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Abstract: This paper introduces a Linear Quadratic Gaussian (LQG) controller for a Single-Ended Pri-
mary Inductor Converter (SEPIC). The LQG design is based on merging an integral Linear Quadratic
Regulator (LQR) with an offline Kalman Filter (commonly referred to as a Linear Quadratic Estimator
(LQE)). The robustness of the LQG controller is guaranteed based on the separation principle. This
manuscript addresses the need to use observer-based systems for the fourth-order SEPIC, which
needs a sensor reduction as an essential requirement. This paper provides a comprehensive, yet
systematic, approach to designing the LQG system. The work validates the convergences of the states
in an LQG system to an actual value. Furthermore, it compares the performance of an LQG system
with a benchmark Type-II industrial controller by means of a simulation of the switched converter
model in the Simulink/MATLAB 2023a environment.

Keywords: Linear Quadratic Gaussian (LQG) controller; Single-Ended Primary Inductor Converter
(SEPIC); offline Kalman Filter

1. Introduction

One of the most common categorizations of a DC–DC converter is based on whether
the load is isolated from the input or not. Specifically, a DC–DC converter is categorized as
an isolated topology if the load is isolated from the input. On the other hand, the converter
is categorized as non-isolated if the load shares a common ground with the input or has a
floating ground [1–11]. Each topology has advantages/disadvantages, as summarized in
the cited references.

A non-isolated topology is quite popular in the literature. Typically, under the con-
straint of unidirectional power flow, the non-isolated topologies are classified into three
main groups: single-stage, multi-stage, and multi-phase converters [1–11]. The single-
stage group (or second-order converters) includes buck, boost, and buck–boost converters.
These converters have two storage elements (i.e., one inductor and one capacitor), hence
the name. Multi-stage converters primarily comprise Single-Ended Primary Inductance
(SEPIC), Cuk, and Zeta converters. These converters have four storage elements (i.e., two
inductors and two capacitors); hence, they are called higher-order converters or fourth-
order converters. Typically, higher-order converters are the result of the hybridization of
two single-stage converters. The last group, multi-phase converters, is beyond the scope of
this work [1–8,12–15].

In comparing the listed converters, the SEPIC (Figure 1) is a result of hybridizing a
boost converter and a buck–boost converter at the input and output sides, respectively. The
main characteristics of the SEPIC can be summarized as its ability to step up or step down
the DC input voltage without a polarity inversion. Also, the SEPIC gate driver design is
simple due to its low-side switch. From a converter structure, SEPIC power delivery from
input to output is based on the energy transfer through capacitor C1 and inductor L1. From
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an input electro-magnetic interference (EMI) perspective, the SEPIC has an input series
inductor, which reduces the EMI due to the continuous nature of the supplied current.
These features make the SEPIC popular in several applications, such as solar applications
and motor drives [1–8,12–15].
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Deploying SEPIC in PV applications (and other similar fields) has been addressed in
several studies [16–24]. This highlights the popularity of SEPIC and emphasizes the need
to investigate simple controller techniques to achieve robust performance. Therefore, this
work focuses on a simple, yet robust, controller for the SEPIC.

The first step to achieve this goal is to provide an overview of the common techniques
to control SEPIC and address the research gaps. Control strategies to regulate DC–DC
converters are categorized into two groups: conventional and advanced techniques.

In the first group (i.e., linear or conventional techniques), a linearized model of the
converter is an essential requirement to have before starting the controller design. This
is because DC–DC converter models are nonlinear, while their conventional controllers
are linear. Consequently, the converter model must be linearized, first around the de-
sired point (i.e., in a small neighborhood around the desired operating condition). In the
literature, the conventional controller techniques are divided into two groups: Proportional–
Integral–Derivative (PID) and Type-I-III compensators [25–34]. Figure 2 depicts the linear
controller categories.
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In the second group (i.e., nonlinear or advanced technologies), the converters are
driven by a nonlinear controller where the limitations of a linear controller are either miti-
gated or overcome. In the literature, the addressed technologies are composed of, but not
limited to, Model Predictive Control (MPC), Backstepping Control, Sliding Mode Control,
Passivity-Based control, and Disturbance Estimation Techniques. Among the alternatives,
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this manuscript addresses a controller strategy that is based on state estimations. Estima-
tion or observer techniques can take two approaches: disturbance observers and/or state
observers [7,35–49]. Figure 3 depicts the nonlinear controller categories.
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In a disturbance observer, the developed estimator model estimates the uncertainty,
the unmodeled dynamics, and any relevant noise that appears in the nonlinear model.
This task can be fulfilled using different models, such as disturbance observers (DOs),
nonlinear disturbance observers (NDOs), higher-order sliding mode observers (HOSMOs),
and Kalman Filters (KFs). The prime advantages of disturbance observers and their
variants are their features of being independent from the closed-loop controller, which
allows for integration with other controller types, such as sliding mode, backstepping,
and the Passivity-Based controller. On the other hand, a KF (and its variants) can achieve
the same objectives in terms of disturbance estimation through its inherent stochastic
structure [35,42,50–52].

Using state observers is a common approach to reduce the needed sensors, which
impacts the system cost, complexity, size, and weight. Estimating the state is typically
achieved through the design of either linear or nonlinear models where the input to these
models is a measured state variable. The most common observers, typical for linearized
models, are the Leuenberger observers. A Leuenberger observer is typically used as a
linear estimator, and it offers an effective solution to a state–feedback controller because
it reduces the requirements of the needed sensors significantly [25,29–31]. However, one
of the limitations of this approach is the performance dependency on the pole placements
of the observer state–space model. This limitation can be overcome if a cost function is
derived such that the placement of the observer system poles is optimized. In the literature,
the observer that results from placing the poles in an optimized structure is defined as a
Linear Gaussian Estimator (LQE), commonly known as an offline Kalman Filter [53–70].

Within the studied literature, several approaches were introduced into SEPICs to merge
the observer design with controllers; hence, the requirements for direct measurements (via
sensors) of the needed states that are used in the control law are reduced. In [71], an LQR
controller was derived for a SEPIC, and its performance was compared to a PID controller.
The work proposed a KF that is based on reducing the expected value for the added
squared error. The work did not cover the internal dynamics of KF, and it was based on an
online calculation and estimation, which could place a limitation depending on the available
computational power. In [72], the work designed a Lyapunov-based controller and observer
for the SEPIC. The developed controller and observer were nonlinear and demonstrated
superiority in comparison to linear techniques, as validated by an experimental setup. On
the other hand, due to the nature of the controller and observer, the system suffered from a
minor steady-state error between the actual measurement and estimated variable because
the derived control law could not perform proper tracking tasks (i.e., to reach the desired
reference value). Instead, the derived control law resulted in having the phase portrait as
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a limit cycle around the desired point of interest. The work in [73] introduced a SEPIC
for PV systems that was controlled by an integral LQR controller where the states were
estimated by a Leuenberger linear observer. The system was designed via pole placement
techniques. The limitation on the design was based on a second-order dominant pole, and
the remaining two poles were placed far in the left-half plane (i.e., to render them less
significant). This limitation was also noted in the time response during disturbances.

In [74], a nonlinear controller and observer were merged. The work derived a Passivity-
Based controller and observer, and it was compared to a Backstepping Controller. The
transient response suffered from undesirable oscillations and overshoot at the instance
of the disturbance. Additionally, the designed backstepping waveforms suffered from
harmonics that could trigger a safety protection network in real-world applications. Ref-
erence [75] proposed a nonlinear observer design to estimate unobservable states using
the previous and the current state measurements. The work demonstrated convergence
between the estimated and actual states. However, the work proposed a complicated tech-
nique to estimate the SEPIC states. The major drawback is that the SEPIC was designed to
be fully state-observable, while the technique in [75] did not offer a significant contribution
based on this fact.

Estimating the desired states in a SEPIC was also addressed via a nonlinear approach
in [76]. The work proposed a nonlinear sliding mode observer, and the results were verified
experimentally. The limitation of the work was the complexity of the system, as it required
a double integration calculation cascaded with another integration process. Furthermore,
system stability was based on the definition of a referenced current expression; this became
a bottleneck as the system did not have any switching terms to correct the system trajectory
in case of insufficient information available in the reference current expression due to
changes in the components’ parasitic values.

Another nonlinear approach was introduced in [77] to design an observer for the
SEPIC controller using an Immerse and Invariance technique. The work demonstrated the
advantage of the designed observer as its error estimation did not result in driving the
system to be stable; instead, it resulted in a steady-state error. This limits the work, as the
observer is based on having an accurate converter model; otherwise, the controlled state
will suffer from a steady-state error. Overcoming this limitation requires implementing
advanced adaptive controller techniques where these techniques can be merged with the
existing controllers.

Overall, the addressed literature review demonstrates that SEPIC controllers are
either simple with limitations in robustness and performance or complex to enhance
their robustness, thus requiring multi-variable sensing to achieve robust tracking via an
advanced controller structure. These limitations are addressed in this proposed work
by employing an optimized Linear Quadratic Gaussian (LQG) controller. This controller
derives an optimized integral Linear Quadratic Regulator (LQR) that uses an offline Kalman
Filter (KF) as an estimator (commonly known as a Linear Gaussian Estimator—LQE).
Furthermore, the presented LQG system demonstrates simplicity with respect to the cited
research as it requires, from the state–variable perspective, only one state to measure.
Furthermore, the controller loop is based on a simple mathematical calculation, including
the integration process. The proposed LQG controller is compared to a benchmark Type-II
compensator that is derived for the designed SEPIC.

The remaining sections of this manuscript are organized as follows. First, the math-
ematical model that represents the averaged large-signal nonlinear (bilinear) model is
derived from the SEPIC switched model. Next, the small-signal model and the linearized
state–space representation are presented. The next section covers the design procedure
for the benchmark Type-II compensator, as well as the design procedure for the proposed
LQG system for a designed SEPIC. This designed converter is based on a Texas Instruments
Application Note (TI AN-1484). The discussion covers all of the relevant background and
theory. Following that, using the Simulink/MATLAB environment, a comparison between



Energies 2024, 17, 3385 5 of 33

the designed controller and the Type-II controller is presented. Finally, the conclusions
are presented.

2. Material and Methods

This manuscript proposes a systematic method to design and tune a Linear Quadratic
Gaussian (LQG) controller for a SEPIC. The design method of the LQG controller com-
mences with a robust Integral LQR controller for the SEPIC. The design of the integral
LQR assumes that all the states are measurable, and they are available for the controller’s
implementation. Next, a Linear Quadratic Estimator (LQE), commonly referred to as an
offline Kalman Filter, is designed for the open-loop SEPIC using the variable of interest. The
details regarding the design and tuning methods of the offline Kalman Filter are presented.
In the design and in the validation process, the output voltage is used for the feedback loop
and for estimation objectives. At this stage, after designing the integral LQR and LQE, the
controller as well as the estimator are ready for the next step. The final step in designing
the LQG controller is to merge the designed estimator with the controller. The merging
process implies that the estimator will provide all of the state variables where they are used
as part of the integral LQR controller. Figure 4 depicts the system block diagram where the
disturbance and noise measurements are also taken into consideration. The figure shows
that the offline Kalman Filter requires a measured variable (output voltage, in this case) as
well as the generated control variable (duty cycle, in this case). As the offline Kalman Filter
estimates the SEPIC state variables, they are fed to the integral LQR controller (shown as
the Full-State Controller in Figure 4). To enhance the system’s robustness, the measured
variable (output voltage) is used in the integral LQR loop (not shown in Figure 4). The
robustness and convergence of the LQG system are guaranteed by the separation principle.
Furthermore, the LQG approach does not require any tuning (either for the controller or
for the estimator), which makes it a simple yet robust approach to designing an optimal
system response.
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3. Mathematical Model of SEPIC

The SEPIC (Figure 1) is operated and controlled through the switch Q1 by generating
a regulated pulse-width-modulated (PWM) signal. The PWM signal has two states: on
(logic 1) and off (logic 0). Hence, the SEPIC circuit has two equivalent circuits, with each
corresponding to the two states of the PWM signal. Figure 5 shows the SEPIC circuit under
each state of the PWM signal [4,6,76–81].
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each model, the SEPIC large-signal average model can be obtained as in Equation (1):


.

x1.
x2.
x3.
x4

 =


− rL1

L1
0 − 1−u

L1
− 1−u

L1

0 − rL2
L2

u
L2

− 1−u
L2

1−u
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− u
C1

0 0
1−u
C2

1−u
C2

0 − 1
RC2




x1
x2
x3
x4

+


Vg
L1
0
0
0

, (1)

where x1 = iL1, x2 = iL2, x3 = vC1, x4 = vC2, rLi = equivalent series resistance (ESR) of the
ith inductor, and vg = input voltage [4,6,76–81].

The derived model of the SEPIC is bilinear; hence, it cannot be used directly to design
linear controllers. Hence, the next step is to derive/define the converter small-signal
model as well as a linearized state–space representation. The derived small-signal model
presents the system in the Laplace domain, and it is used to design a Type-II compensator,
while the linearized state–space representation is used to derive the proposed LQG system.
The SEPIC small-signal model was derived in [4,78,79], and it is given in Equation (2).
It gives the transfer function between the duty cycle (i.e., the control variable) and the
second/output capacitor voltage (i.e., the converter output) [4,6,76–81].

vout

u
(s) = Kd

(−A1s + 1)
(
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)

(A4s2 + A5s + 1)(A6s2 + A7s + 1)
(2)

where Kd = 1
(D ′ )2 and D ′ = 1 − D, D is the converter duty cycle; A1 =
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R

)((
D
D ′

)2
)

;
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L1

)((
D ′
D

)2
)
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w2
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(
D2

D′2

))
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L1

((
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))
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)((
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(
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((
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))
+(L2(C1 +C2))
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R
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(

C1
C2

)(
wo1
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)2 .

The linearized state–space representation of the SEPIC is obtained by deriving the
Jacobian matrix of the large-signal model that is given in Equation (1) [4,6,76–82]. Therefore,
the linearized model can be derived as per Equation (3):

A =


0 0 − 1−Du

L1
− 1−Du

L1

0 0 Du
L2

− 1−Du
L2

1−Du
C1

−Du
C1

0 0
1−Du

C2

1−Du
C2

0 − 1
RC2

, B =


v1ss+v2ss

L1v1ss+v2ss
L2

−i1ss− i2ss
C1

−i1ss− i2ss
C2

, C = [0 0 0 1], D = 0, x =


x1
x2
x3
x4

, (3)

where

i1ss =
D2

u

(1 − Du)
2 ·

vg

R
, i2ss =

Du

1 − Du
·
vg

R
, v1ss = vg and v2ss =

Du

1 − Du
·vg
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Within this work, a SEPIC was designed following the Texas Instruments Application
Note (TI AN-1484) with the designed converter parameters, as summarized in Table 1.

Table 1. SEPIC specifications and designs values.

Required Specifications Load R Input Voltage Vg Output Voltage Vo Switching Frequency fsw

Value 46.08 Ω 24 V 48 V 50 kHz

Designed SEPIC
Components Inductor L1 Inductor L2 Capacitor C1 Capacitor C2

Value 0.25 mH 0.25 mH 2.78 µF 23.15 µF

In the Simulink/MATLAB environment, the designed SEPIC in Table 1 was simulated
using the switched mode model. Furthermore, it was used to evaluate the proposed
controller. The SEPIC model in Simulink/MATLAB 2023a is shown in Figure 6.
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Table 2. Description of SEPIC model components in Figure 6.

PWM Generation Block

(1) Duty cycle generated by controller (2) Triangular reference module for duty-cycle
comparison and PWM generation

Power Stage

(1) Input voltage source (2) Input inductor L1 with its ESR

(3) Primary semiconductor switch (MOSFET) (4) Capacitor C1

(5) Inductor L2 with its ESR
(6) Secondary semiconductor switch (MOSFET)
is used instead of diode (synchronous
connection)

(7) Output capacitor C2 (8) Load (modeled as resistor)

4. Controller Design

The linear controller design is based on a negative feedback loop structure, which im-
plies a relationship between the output (i.e., the sensed states) and the input (i.e., the control
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variable) to the system. A linear controller can take various forms, such as Proportional–
Integrator–Derivative (PID), a phase Lead–Lag controller, a state–feedback controller, and
Type-I to Type-III controllers. In this work, an optimal robust state–feedback controller,
specifically LQR, augmented with an offline Kalman Filter, typically referred to as LQE, is
proposed and designed for the SEPIC. This controller structure is compared to a standard
benchmark Type-II controller that is designed specifically for the SEPIC [6,29–31,78–85].

4.1. Type-II Compensator

Type-I-III compensators are specifically developed for power converters. Within the
scope of this work, a Type-II compensator is considered due to its ability to provide the
needed phase compensation for a SEPIC; this phase compensation ability is because of the
nature of the Type-II compensator, which comprises one zero, one pole, and an integrator.
The placement of the zero–pole pair, as depicted in Figure 7, results in a region of zero gain
slope as well as an increase in the phase margin. Considering the depicted Bode plot of
a Type-II controller, the maximum phase boost provided by the controller is 90◦, and the
region of this phase boost is decided by the placement of the zero-pole of the controller.
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One of the common strategies to design the controller for a DC–DC converter is to
select the loop gain crossover frequency to be at the center of the region where the gain
slope is zero. Consequently, the transfer function of the Type-II controller is given in
Equation (4):

Gc(s) =
Kc

s
·

(
1 + s

wz

)
(

1 + s
wP

) , (4)

where Kc is the DC gain and it can be adjusted to cover the converter bandwidth. As a key
requirement for a Type-II controller, the zero should proceed the poles (in other words, the
placement should fulfill the following relationship: wz < wp). This placement results in
satisfying the phase boost requirements. In this work, for the SEPIC shown in Table 1, a
Type-II compensator is designed using the K-factor method [29–31,80–85].

The designed Type-II compensator is given in Equation (5):

G(s)comp =
5997s + 7.823 × 106

4079s2 + 7.823 × 106s
(5)

Figure 8 shows the open-loop, loop gain, and closed-loop Bode plots of the SEPIC
using the designed Type-II controller shown earlier in Equation (5).
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4.2. Linear Quadratic Gaussian

The Linear Quadratic Gaussian (LQG) controller is a controller structure that requires
the system to be controllable and observable. In other words, an optimal Full-State Con-
troller (LQR) and an optimal Kalman Filter can be developed for a system given that it is
full-state controllable and observable. The main advantage of an LQG structure is that it
ensures that the feedback structure is optimal after merging the designed LQR and LQE
systems. Therefore, in the next sections, the relevant theory, design procedure, and system
stability for an LQR are covered. Next, the offline Kalman Filter theory, modeling, and
the design procedure are addressed. Finally, further details regarding the LQG system are
provided towards the end of this section [53–70].

4.2.1. Overview of Linear Quadrature Regulator (LQR)

LQR is a linear controller that is categorized under optimal topologies. The calculation
of state–feedback gain using an LQR structure is based on minimizing the cost function.
This cost function is defined as an Integral of Square Error (ISE), and it is given as per
Equation (6) [29–31,81,86]:

J =
∞∫

0

(
xT ·Q· x + uT ·R·u)dτ (6)

where x is the state variable and it is a vector of n × 1 (n is number of states), u is the control
input vector, Q is the n × n positive semi-definite or definite Hermitian matrix, and R is the
r × r positive definite Hermitian matrix (r is the number of system inputs).

The cost function shown in Equation (6) is optimized by solving Equation (7) (i.e., the
Riccati equation) [29–31,81,86]:

AT ·P + P·A − P·B·R−1·BT ·P + Q = 0 (7)
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where A is the system matrix, B is the input matrix, Q and R are as defined earlier in
Equation (6), and P is the n × n positive definite matrix.

Solving Equation (7) results in deriving the P-matrix. If the Riccati relationship is
satisfied (i.e., Equation (7)), then the controller cost function has been optimized. Hence,
the gains of the state–feedback system are defined to be [29–31,81,86]

K = R−1·BT ·P (8)

where K is the state–feedback vector.

4.2.2. Integral LQR System

One of the drawbacks of the state–feedback controller is its incapability in some struc-
tures like high-order systems to achieve zero-steady error, reject the exposed disturbances,
or compensate for system uncertainties. These issues are overcome by merging an inte-
grator with the state–feedback structure. The block diagram of the Integral LQR system is
shown in Figure 9 [29–31,81,86].
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The new system of state equations can be derived from Figure 9 to design the integral
LQR controller as follows:

(1) Introduce a new state variable corresponding to the pole at the origin. Let the new
state variable be “z”.

(2) In Figure 9, the dynamics (the time derivative) of “z” is characterized to be

.
z = Re f − y but y = C·x + D·u

Therefore,
.
z = Re f − C·x − D·u (9)

(3) The control input ( u) expression can be expanded by investigating the model in
Figure 9, as follows:

u = −Ki·z − K·x (10)

(4) Considering the generic model of the state–space equation describes a linearized
system,

.
x = A·x + B·u
y = C·x + D·u (11)

(5) By combining the models in Equations (9)–(11), the new system model in matrix form
is given as per Equations (12) and (13) [29–31,81,86]:[ .

x
.
z

]
=

[
A 0
−C 0

][
x
z

]
+

[
B

−D

]
u +

[
0
1

]
Re f

y = [C 0]
[

x
z

]
+ D·u

(12)
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The model in augmented notion is

.
XA = AA·XA + BA·u + F·Re f

y = CA·XA + DA·u
(13)

where

AA=

[
A 0
−C 0

]
, BA=

[
B

−D

]
, CA= [C 0], DA = D, XA =

[
x
z

]
,

u = −KAXA where KA = [K Ki]

4.2.3. Integral LQR Controller Design

The first step to design an Integral LQR is to adopt the system model presented in
Equation (14): [ .

x
.
z

]
=

[
A 0
−C 0

][
x
z

]
+

[
B

−D

]
u +

[
0
1

]
Re f (14)

Or, in augmented notion form:

.
XA = AA·XA + BA·u + F·Re f

The next step is to define the state–space matrices. The integral LQR controller is
a class of linear controller; therefore, the dissected state–space models must satisfy the
following two conditions before designing the controller:

• It must be linear or linearized.
• The state variables have a relationship with the input variable.

Hence, using the small-signal model in Equation (3), the aforementioned conditions
are satisfied [29–31,81,86].

The next step is to construct the augmented matrices: AA, BA, F, and XA.

Augmented system matrix (AA):

As depicted in Equation (14), matrix AA is padded with two zero matrices of (n × 1)
and (1 × 1), corresponding to the upper and the lower matrices, respectively. This is
because the system is designed to introduce an additional pole at the origin and the system
is constructed to be Single Input–Single Output (SISO). Because the SEPIC is a 4th-order
system, the augmented system matrix ( AA) dimension will be 5 × 5.

Augmented input vector (BA):

The augmented input vector ( BA) consists of the original input vector (B) and the
feedforward matrix D. Consequently, the dimension of ( BA) is 5 × 1.

Augmented output matrix (CA):

By introducing an additional pole and having a SISO system, the augmented output
matrix will be composed of the original (C) matrix padded with an additional zero. Hence,
the dimension of (CA) will 1 × 5.

The next step in the design procedure is to define the Q and the R matrices.
As discussed in the previous section, the Q matrix dimension should be equal to (AA),

and it should be positive semi-definite.
The SEPIC model is a 4th-order system; hence, the Q-matrix dimension should be

(5 × 5). To satisfy the positive semi-definite condition, the Q-matrix is assigned to be the
diagonal matrix. The Q-matrix is tuned based on the perception that the ith diagonal
element is the state-variable weight of importance from the controller objective. Because
the priority is to achieve a robust tracking task, the highest value will be assigned to the
fifth state variable that represents the error to the system. The second highest weight will
be given to the state corresponding to the output voltage as per the tracking requirement.
The other variables will be assigned unity values.
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In this work, SEPIC is controlled and simulated using the SISO structure. Therefore, the
R-matrix is scalar. The R-element is assigned with the highest magnitude. This assignment
addresses issues related to generating a control variable that ensures an adequate system
transient response and converter operations are met. Based on tuning approach, the values
of Q and R matrices are adjusted until the desired response is achieved.

The next step in the Integral LQR design is to solve the optimization problem. That is
the Riccati equation, which has to be solved in an analogous manner, as defined earlier in
Equation (7). Solving the Riccati equation results in a positive definite matrix (P), which is
used to derive the state–feedback gains based on a similar approach in Equation (8). In this
manuscript, the MATLAB toolbox was used to solve this optimization problem.

Designed Integral LQR Controller Parameters:

For the presented SEPIC in Table 1, an integral LQR controller was designed and tuned
following the procedure outlined in the previous subsection.

As discussed, the integral LQR controller requires adjusting the state–space represen-
tation. The augmented matrices are derived as follows.

Augmented system matrix (AA):
0 0 −1333.33 −1333.33 0
0 0 2666.67 −1333.33 0

123456.79 −16220.263 0 0 0
16666.67 6711.895 −0.004 −1085.07 0

0 0 0 −1 0


Augmented input vector (BA): 

288000
288000

−540123.45
−72916.67

0


Augmented output matrix (CA):[

0 0 0 1 0
]

As discussed, the Q-matrix and the R-elements are selected on a tuning basis such that
the desired performance is achieved. The Q-matrix and the R-element are given as follows.

Q-matrix: 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 × 109 0
0 0 0 0 3 × 1015


R-element: 2 × 1014.
As stated, this work used the MATLAB toolbox to optimize the cost function; the

designed state–feedback gains are summarized in Table 3.

Table 3. Designed state–feedback gains for Integral LQR controller.

State–Feedback Gain K1 K2 K3 K4 K5

Value 0.00659 0.00375 −1.60361 0.000385 −3.87298
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4.2.4. Stability Analysis

To assess the stability of the LQR system, the Lyapunov function for a Linear Time
Invariant (LTI) system will be used. The theory states that a system is asymptotically
stable for an LTI system if the necessary and sufficient condition is satisfied, where for any
positive definite (P.D) matrix Q, the unique matrix P solution of Equation (15) will be a
symmetric positive definite [29–31,81,86].

ATP+ PA = −Q (15)

where A is the system matrix.
In this section, the stability of the system using the designed integral controller is

examined and evaluated. Therefore, the system matrix in Equation (15) is defined to be the
closed-loop system matrix of the augmented expression in Equation (14). As a result, the
“A” matrix, in Equation (15), will be:

A = AA − BAK (16)

where K is the state–feedback gain vector defined by the integral LQR algorithm. In this
work, corresponding to designed controller and the simulated SEPIC, the “A” will be:

−1898.57 −1081.29 −1328.71 −1444.47 1115419.20
−1898.57 −1081.29 2671.28 −1444.47 1115419.20
127017.43 −244885.68 −8.66 208.43 −2091889.15
17147.35 16940.43 −1.16 −1056.93 −282405.03

0 0 0 −1 0


The next step is to define a positive definite matrix Q; the Q matrix will be assumed to

be a 5 × 5 identity matrix.
By solving the relationship in Equation (15), the P is found to be:

8.051 2.561 0.0822 25.549 0.0493
2.561 3.305 0.0820 9.301 0.0194
0.0822 0.0820 205.05 13.973 −0.0041
25.549 9.301 13.97 429.969 0.500
0.0493 0.0194 −0.0040 0.500 0.000768


By dissecting the P, it is evident that it is a positive definite matrix. Therefore, ac-

cording to the Lyapunov theory for the LTI system, the examined system is Globally
Asymptotically stable [29–31,81,86].

5. State Estimation Theory and Approach
5.1. Overview

One of the prime setbacks in implementing an LQR controller is the requirement to
have full-state feedback; hence, an n-number, where n is the number of state variables,
of sensors must be used. This constraint is more critical in applications where multiple
converters, especially higher-order converters, are required to be used in applications, such
as photo-voltaic farms.

The issue of sensing devices’ requirements is typically overcome by using an observers-
based system. In the literature, there are linear and nonlinear observer models to estimate
the state variables. Among the candidates, the Kalman Filter is one of the popular structures
because of its intrinsic ability to estimate the state variable while offering a filtration process
over the measured variable.

One of prime strengths of the Kalman Filter is that it can be implemented in various
forms depending on the application requirements, such as the Linear Kalman Filter, the
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Extended Kalman Filter (EKF), the Unscented Kalman Filter (UKF), and other forms. In
this work, the scope of work will focus on the offline Linear Kalman Filter.

5.2. Full-State Estimation
5.2.1. Necessary Condition and Requirements

Consider the state–space representation of an LTI system given by Equation (11). Then,
the goal is to estimate the state variable x(t) from the output measurement y(t) such that
the system can be presented as in Figure 10.
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The first necessary condition to design an estimator is to have a full-state observ-
able system. Thus, the observability should be checked prior to designing any observer-
based system.

For linear systems, the observability can be studied via a PBH test. Alternatively, as
a direct result of the PBH test, the observability matrix (O) can state in a crisp structure
whether the system is full-state observable or not. Hence, through the PBH test, the system
in Equation (11) is observable if, and only if,

Rank
[

sI − A
C

]
= n∀s ∈ C (17)

In other words, the system is full-state observable if the matrix in Equation (17) is
full-rank (i.e., it spans the entire space Rn) [53–70].

The direct result of the PBH test states that the system is full-state observable if the
observability matrix (O ) is full-rank where the observability matrix (O) is defined to be:

Observability matrix (O)=


C

C·A
C·A2

...
C·An−1

 (18)

If the observability matrix is a square matrix, then the system is observable if O is not
a singular matrix. In other words, if the determinant of O is different than zero, then the
system is full-state observable.
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Using the designed SEPIC parameters as per Table 1, the observability matrix O is
constructed for the SEPIC model where the output voltage is the measured state:

O =


0 0 0 1

1.67 × 104 1.67 × 104 0 −1.08 × 103

−1.80 × 107 −1.80 × 107 2.22 × 107 −4.33 × 107

2.02 × 1012 −6.21 × 1012 −2.41 × 1010 9.51 × 1010


Examining the rank of the O matrix shows that it spans the entire space R4 and it

has full rank. Therefore, the system is full-state observable if the output voltage is the
measured state.

On the other hand, it should be noted that examining the observability of the aug-
mented system where the state z is introduced results in an observability matrix that is
rank-defect because the observability matrix of the augmented system does span the entire
space of R5 and it has rank of 4 where the output voltage is measured [53–70].

5.2.2. Measured State Variable Selection Criterion

The next step in designing the state estimator system is to examine the effectiveness
of the measured variable. In other words, the designer shall decide which state is the best
to fulfill the observability objective. This process is defined as the observability Gramian
study [53–70].

The definition of the observability Gramian is summarized as follows.
If the presented system in Equation (11) is observable and stable, then there is an

observability Gramian that is given by:

Wo(t) =
∫ ∞

0
eAτC ∗ CeAτdτ (19)

The main observation about the observability Gramian is that it converges as time
approaches infinity. The solution to the observability Gramian in Equation (19) is not a
straightforward case; hence, a Lyapunov equation is proposed such that its solution is the
observability Gramian. Therefore, the observability Gramian is given as [53–70]:

A ∗ Wo + Wo ∗ A + C ∗ C = 0 (20)

Following the above definitions, the procedure for examining the observability Gramian
can be summarized as follows [53–70]:

(1) Construct the system state–space representation by selecting the first state variable as
the only output of the system.

(2) Calculate the corresponding observability Gramian.
(3) Calculate the determinant of the above derived observability Gramian.
(4) Repeat the above steps with the second state variable as the system output.
(5) Keep repeating the process until the determinant of the observability Gramian is

calculated for all of the state variables presenting the output variable.

It should be noted that the determinant of the observability Gramian presents the
geometric volume of the observable ellipsoid within the defined space. Consequently, the
larger the magnitude of the determinant, the greater the volume of the Gramian matrix.
From a control perspective, having a system represented with a C matrix that results in the
largest determinant of observability Gramian indicates that the selected state variable offers
the best signal-to-noise ratio and immunity to noise and system imperfections [53–85]. In
this work, and using the referenced design of SEPIC parameters, the determinant of the
observability Gramian is calculated and summarized in Table 4. It should be noted that the
original system matrices were used to fulfill the analysis where the number of states is 4.
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Table 4. Gramian study for the designed SEPIC.

State Variable x1 x2 x3 x4

Determinant of
observability Gramian 2.59 × 10−14 2.6 × 10−14 2.86 × 10−9 9.51 × 10−13

The result from Table 4 shows that the state variable (x 3) is the best candidate for
observability purposes; however, in this work, the output voltage (i.e., (x4) state variable)
is selected to design the observer system and act as the observer input. This is due to the
following points:

• The LQG system is compared to a standard Type-II controller where the output voltage
is taken as feedback. Hence, to hold the comparison, both systems (Type-II and LQG)
should use the feedback variable.

• The LQR controller is designed to be an integral LQR system where an additional state
( z) is introduced. This structure performs best if the variable of interest (to perform
the tracking task) is measured directly such that the measurement is accepted with
high fidelity.

5.3. Observer Design

After verifying the observability and selecting the most suitable state variable for
observability, the process to build an observer-based system can be started. Considering an
observer block diagram as shown in Figure 10, a dynamical response describing the system
can be presented in the state–space representation as follows:

dx̂
dt = Ax̂ + Bu + K f (y − ŷ)

ŷ = Cx̂
(21)

where x̂ is the estimated stated variables, A is the system matrix, B is the input vector, C is
the output row, u is the control variable, K f is observer gains, y is the measured state, and ŷ
is the estimated measured state.

By re-arranging Equation (21), the observer dynamics can be presented as

dx̂
dt = Ax̂ + Bu + K f y − K f Cx̂

=
(

A − K f C
)

x̂ +
[
B K f

][u
y

]
(22)

Equation (22) implies that to design an observer where its estimated states ( x̂) converge
to the actual states (x), then the eigen values of the matrix

(
A − K f C

)
must be placed

appropriately. In this work, the eigen values of the observer are placed in an optimum
location using a Linear Quadratic Estimator approach; thus, the resulted observer system
is a static Kalman Filter. Thus, the coefficients of the observer (i.e., the observer gains)
are selected via an optimal approach before running the system. While the system is in
operation, the Kalman Filter will use the optimal designed gains to estimate the states
without online computations [53–70].

5.3.1. Kalman Filter Design

To design a Kalman Filter, consider the following state–space representation where a
disturbance and noise measurements are introduced, as shown in Equation (23):

dx̂
dt = Ax + Bu + Wd

y = Cx + Wn
(23)

where
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• Wd is the disturbance acting on the system as well as the model uncertainty. Wd is
modeled as

# Additive White Gaussian (AWG) noise.
# Has variance Vd.
# Has size of n × n.

• Wn is the noise measurement. Wn is modeled as

# Additive White Gaussian (AWG) noise.
# Has variance Vn.

The above system representation is shown in Figure 11.
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It should be noted that the design process of a Kalman Filter depends on the confidence
factor in either the plant model or in the state measurements. This implies that if the
disturbance acting on the model is expected to be severe or if the model has high uncertainty,
then the state measurement should be trusted to be reliable. Alternatively, if the noise
acting on the measured state is severe, then the utilized model to derive the Kalman Filter
gain should be reliable [53–70].

The derivation of the design procedure for a static Kalman Filter gain is started by
defining the error between the actual state variable and the estimated ones by the Kalman
Filter. This expression is given in Equation (24):

Error in Estimation = E = x − x̂ (24)

Considering the dynamics of the observer to be designed and by taking the time
derivative of Equation (24), the following expression is derived [53–70]:

dE
dt = dx

dt −
dx̂
dt

= Ax + Bu − Ax̂ + K f Cx̂ − K f y − Bu

= A(x − x̂) + K f C(x̂ − x) =
(

A − K f C
)
E

(25)

The results from Equation (25) imply that the error can converge to zero if the system
is observable; hence, if the system is observable, then the eigen values of

(
A − K f C

)
can

be placed by choosing K f . The process of Kalman Filter design optimizes the selection of
K f values such that the system error between the estimated and the actual state variables is
zero. Moreover, the optimized selection of K f balances the system behavior between the
existence of system disturbance modeled in Wd and the noise measurement modeled in
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Wn. This process of optimization and gain selection is fulfilled by solving an optimization
problem where the goal is to minimize cost function I, given as

I = E
(
(x − x̂)T(x − x̂)

)
(26)

where E is the expected value.
In this work, the cost function is solved using the MATLAB optimization/control

toolbox, where the system matrix A, the measured variable given by the C matrix, the
covariance disturbance matrix (Vd), and the covariance measurement noise matrix (Vn) are
used to calculate the KF gains [53–70].

5.3.2. Kalman Filter Dynamical Model

After calculating the observer gains (Kalman Filter gains K f ), the Kalman Filter dy-
namical model can be constructed with the following state–space matrices representation,
as shown in Table 5.

Table 5. Dynamical state–space model of offline Kalman Filter.

Matrix Title System Matrix
AKf

Input Matrix
BKf

Output Matrix
CKf

Feedforward Matrix
DKf

Expression A − K f C
[
B Bu K f

]
I(n × n) 0 ∗ BK f

The state–space model shown in Table 5 has a limitation in physical implementation
and in simulation using the MATLAB/Simulink environment. This is because the input
to the system is a small perturbation while the steady-state duty cycle is incorporated
into the system matrix AK f ; therefore, the generated duty cycle signal from the LQR
controller is unable to drive the model in Table 5 directly using the state–space block in
MATLAB/Simulink. To overcome this limitation, the dynamical model of the Kalman
Filter is re-built from basics in the Simulink/MATLAB environment, where the system
matrix AK f is re-arranged such that the generated duty cycle by the controller is a separate
virtual input to the system matrix AK f and it corresponds to a quiescent duty cycle term.
Furthermore, the input voltage to the converter is made to be a dynamic input to the vector
Bu. The block diagram representing this re-arrangement and the dynamical construction
model for state xi are shown in Figure 12.
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Figure 12. Modeling of offline KF dynamics after re-arranging the Simulink model. (a) Dynamic
KF with its inputs. (b) Duty cycle and its complementary assignment. (c) Estimating state variable
x1. (d) Estimating state variable x2. (e) Estimating state variable x3. (f) Estimating state variable x4

(output voltage). (g) Perturbation assignments for the input vector in the KF model. (h) Dynamic
calculation for DC terms in KF model—input inductor. (i) Dynamic calculation for DC terms
in KF model—intermediate inductor and capacitor. (j) Dynamic calculation for DC terms in KF
model—output capacitor. (k) Dynamic calculation for the input vector terms—first and second
components. (l) Dynamic calculation for the input vector terms—third and fourth components.

6. Linear Quadratic Gaussian (LQG)

As discussed earlier, an LQG is a controller structure that results from merging an
LQR controller with an LQE estimator. To build the LQG system, the following two points
should be addressed:

• Design controller gains for the LQR such that the system poles (i.e., system eigen
values) are placed in the desired location to obtain the desired response.

• Design estimator gains of the LQE such that the system poles (i.e., eigen values) are
placed in the desired location to obtain converged estimated states.

It should be noted that the main advantage of the LQG system is that it ensures that
by combining the LQE and LQR the designed dynamics are preserved. Hence, the LQG
system can be defined as a linear controller that is based on optimizing the quadratic cost
function with Gaussian disturbances and noise. Figure 13 depicts the block diagram of
merging the LQR and the LQG for a linear system [53–70].
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The dynamical model of the LQG system can be derived as given in Equation (27):

d
dt

[
x
E

]
=

[
A − B·Kr B·Kr

0 A − K f ·C

][
x
E

]
+

[
I 0
I −K f

][
Wd
Wn

]
(27)

The main result from Equation (27) is that the system follows a separation principle,
which implies that the LQR controller and the LQE estimator can be designed separately
and then they can be combined together without impacting the system dynamics [53–70].
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7. Results
7.1. Estimated States vs. Measured Variables

The first step in the design verification phase is to compare the estimated states
generated using the Kalman Filter versus the actual measured ones. As shown in Figure 14,
following the designed system in previous sections, the simulation results show that the
Kalman Filter has superior performance in estimating the converter states. The results
show a precise estimation for the converter output voltage (the objective of the controller is
to control the output voltage). Furthermore, the other estimated states converged to the
effective true value where the actual states witness ripple. In other words, the Kalman
Filter is offering an accurate filtered estimation for the converter variables. It shall be noted
that the estimation required less than 5 ms to converge. These results provide validation
that the design is successful, and the design is ready to be compared to other controller
structures (the Type-II compensator).
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7.2. Test Metrics and Comparison

After validating the ability of the LQG system to converge to the estimated state to the
actual states and drive the system to perform the tracking task, the LQG system is compared
in this section with a benchmark Type-II compensator. The comparison process involves
three main tests: cold start, input voltage disturbance and load disturbance. It should be
noted that the LQG system uses one measured variable (output voltage state), just like the
Type-II compensator, where no additional state sensors are needed due to the estimator
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block in the LQG design. The only additional measurement that the Kalman Filter needs is
the converter input voltage. Typically, this value is monitored for safety purposes and for
the State-of-Charge (SOC) algorithm; hence, this work will use this available information
in the design.

7.2.1. Cold Start Test

In this test, the converter was started from a zero initial condition. The objective of this
test is to assess the dynamic response and the required settling time to reach the desired
output voltage (perform the tracking task). The results in Figures 15 and 16 summarize the
test outcomes. The results in Figure 15 show the converter-simulated output voltage and
the controller duty cycle (D); the response is overdamped, and it required 0.05 s to reach
the steady state. Nevertheless, as in Figure 16, the LQG system required 0.01 s to reach
the desired output voltage at 48 V while maintaining the overdamped response. In other
words, the LQG system offers a response that is 5 times better than the benchmark Type-II
compensator. Also, the duty cycle, as per Figure 16, has a very low ripple, which confirms
the success of the design approach.
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7.2.2. Disturbance Test at Input Voltage

In this test, the converter is tested with a disturbance in the DC link rail (i.e., input
voltage). The test is performed by running the converter until it reaches the steady state.
After that, at 0.1 s, the input voltage is reduced by 50% in a stepped response, i.e., the
DC link rail is stepped down from 24 V to 12 V. Although this disturbance is severe,
it is essential to assess the performance of the tested system under extreme conditions.
Figure 17 shows the output voltage response using the Type-II compensator along with a
zoomed portion. The response has severe oscillations and undershoot that reached 6 V. The
system required 0.025 s to recover from the disturbance. LQG system results are depicted
in Figure 18, where the system recovered in an overdamped response (no oscillations)
while the undershoot reached 34 V. The results show that the LQG required 0.006 s to
recover from the input voltage disturbance. Comparing the LQG system to the Type-II
compensator, the LQG system is at least 4 times faster, with a smoother and oscillation-free
response. Moreover, the output voltage ripple increased in the Type-II compensator after
the disturbance, unlike in the case of the LQG system, where the ripple almost remained
the same.
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7.2.3. Load Disturbance Test

This test aimed to study the load variation’s consequences for the converter’s per-
formance. The test was performed by starting the system from rest until it reached a
steady state. At 0.1 s, a step change in the load was introduced. The load variation was
100% (i.e., the load required double the current). Although this disturbance is severe, it
is essential to evaluate the performance of the tested system. Figure 19 shows the results
(output voltage) of the load disturbance test using the Type-II compensator. The response
suffers from oscillations, and the system required around 0.004 s to recover from the distur-
bance. The oscillation in the response peaked at 41 V and then at 53 V as the undershoot
and then the overshoot cascaded with oscillations until the response was damped. The
results using LQG, as in Figure 20, show a smoother output voltage under same test. The
results show an undershoot (peaks at 42.5 V), and then the output voltage signal recovered
in an overdamped pattern in 0.003 s.
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Comparing the results from the three tests shows the superiority of the proposed
system of LQG compared to the benchmark Type-II compensator. In all tests, the LQG
system offers a faster response and an oscillation-free response. Furthermore, in all tests,
the peak drop in the output voltage using LQG was significantly less than that of the
Type-II compensator, especially for the input voltage disturbance test. A summary of all of
the conducted tests is presented in Table 6.

Table 6. Comparative summary between Type-II compensator and proposed LQG performances.

Cold Start Input Voltage Disturbance Load Disturbance

Response Settling
Time Response Settling

Time
Drop in o/p
Voltage Rail Response Settling

Time
Drop in o/p
Voltage Rail

Type-II Over-
damped 0.05 s Severe

Oscillation 0.025 s 42 V Severe
Oscillation 0.004 s 7 V

LQG system Over-
damped 0.01 s Overdamped 0.006 s 14 V Overdamped 0.003 s 5.5 V

8. Conclusions

Full-state feedback controllers are one of the robust controllers for linear systems,
especially once they are optimized through an LQR structure and augmented with an
integral action. Nevertheless, as the name implies, the full states must be measurable,
which makes this approach challenging for high-order linear systems (i.e., with a high
number of state variables). To overcome this limitation, this work proposed a Linear
Quadratic Gaussian (LQG) approach for fourth-order SEPIC.

The work proposes the design procedure for an offline Kalman Filter (typically referred
to as LQE) and how it can be merged with an optimized integral LQR controller. The results
show the convergence of the observed states to the actual state values and the precision of
the offline Kalman Filter.

The discussed LQG system was compared to a benchmark Type-II compensator that
was designed based on an industrial-level design guide (the K-factor method). The results
of this work show the superiority of the LQG system compared to the Type-II compensator.
It is highlighted that the LQG system used only one measurable state variable (i.e., the
output voltage state), just like a Type-II compensator, and no additional state sensors were
needed due to the estimator block in the proposed design.
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