy

ρ·g·ς2
a·L

(1)

where
Cwy—nondimensional drift force coefficient,
Fwy—mean drift force in a regular wave,
ρ—seawater density,
g—gravity acceleration,
ςa—amplitude of a regular wave,
L—length of the ship.
All data from these model tests are publicly available, and the references for each

dataset are provided in Table 5. Figure 2 shows the values of the drift force coefficient
(Cwy) in regular waves for these ship models at zero speed as a function of the ratio of the
wavelength (λ) to the length of the ship (L). Based on the nondimensional coefficient Cwy,
calculated using Equation (1) for the ship model scale, it is possible to determine the drift
force Fwy for a full-scale ship of length L.

Table 4. Distribution of wind speed. Data adapted from [38], where Hs—the significant wave height,
vW—the wind velocity, and pwind—the annual frequency of wind occurrence.

Hs (m) vW (m/s) pwind [-]

1 7.3 0.240
2 10.0 0.270
3 12.1 0.170
4 15.4 0.115
5 19.3 0.091
6 22.1 0.037
7 24.9 0.037
8 27.0 0.020

Table 5. Design characteristics of ship model subjected to model test on mean drift force, where
L—length between perpendiculars, B—breadth, T—draught, and CB—block coefficient.

Ship L/B (-) B/T (-) L/T (-) CB (-) References

VLCCb 5.52 3.01 16.62 0.81 [43,44]
KVLCC2 5.52 2.79 15.4 0.81 [40,41]

Bulk carrier 5.7 2.7 15.39 0.83 [39]
Scb84 5.52 2.79 15.4 0.84 [42]

Figure 2. Drift force coefficients of four ships in regular beam waves at zero speed.
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2.2. General Research Framework

To achieve the research objective, the estimation of CO2 emissions during the loading
and transportation of PMNs to various long-range destinations was identified as a key step.
This estimation was conducted for each type of bulk carrier fleet, designated as A, B, and
C, as described in Table 1, depending on the location of the destination port to which the
PMNs were to be delivered.

Accordingly, the total CO2 emission is made up of emissions during loading and
transportation as follows:

CO2 = CO2load + CO2transp, (2)

where
CO2—total CO2 emissions by bulk carrier fleets A/B/C,
CO2load—CO2 emissions by bulk carrier fleets A/B/C during loading,
CO2transp—CO2 emissions during transportation to the destination port using the bulk

carrier fleets A/B/C.
In this study, it was assumed that loading from the mining ship could be executed

concurrently with the extraction of PMNs and continuously without breaks for nodule
reloading.

2.2.1. Estimation of CO2 Emissions during Polymetallic Nodules Loading in the
Clarion-Clipperton Zone

Figure 3 illustrates a general block diagram for the estimation of CO2 emissions while
nodule loading in the CCZ. The calculation of CO2 emissions during the loading process is
based on the fuel consumption of the transporting bulk carrier while it loads PMNs from
the extraction ship as follows:

CO2 = EF · FC [t] (3)

where
FC—fuel consumption,
EF—emission factor, whose value for a marine engine can be assumed as approxi-

mately 3.206 kg CO2/kg for marine diesel oil (MDO) or approximately 3.114 kg CO2/kg
for heavy fuel oil (HFO).

The fuel consumption during this operation stems from the necessity to generate
thrust via the propeller of the DP system to balance out environmental forces, thereby
maintaining the ship position during loading under the specified environmental conditions.
This fuel consumption (FC) was calculated based on the general relation as follows:

FC = P · t · FOC (4)

where
P—power supplied to the DP system [kW],
t—time under specified environmental conditions [s],
FOC—fuel consumption rate.
Equation (4) finds extensive application in the analysis and estimation of fuel con-

sumption, both under operational conditions and in the design of ship propulsion systems.
A crucial component of this Equation is the fuel consumption rate (FOC), whose values
can be derived from the nominal fuel consumption of the marine engine or from real-time
fuel flow measurements under operational conditions. The typical FOC values range from
0.170 to 0.185 kg/kWh for marine diesel oil (MDO) and marine gas oil (MGO), and from
0.195 to 0.230 kg/kWh for heavy fuel oil (HFO), depending on the engine type and the
operational conditions.
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Figure 3. General research scheme for the calculation of CO2 emissions during loading.

The required power supplied to the propellers of the DP system can be calculated
based on the following formula [45]:

P = Tp/Cp (5)

where
P—propeller power [kW],
Tp—thrust force of the DP system propeller required to overcome environmental

forces [kN],
Cp—power-to-thrust efficiency ratio for the given propeller; for tunnel thrusters,
Cp = 0.12–0.16.
The calculation of propeller thrust force generally considers the wind drift force, wave

drift force, and current drift force. Given that the CCZ, located in the Pacific between
Hawaii and Mexico, is known for its slow-moving ocean currents with a maximum speed
of approximately 0.3 m/s [37] and given the negligible speed of the ship, the influence of
ocean currents on the ship was omitted in this study. Therefore, the thrust force (Tp) was
calculated as follows:

Tp = Fw + Fwy (6)

where
Fw—force from wind pressure,
Fwy—force from wave drift.
The magnitude of forces from wind and waves depends on their direction relative to

the ship. Given the lack of detailed information about wave and wind directions in the CCZ,
this study assumes that waves and wind impact the ship unfavorably, i.e., perpendicular to
the beam. The force from wind pressure is calculated as follows:

Fw = ½ · vW
2 · ρ · Aw (7)

where
vW—wind speed according to Table 4,
ρ—air density,
Aw—the lateral plane of the vessel above the plane of draught according to Table 1.
The wave drift force was calculated based on the following relation:

Fwy = L·ρ·g·
∫

Sςς(ω)·Cwy(ω)dω (8)

where
Fwy—mean wave drift force from irregular waves [kN],
L—ship length [m],
ρ—seawater density,
g—acceleration due to gravity,
Sζζ—wave spectral function,
Cwy—mean nondimensional sway force in regular wave.
The wave spectrum function was implemented according to the ITTC guidelines [46]

as follows:
Sζζ(ω) = Aω−5 exp

(
−Bω−4

)
(9)

where
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A, B—coefficients calculated as follows:

A =
173 H2

s
T4

z
(10)

B =
691
T4

z
(11)

HS—significant wave height,
Tz—zero-up-crossing wave period,
ω—circular frequency.
To calculate the drift force, numerical methods, such as the far-field and near-field

pressure methods, as well as experimental studies, are used. Far-field methods, initiated by
Maruo [47], further developed by Newman, Salvesen, Gerritsma, and Beukelman [48–50]
and most recently by Kashiwagi [51], are based on considerations of the energy of diffracted
(reflected and transmitted) and radiated waves, momentum flux at infinity, and work con-
ducted by the body in the near field, leading to a constant force acting through the total rate
of momentum change. Alternatively, near-field methods, initiated by Boese [52], calculate
second-order constant forces/moments through the direct integration of hydrodynamic,
steady second-order pressure acting on the wetted surface of the body. More accurate
numerical implementations were later introduced by Faltinsen et al. [53], and then by
Papanikolaou and Nowacki [54], which led to an increase in precision. These methods
have evolved and been validated based on experimental studies, mainly in terms of the
longitudinal component, referred to as additional wave resistance. However, the validation
of these methods for a transverse component is limited, mainly due to the scarcity of
experimental research. Recently, Liu S and Papanikolaou [55] approximated the mean sway
force with an empirical formula, only utilizing main ship particulars and wave parameters.

2.2.2. Application of Artificial Neural Networks to Estimate Mean Nondimensional Sway
Force in Regular Waves

The application of artificial neural networks (ANNs) to estimate the nondimensional
drift force coefficient in regular waves (Cwy) for bulk carriers A, B, and C was assessed
using the results of model studies described in Table 5, which are presented in Figure 2.
An ANN was used for the estimation process. An additional objective of this study was to
examine the effectiveness of ANN use to predict drift force based on the basic dimensions
of the ship.

In the field of maritime engineering, the application of ANNs has been increasingly
acknowledged for its critical role in enhancing the predictability of the experimental
measurements pertinent to ship theory. The development and implementation of ANNs
have enabled scientists and engineers to process and interpret extensive datasets efficiently
and accurately, significantly improving the accuracy of predictive models in ship design and
operational strategies. The integration of ANNs in naval architecture has notably enhanced
the accuracy of prognostic models, facilitating substantial advancements in various aspects
of ship construction and functionality.

For example, research by Cepowski [56,57] utilized Multilayer Perceptron (MLP)
structured neural networks to estimate the additional wave resistance of ships based
on fundamental design parameters. This approach resulted in remarkably accurate esti-
mations when compared to outcomes from model experiments. Similarly, Yangjun and
Yonghwan [58] applied an ANN to predict sloshing effects in model tests of floating struc-
tures larger than conventional LNG carriers. The development of this ANN was based on
a thorough analysis of over 540 terabytes of experimental data, covering a wide range of
variables, such as cargo hold dimensions, vessel types, and environmental and operational
conditions. Furthermore, Dyer et al. [59] employed an ANN to estimate the remaining
service life of offshore oil and gas platforms, incorporating a comprehensive dataset repre-
senting both natural and engineered aspects of offshore systems. Their findings highlighted
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the capacity of ANNs to provide highly accurate predictions, indicating life extension,
maintenance, and risk minimization strategies for offshore platforms.

In this study, the development of an ANN to estimate the Cwy coefficient utilized
ship data from Table 5 and model study results presented in Figure 2. Following [56,57], a
Multilayer Perceptron (MLP)-structured ANN was adopted.

Figure 4 illustrates the procedure for developing the ANN. The first step involved
normalizing the dataset to the [0, 1] range to accelerate learning, avoid numerical issues
such as overflow or underflow, prevent feature domination, facilitate weight initialization,
and enhance the performance of algorithms based on gradients or distances. Following this
procedure, a set of alternative ANNs was developed, differing in the number of neurons in
the hidden layer and activation functions. In each ANN, to detect overfitting, the hold-out
method with an additional validation set was applied, consisting of the following steps:

1. randomly splitting the data into three parts: training set (50%), testing set (25%), and
validation set (25%),

2. training the model on the training set,
3. applying early stopping to prevent overfitting by monitoring the error on the testing

set,
4. testing the model on the testing set after each epoch and calculating performance

metrics,
5. validating the model on the validation set after training is complete,
6. calculating final performance metrics and comparing them with the results from the

testing set to assess the model’s generalization capability,
7. analyzing the results from the validation set to evaluate the model’s ability to general-

ize to new data.

Figure 4. Research scheme for developing an ANN.

In the hold-out procedure, the training and testing process involved early stopping to
prevent overfitting by halting the training process if errors increased. The early stopping
technique consisted of the following steps:
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1. input data: feeding the network with training dataset inputs,
2. prediction: calculating the network’s predictions (outputs),
3. error calculation: computing the difference between the predictions and the actual

output values using an error function,
4. repetition: repeating steps 1 and 2 for all input–output pairs in the training dataset,
5. weight adjustment: using a learning algorithm to adjust the weights of the neurons to

minimize the prediction error,
6. testing: feeding the network with all cases from the testing dataset, obtaining predic-

tions, and comparing them with the actual output values from the dataset to calculate
the network error,

7. error comparison: comparing the current network error with the error from the
previous cycle. If the error has decreased, the training continues; otherwise, the
process is stopped.

The mean absolute error (MAE) was used as the error function in this algorithm, which
is defined as follows:

MAE =
∑n

i=1

∣∣∣out(i) − outp(i)

∣∣∣
n

(12)

where out is the output value, outp is the predicted output value, and n is the number of
instances.

The efficacy of the proposed ANN was assessed using the following established
performance metrics: Pearson correlation coefficient (PCC), determination coefficient (R2),
RMSE, and relative RMSE (RRMSE), as delineated in [60,61]. Values of RMSE and RRMSE
approaching zero, along with R2 and PCC values nearing one, indicated a robust alignment
between forecast outcomes and empirical data. According to a previous study [62,63], THE
estimation accuracy was divided into THE FOLLOWING four categories based on the
RRMSE criterion: excellent (below 10%), good (10% to 20%), acceptable (20% to 30%), and
unacceptable (above 30%). The performance metrics were calculated as follows:

PCC =
∑(ye − y)

(
ye − ye

)√
∑(y − y)2(ye − ye

)2
(13)

- Determination coefficient (R2):

R2 =
∑
(
ye − y

)2

∑(y − y)2 (14)

- Root mean square error (RMSE):

RMSE =

√
∑
(
y − ye

)2

n
(15)

- Relative root mean square error (RRMSE):

RRMSE =
RMSE

ye
× 100 (16)

In the final stage, the best ANN was selected based on two criteria as follows:

• highest accuracy of prediction relative to measured data,
• smallest difference between the performance metrics calculated for the training, testing,

and validation sets.
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2.2.3. Application of Artificial Neural Networks to Estimate Mean Nondimensional Sway
Force in Regular Waves

The general Equation (3) presented above for calculating CO2 emissions is based on
Equation (4) for estimating fuel consumption. A key element in calculating fuel consump-
tion is the power supplied to the DP system over time under specified environmental
conditions, such as wind and waves. To comprehensively include the impact of wave and
wind interaction on fuel consumption, this article expands Equation (4) and proposes a new
approach to calculating fuel consumption by considering the impact of wind and waves
as follows:

FC = FOC·t·
(

8

∑
i=1

11

∑
j=1

pwave(HS(i),Tz(j))
·Pwave(HS(i),Tz(j))

+
8

∑
i=1

pwind(i)·Pwind(i)

)
(17)

where
Pwave—power needed to counteract the drift force caused by the wave height Hs and

period Tz [kW],
pwave—annual frequency of the wave height (Hs) and period (Tz) in the CCZ according

to Table 3 [-],
Pwind—power needed to counteract the drift force caused by wind [kW],
pwind—annual frequency of wind occurrence at a given speed according to Table 4 [-].
The above formula takes fuel consumption calculations into account in the case of the

wave interaction time at a given height Hs and period Tz and the time of wind interaction
at a given speed. These times are calculated based on the wave occurrence frequency and
wind parameters presented in Tables 3 and 4.

Equation (17) can be used to calculate fuel consumption and considers the full range of
wave and wind parameters, as well as taking a limited range of wave and wind conditions
into account, e.g., for waves up to 3 m and corresponding wind speeds.

2.2.4. CO2 Emissions during Transport

The estimation of CO2 emissions during maritime transport is based on the energy
efficiency design index (EEDI), which, according to the IMO guidelines [31], is defined as
the ratio of the CO2 emitted by a ship per nautical mile to its transport capacity and speed.
The calculations considered the threshold values of the EEDI that must be met by each bulk
carrier.

Figure 5 illustrates the block diagram for estimating CO2 emissions during the trans-
port of PMNs to the destination port. The CO2 emission was calculated using the following
formula:

CO2transport = EEDIc · DWT · dT (18)

where
DWT—deadweight tonnage of the bulk carrier from fleet A/B/C [t],
dT—total distance [NM],
EEDIc—the required energy efficiency design index for bulk carriers A/B/C according

to the International Maritime Organization [31] guidelines, calculated as follows:

EEDIc =
1 − X
100

·961.79·DWT−0.477 (19)

where
EEDIc—the required energy efficiency design index, expressed as the number of grams

of CO2 emissions per nautical mile per ton of cargo,
X—is the reduction factor, whose value for phase 3, according to [31], which starts

from 2025, is 30.
The EEDIc index, calculated using Equation (19), serves as the reference line for

determining the required emission reductions within the framework of the energy efficiency
design index (EEDI). In calculating the EEDIc, various technical and operational factors
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were considered, including deadweight tonnage (DWT), ship type, technical specifications,
and operational speed. Weather conditions were also indirectly accounted for through the
inclusion of the sea margin and historical data on the actual fuel consumption and CO2
emissions of ships, which formed the basis for developing the EEDIc. Figure 6 shows the
values of EEDIc for different types of ships depending on the DWT, assuming a reduction
factor X, applicable from 2025.

Figure 5. General research scheme for calculating CO2 emissions during transport.

Figure 6. Values of EEDIc for different types of ships as a function of DWT, assuming a reduction
factor X, applicable from 2025.

The total distance dT was calculated based on the formula:

dT = nload · d (20)

where
d—distance from the CCZ to the destination port,
nload—number of transfers from the extraction ship to the transporting bulk carrier.
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The number of PMN transfers from the extraction ship to the transporting bulk carrier
was calculated based on the total assumed mass of nodules to be transferred and the
deadweight tonnage of carriers from fleets A, B, and C as follows:

nload = M/DWT (21)

where
M—total mass of PMNs to be transported, M = 2,000,000 t.

3. Results
3.1. Prediction of a Nondimensional Sway Force Coefficient Using an ANN

A nondimensional sway force coefficient, Cwy, was predicted using a Multilayer
Perceptron (MLP) neural network structure. The model utilized the following ratios and
coefficients that impact the sway force coefficient, Cwy:

• L/B (length-to-breadth ratio),
• B/T (breadth-to-draught ratio),
• L/T (length-to-draught ratio, as a combination of L/B and B/T),
• CB (block coefficient),
• λ/L (wavelength-to-ship length ratio).

These features were chosen based on their physical significance and impact on ship
hydrodynamics, as supported by the literature [39–44]. This selection ensured that the
model utilized the most informative and relevant variables to accurately predict the Cwy
coefficient.

The training dataset was sourced from publicly available ship model tests, as reported
in the literature [39–44]. The design characteristics of the ship models used in these tests are
presented in Table 5. The dataset consisted of 32 cases. To evaluate the model’s performance
and prevent overfitting, early stopping was employed during the network’s training.
Additionally, the dataset was randomly divided into the following three parts using the
hold-out method: training (sixteen cases), testing (eight cases), and validation (eight cases).
This approach allowed for the detection and prevention of overfitting by providing separate
datasets for model training, validation, and final performance evaluation.

To optimize the learning process, the data were normalized to a range from 0 to 1. This
normalization aimed to accelerate learning, avoid numerical issues such as overflow or
underflow, prevent feature domination, facilitate weight initialization, and improve the
performance of gradient-based algorithms.

During the training of the ANN, additional hyperparameters were used as follows: a
learning rate of 0.1, a batch size of 32, and a maximum of 100 epochs. The BFGS optimization
algorithm [64–67] was employed, which has proven to be highly effective for training ANNs
to predict additional wave resistance [57]. The most accurate neural network identified
through this research contained five neurons in the input layer, six neurons in the hidden
layer, and one neuron in the output layer. All neurons were activated using a logistic
function as follows:

σ(x) =
1

1 + ex (22)

where σ(x) is the value of the activation function for the input x.
Graphically, the general structure of this ANN is illustrated in Figure 7. Normalization

coefficients and weights are provided in Appendix A.
Additionally, during training, early stopping was utilized to prevent overfitting by

halting the training process if errors increased for the training and testing data. This
process was stopped after 54 epochs, with the stopping condition being a change in error
of 1 × 10−5.
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Figure 7. The general structure of an ANN.

To further increase the reliability of the results, four different performance evaluation
metrics were applied as follows: Pearson correlation coefficient (PCC), determination coef-
ficient (R2), root mean square error (RMSE), and relative root mean square error (RRMSE).
Table 6 presents these model evaluation metrics for the ANN. This table shows that the
PCC values are close to 1, indicating a strong linear correlation between the predicted
and actual values for all datasets. High PCC values suggest that the model predictions
are well correlated with the actual data. For the training set, the PCC value is 0.98, for
the validation set, it is 0.99, and for the test set, it is 0.97. The R2 values are also high,
indicating that the model explains the variability of the data well. High R2 values mean
that the model fits the data well for the training, validation, and test sets, where the R²
values are 0.95, 0.99, and 0.95, respectively. Low RMSE values indicate small root mean
squared errors, meaning that the model predictions are close to the actual values. The
RMSE for all datasets is 0.05. RRMSE expressed as a percentage also shows relatively small
errors relative to the range of data, with values of 19.58% for the training set, 16.36% for the
validation set, and 14.44% for the test set. Lower RRMSE values for the validation and test
sets suggest good overall model performance and no signs of overfitting. Despite the small
number of measurements, with only 33 data points, the network exhibits good metrics.
Based on these parameters, it can be concluded that the neural network model performs
very well. High PCC and R² values, along with low RMSE and RRMSE values, indicate
accurate and stable predictions for the training, validation, and test sets. The relatively
low RMSE indicates that the average deviation of the model predictions from the actual
values is small. According to a previous study [48,49], the estimation accuracy can be
divided into four categories based on the RRMSE criterion as follows: excellent (below
10%), good (10% to 20%), acceptable (20% to 30%), and unacceptable (above 30%). Thus,
the RRMSE values indicate good precision within the model. The model appears to be
well-fitted without signs of overfitting. These model evaluation metrics for the test and
validation sets demonstrate the sufficient generalization capability of the ANN for new,
unseen data, which is crucial for the practical application of the network.

Figure 8 presents a residuals plot against the predicted values, indicating that the
largest portion of data yields estimation errors ranging from −0.15 to 0.1.

Figure 9 shows scatter plots which indicate that the trend line between the measured
and predicted Cwy values follows the linear y = x line (45◦) relatively closely, with slopes
of 0.959, 1.0345, and 1.096, and low constants of 0.0097, 0.0003, and 0.0068 for the training,
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test, and validation data, respectively. This means that predictions using the ANN are
characterized by a fairly accurate prediction ability.

Table 6. Model evaluation metrics for the ANN.

PCC train [-] 0.98
PCC valid [-] 0.99
PCC test [-] 0.97
R2 train [-] 0.95
R2 valid [-] 0.99
R2 test [-] 0.95
RMSE train [-] 0.05
RMSE valid [-] 0.05
RMSE test [-] 0.05
RRMSE train [%] 19.58
RRMSE valid [%] 16.36
RRMSE test [%] 14.44

Figure 8. Residuals vs. predicted values.

Figure 9. Scatter plots of predicted vs. measured Cwy values.
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Figure 10 compares predictions made by the ANN with results from a model test.
These plots show that the predictions obtained with the ANN are consistent with the test
results and exhibit corresponding trends.

Figure 10. Comparison of ANN predictions with model test results.

Figure 11 presents predictions for fleets A, B, and C in relation to the data used for
training the neural network. This Figure indicates that these predictions exhibit trends
similar to those observed in the model test.

3.2. CO2 Emissions during Nodule Loading in the CCZ

Using the developed ANN and Equations (8)–(11), wave-induced drift force values
for bulk carriers A, B, and C were estimated by considering the significant wave height
(Hs) and the average zero-up-crossing wave period (Tz) in the CCZ, as shown in Table 3.
The results are presented in Tables A4–A6 in Appendix B. By applying Equation (7) and
considering the wind speed distribution shown in Table 4, along with the characteristics of
bulk carriers A, B, and C, the wind-induced drift forces were estimated. These are depicted
in Figure 12.
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Figure 11. Comparison of ANN predictions for bulk carriers types A, B, and C with model test results.

Figure 12. Drift force values from wind for bulk carriers A, B, and C which correspond to wind
velocity (vW).

When considering the most frequently occurring wave heights in the CCZ, which are
4 m according to Table 3, it is suggested that the largest drift forces, as shown in the figures
and tables, are as follows:

• 775 kN, 1287 kN, and 1688 kN from waves,
• 106 kN, 244 kN, and 282 kN from wind,

for bulk carriers A, B, and C, respectively.
The thrust force (Tp) and the power (P) supplied to the propellers of the DP system

were calculated using Equations (5) and (6). A power-to-thrust efficiency ratio (Cp) of
0.14 was assumed for the power calculations. Then, using Equations (3) and (17), the fuel
consumption and the resulting CO2 emissions of bulk carriers A, B, and C were calculated
for 250 days a year during concrete loading operations in the CCZ.

Detailed values of fuel consumption resulting from the operation of the DP system
to counteract the drift force caused by waves and wind on bulk carriers A, B, and C over
250 days a year during concrete loading in the CCZ can be found in Tables A7–A10 of
Appendix B. The values of fuel consumption, which depend solely on Hs, are presented
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collectively in Figure 13. This Figure illustrates that fuel consumption increases with wave
height up to 3 m, reaching a maximum of 600 t, 1250 t, and 2100 t for bulk carriers A, B,
and C, respectively. Beyond this level, fuel consumption decreases despite the increase in
drift forces. This reduction in fuel consumption occurs because the amount of time the
vessel spends in these conditions decreases as the wave height increases, given the lower
occurrence of such large waves.

Figure 13. The values of fuel consumption (FC) [t] resulting from the operation of the DP system to
counteract the drift force caused by wave and wind action on bulk carriers A, B, and C, corresponding
to significant wave height (Hs).

Meanwhile, Figure 14 shows the cumulative CO2 emissions from fuel combustion on
ships due to wind and wave action as a function of wave height. For wave heights of up
to 4 m, the cumulative CO2 emissions are calculated to be 4900 t, 10,000 t, and 16,500 t for
bulk carriers A, B, and C, respectively. These numbers demonstrate that significantly lower
amounts of CO2 will be emitted when using type A bulk carriers for the transshipment of
extracted concrete. Utilizing type B and C bulk carriers for this mission will result in an
increase in CO2 emissions by 100% and 240%, respectively.

Figure 14. Cumulative CO2 emissions due to combined wave and wind action in relation to significant
wave height (Hs).

3.3. CO2 Emissions during Transport

The number of shipments was calculated using Equation (21), based on the predeter-
mined total mass of PMNs to be transported and the cargo capacities of bulk carriers A,
B, and C. The results indicated that there were 264 shipments for bulk carrier A, 63 for B,
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and 27 for C. Subsequently, utilizing the established routes shown in Figure 1, the distances
that bulk carriers A, B, and C need to traverse to reach their designated destination ports
were calculated based on Equations (20) and (21). The varying distances, according to
the planned routes, are displayed in Table 7, which shows that type A bulk carriers are
required to cover the longest distance, while type C has the shortest distance to traverse.
These discrepancies increase with route length.

Table 7. Total distance to be covered by A, B, and C bulk carriers.

Route Number According
to Figure 1

Route Length from the CC Zone
to the Destination Port [NM]

Total Distance [NM]

A B C

1 2044 1,077,083 255,475 108,321
2 2400 1,264,800 300,000 127,200
3 6971 3,673,506 871,325 369,442
4 16,696 8,798,581 2,086,950 884,867
5 22,512 11,863,666 2,813,963 1,193,120
6 26,291 13,855,462 3,286,400 1,393,434

In accordance with a report by the International Maritime Organization [31], the
threshold values for the energy efficiency design index (EEDI) were calculated using
Equation (19), resulting in 9.48 for bulk carrier A, 4.78 for B, and 3.21 for C. This analysis
shows that the largest bulk carriers have the lowest CO2 emissions. Comparatively, type A
and B bulk carriers emit nearly 200% and 50% more CO2 than those of type C, respectively.

Based on these data, the total CO2 emissions of bulk carriers A, B, and C, which
transport the predetermined mass of PMNs to ports via designated routes, were calculated.
The results, graphically presented in Figure 15, indicate that type C bulk carriers will emit
the least amount of CO2. Transporting the same amount of extracted PMNs to the farthest
destination port using type C bulk carriers will result in CO2 emissions of 998,768 tones,
compared to 502,449 tones for type B and as much as 329,338 tones for type A. Therefore,
transporting PMNs from the CC zone to the unloading port using type A and B bulk
carriers will cause an increase in CO2 emissions by 203% and 53%, respectively, when
compared to using type C bulk carriers.

Figure 15. Total CO2 emissions of A, B, and C bulk carriers during transportation.
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3.4. Assessment of CO2 Emissions from Bulk Carriers during Nodule Loading and Maritime Transport

Based on the CO2 emissions of A, B, and C bulk carriers during the loading of PMNs
in the CCZ and during transportation, the total CO2 emissions for the entire mission were
calculated. The calculations were conducted under the assumption that the loading in
the CCZ is carried out with wave heights up to 3 m and wind speeds up to 12 m/s. The
results are presented in Figure 16. On route number 1, which is the shortest, type A, B,
and C bulk carriers emit 81,111, 46,058, and 36,902 tons of CO2, respectively. On route
number 6, which is the longest, A, B, and C bulk carriers emit 1,002,238, 509,449, and
340,638 tons of CO2 together, respectively. Hence, it follows that, regardless of route length,
the smallest bulk carriers emit the largest amount of CO2, and the largest bulk carriers emit
the least. Therefore, the amount of CO2 emitted decreases with an increase in bulk carrier
size. Moreover, the further the distance to the unloading port of PMNs, the greater the
differences in CO2 emissions in favor of large bulk carriers. On the shortest route, type A
and B bulk carriers emit 120% and 25% more CO2 than type C bulk carriers, respectively.
On the longest route, type A and B bulk carriers emit 194% and 50% more CO2 than type C
bulk carriers, respectively.

Figure 16. Total CO2 emissions of A, B, and C bulk carriers during loading and transportation.

On the shortest route, the differences in CO2 emissions between small and large bulk
carriers are relatively minimal. Figure 17 shows the cumulative CO2 emissions during the
extraction and transportation of nodules to the nearest destination port, depending on the
wave height (and corresponding wind speed) prevailing during the loading of nodules in
the CC zone.

For the smallest bulk carriers, the impact of wind and waves on CO2 emissions is
minimal. This is due to the small size of these ships and the need for them to cover longer
distances compared to larger ships, which significantly increases CO2 emissions during
the voyage. With wave heights up to 1 m and wind speeds up to 7 m/s, these ships emit
77,850 thousand tons of CO2, and with wave heights of 5 m, they emit 83,300 thousand
tons of CO2, indicating an increase of only about 7%.

Environmental conditions have a greater impact on medium and large bulk carriers,
as the influence of waves and wind on these ships is more significant, increasing CO2
emissions, although the relative emissions during transport are lower. Loading nodules in
wave heights up to 5 m and wind speeds up to 19 m/s results in annual CO2 emissions
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of 51,000 and 45,000 tons for bulk carriers type B and C, respectively. In contrast, loading
nodules in wave heights up to 1 m and wind speeds up to 7 m/s results in annual CO2
emissions of 39,500 and 26,100 tons for bulk carriers type B and C, respectively. When
compared to emissions at 5 m wave heights, this represents an increase of approximately
29% for bulk carrier type B and as much as 72% for bulk carrier type C. For wave heights
up to 2 m and wind speeds up to 10 m/s, the annual emissions are 42,000 and 30,000 tons
of CO2 for bulk carriers type B and C, respectively, which corresponds to an increase of
approximately 21% for bulk carrier type B and 50% for bulk carrier type C when compared
to emissions at 5 m wave heights.

Figure 17. Cumulative CO2 emissions of A, B, and C bulk carriers during loading and transportation
on route no. 1, as influenced by environmental conditions represented by significant wave height (Hs).

Loading all types of ships in worse weather conditions, i.e., wave heights greater than
5 m and wind speeds above 19 m/s, does not significantly increase CO2 emissions, as such
conditions are relatively rare and the duration of the trips in these conditions is short.

Assuming that loading will be conducted in wave conditions up to 1–2 m due to
technical issues related to ensuring safe loading, as indicated by [20,21], on the shortest
route and on the largest bulk carriers, a significant impact of waves and wind on CO2
emissions can be expected. However, on longer routes, this impact is not substantial.

4. Discussion

The analysis presented in the article indicates that the smallest type A bulk carriers,
although characterized by a lower drift force, generate higher CO2 emissions when com-
pared to larger vessels. This is associated with their lower transport efficiency and the
greater number of trips required to deliver nodules to the destination port, resulting in
higher fuel consumption and, consequently, higher CO2 emissions. In contrast, the largest
type C bulk carriers, despite the greater drift force caused by marine environmental effects
during loading, emit less CO2 overall, thanks to their higher transport efficiency. These
results suggest that selecting larger vessels for the loading and transporting of nodule cargo
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can positively contribute to reducing the environmental impact of the mission by reducing
carbon dioxide emissions.

These studies were conducted with the assumption that all types of ships can conduct
loading operations efficiently, even in challenging weather conditions. However, research
conducted by Kacprzak [20] has shown that the loading of PMNs on small bulk carriers
can only be carried out under limited weather conditions. This means that the use of a fleet
of small bulk carriers for the loading and transport of PMNs may lead to an extension of
the time required to complete these operations due to the lower number of days in a year
that are suitable for loading. These findings suggest that using large bulk carriers for these
tasks may be a more efficient solution than using small ones.

Figures 15–17 show that the overall CO2 emission related to the transport mission pri-
marily depends on the emissions generated during sea transport. This clearly demonstrates
that, although smaller ships may emit less CO2 during the loading operations themselves,
their lower transport efficiency, and the need to make a significantly larger number of
voyages and thus cover a longer distance, means that when considering the entire venture,
their environmental impact is negatively greater than that of large bulk carriers. Combined
with the fact that small ships burn relatively more fuel per unit of transported cargo than
large ones, this leads to the conclusion that the use of a fleet of large ships could be key from
the point of view of ecological efficiency. This discovery may have significant implications
for ecological policy in maritime transport. It shows that efforts to limit CO2 emissions in
maritime transport should not only include the search for new technologies and fuels, but
also the optimization of fleet size and operation planning. Using large bulk carriers for the
transportation of all types of cargo could significantly reduce global CO2 emissions from
maritime transport, presenting both a challenge and an opportunity for the industry.

Scaling the research findings to encompass general maritime transport clearly shows
the substantial potential for reducing CO2 emissions. This is particularly relevant given the
feasibility of the annual transportation of up to 11 billion tons of cargo via sea, as reported in
UNCTAD [68]. For example, Figure 18 depicts the hypothetical CO2 emissions generated by
ships carrying a volume of cargo along a typical route spanning an average of 5000 nautical
miles in relation to the ship deadweight capacity. The illustration reveals that utilizing only
a fleet of the smallest bulk carriers, each with a deadweight of 1000 tons, would culminate
in an annual CO2 emission totaling 1,960,843,563 tons. Conversely, only employing a fleet
composed of the largest bulk carriers, each boasting a deadweight of 320,000 tons, would
significantly reduce the annual CO2 emission to merely 125,166,010 tons. Therefore, if we
assume hypothetically that all the global cargo transported annually was only carried by
the smallest bulk carriers, this will increase the emissions by 1,835,677,553 tons of CO2
annually. This roughly equates to the annual burning of 1.142 billion passenger cars with an
average consumption of 6 L of diesel per 100 km, assuming that they each travel 10,000 km
annually. This example highlights the need for further research and analysis to better
understand and utilize the potential for the efficient use of large bulk carriers in ecological
maritime transport. The analysis presented in the article potentially represents a significant
advancement in understanding the complexities of CO2 emissions in maritime transport. It
emphasizes that the ecological efficiency of this sector depends not only on the employed
technologies, which primarily involve alternative fuels [69–71], but also on operational
strategies and planning. Optimizing the size of ships could bring significant benefits
to the environment, which should be considered in global efforts towards sustainable
development and carbon footprint reduction. However, verifying this approach requires
conducting more detailed research in this area, which may be explored in subsequent
studies by the authors.
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Figure 18. Comparative analysis of annual CO2 emissions: smallest vs. largest bulk carriers on a
5000-nautical mile route transporting 11 billion tons of cargo.

5. Conclusions

The study confirmed the set objectives, providing significant insights into the impact
of ship size on CO2 emissions. It introduces new methods for assessing energy efficiency
and the use of ANNs to estimate drifting force. The key innovations of the article include
the following:

• the impact of bulk carrier size on CO2 emissions, indicating the possibility of reducing
the carbon footprint through the optimal selection of transport units,

• a new method to assess energy efficiency that takes environmental conditions into
account, which can significantly contribute to the optimization of fuel consumption
and the reduction of CO2 emissions,

• the application of ANNs to estimate drifting force, offering new perspectives for ship
design and operation, and highlighting the potential of artificial intelligence in the
analysis of maritime operations.

The study demonstrated that large bulk carriers, despite the greater drift force acting
on them, emit less CO2 than smaller bulk carriers, both when considering the loading at
sea of PMNs and their transport to the destination port. This indicates that preferring
larger ships in global maritime trade can reduce environmental impacts due to their higher
transport efficiency and lower CO2 emissions.

The proposed method to estimate fuel consumption and CO2 emissions, considering
environmental conditions with the DP system, could lead to a new energy efficiency
indicator. This indicator would aid in assessing and optimizing maritime operations from
an environmental perspective, but also requires further research.

Using neural networks (ANNs) to estimate lateral drifting force in regular waves has
proven effective, demonstrating its potential in maritime analysis. The developed ANN
accurately predicts drifting force based on ship design parameters. However, practical use
is limited by the narrow dimension ratio ranges of the training models. Expanding the
training dataset with more diverse ship shapes could improve the method’s universality,
with further research required.
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Abbreviations

ANN Artificial neural network
AW Lateral plane of the vessel above the plane of draught
B Breadth of the ship
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
CB Block coefficient
CCZ Clarion-Clipperton Zone
CII Carbon intensity indicator
CO2 Carbon dioxide
D Displacement
DP Dynamic positioning
DWT Deadweight tonnage
EEDI Energy efficiency design index
EEOI Energy efficiency operational indicator
Hs Significant wave height
IMO International Maritime Organization
L Length between perpendiculars of the ship
MSE Mean squared error
PCC Pearson correlation coefficient
PMNs Polymetallic nodules
RMSE Root mean squared error
RRMSE Relative root mean square error
SCG Scaled conjugate gradient
SGD Stochastic gradient descent
T Draught of the ship
Tz Average zero-up-crossing wave period
λ Wavelength of a regular wave

Appendix A

Table A1. Normalization coefficients for the inputs and output of the ANN.

Shift Scale

L/B. −30.6666666666666 5.55555555555554
B/T −8.70967741935485 3.22580645161291
L/T −12.5121951219512 0.81300813008130
CB −27.0000000000001 33.3333333333334
l/L −1.53846153846154 0.76923076923076

Output 0 1.49253731343284

Table A2. Neuron weights and biases in the hidden layer.

Neuron in the Hidden Layer

Input 1 2 3 4 5 6

L/B 0.301285 0.300698 0.193848 0.427797 0.160716 −0.070965
B/T 0.770441 0.370726 0.749137 0.094164 0.785890 −0.726824
L/T 0.794974 0.526635 1.035377 0.867195 1.019568 0.842477
CB 2.544873 1.573534 2.629856 2.722212 2.506663 −0.238512
l/L 3.111188 2.391626 3.641622 5.705001 4.086734 9.063809
bias 0.558491 0.400501 0.554879 −1.215970 0.480272 −4.862085
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Table A3. Neuron weights and biases in the output layer.

Output

Neuron 1 0.703693
Neuron 2 −0.501220
Neuron 3 1.014894
Neuron 4 −1.718017
Neuron 5 0.080677
Neuron 6 −6.121465

bias 1.356850

Appendix B

Table A4. Estimated drift force values from beam seas for bulk carrier type A using ANN.

Hs (m)
Tz (s)

<4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 10 to 11 11 to 12 12 to 13 >13

7 to 8 2566 3303 2787 1960 1301 861 581 401 284 206 153
6 to 7 1965 2529 2134 1501 996 659 445 307 217 158 117
5 to 6 1443 1858 1568 1103 732 485 327 226 160 116 86
4 to 5 1002 1290 1089 766 508 336 227 157 111 80 60
3 to 4 642 826 697 490 325 215 145 100 71 52 38
2 to 3 361 464 392 276 183 121 82 56 40 29 21
1 to 2 160 206 174 123 81 54 36 25 18 13 10
0 to 1 40 52 44 31 20 13 9 6 4 3 2

Table A5. Estimated drift force values from beam seas for bulk carrier type B using ANN.

Hs (m)
Tz (s)

<4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 10 to 11 11 to 12 12 to 13 >13

7 to 8 1232 3291 4043 3565 2717 1959 1393 996 722 532 398
6 to 7 943 2519 3095 2729 2080 1500 1067 763 553 407 305
5 to 6 693 1851 2274 2005 1528 1102 784 560 406 299 224
4 to 5 481 1285 1579 1393 1061 765 544 389 282 208 156
3 to 4 308 823 1011 891 679 490 348 249 181 133 100
2 to 3 173 463 568 501 382 275 196 140 102 75 56
1 to 2 77 206 253 223 170 122 87 62 45 33 25
0 to 1 19 51 63 56 42 31 22 16 11 8 6

Table A6. Estimated drift force values from beam seas for bulk carrier type C using ANN.

Hs (m)
Tz (s)

<4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 10 to 11 11 to 12 12 to 13 >13

7 to 8 888 3352 5256 5689 5055 4040 3072 2293 1709 1283 974
6 to 7 680 2566 4024 4355 3871 3093 2352 1756 1309 982 746
5 to 6 499 1885 2957 3200 2844 2273 1728 1290 961 722 548
4 to 5 347 1309 2053 2222 1975 1578 1200 896 668 501 380
3 to 4 222 838 1314 1422 1264 1010 768 573 427 321 243
2 to 3 125 471 739 800 711 568 432 322 240 180 137
1 to 2 55 209 329 356 316 253 192 143 107 80 61
0 to 1 14 52 82 89 79 63 48 36 27 20 15
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Table A7. Values of fuel consumption FC [t] resulting from the operation of the DP system to
counteract the drift force caused by wave action on bulk carrier A.

Hs (m)
Tz (s)

<4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 10 to 11 11 to 12 12 to 13 >13

7 to 8 0 0 0 0 0 1 0 0 0 0 0
6 to 7 0 0 0 0 2 3 3 2 1 0 0
5 to 6 0 0 0 3 9 11 9 4 2 1 0
4 to 5 0 0 3 16 35 37 23 10 4 1 0
3 to 4 0 1 14 63 103 84 42 15 4 1 0
2 to 3 0 3 48 147 165 96 36 10 2 0 0
1 to 2 0 10 71 116 76 28 7 1 0 0 0
0 to 1 0 3 7 5 1 0 0 0 0 0 0

Table A8. Values of fuel consumption FC [t] resulting from the operation of the DP system to
counteract the drift force caused by wave action on bulk carrier B.

Hs (m)
Tz (s)

<4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 10 to 11 11 to 12 12 to 13 >13

7 to 8 0 0 0 0 0 2 1 1 1 0 0
6 to 7 0 0 0 0 4 6 6 4 2 1 0
5 to 6 0 0 0 5 18 26 21 11 5 2 0
4 to 5 0 0 4 30 74 85 56 26 9 2 1
3 to 4 0 1 20 115 215 191 101 38 11 3 1
2 to 3 0 3 70 268 345 219 86 25 6 1 0
1 to 2 0 10 103 210 159 63 17 3 1 0 0
0 to 1 0 3 10 9 3 1 0 0 0 0 0

Table A9. Values of fuel consumption FC [t] resulting from the operation of the DP system to
counteract the drift force caused by wave action on bulk carrier C.

Hs (m)
Tz (s)

<4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 10 to 11 11 to 12 12 to 13 >13

7 to 8 0 0 0 0 0 3 3 2 1 1 0
6 to 7 0 0 0 0 7 13 14 9 4 2 1
5 to 6 0 0 0 8 34 53 46 25 11 4 1
4 to 5 0 0 5 48 137 175 123 59 21 6 2
3 to 4 0 1 26 183 401 394 223 86 26 6 1
2 to 3 0 3 91 427 642 452 190 56 13 3 0
1 to 2 0 10 133 335 296 131 37 8 1 0 0
0 to 1 0 3 13 14 6 1 0 0 0 0 0

Table A10. Values of fuel consumption (FC) [t] resulting from the operation of the DP system to
counteract the drift force caused by wind on bulk carriers A, B, and C.

Hs (m) vW (m/s)
FC (t)

Bulk Carrier A Bulk Carrier B Bulk Carrier C

7 to 8 0 56 128 148
6 to 7 0 88 202 234
5 to 6 0 69 159 184
4 to 5 0 130 297 344
3 to 4 0 105 241 278
2 to 3 0 95 218 252
1 to 2 0 104 239 276
0 to 1 0 49 112 130
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