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Abstract: Despite energy-related financial concerns and the growing demand for sustainability,
many energy efficiency measures are not being implemented in industrial practice. There are a
number of reasons for this, including a lack of knowledge about energy efficiency potentials and
the assessment of energy savings as well as the high workloads of employees. This article describes
the systematic development of an expert system, which offers a chance to overcome these obstacles
and contribute significantly to increasing the energy efficiency of production machines. The system
employs data-driven regression models to identify inefficient parameter settings, calculate achievable
energy savings, and prioritize actions based on a fuzzy rule base. Proposed measures are first applied
to an analytical real-time simulation model of a production machine to verify that the constraints
required for the specified product quality are met. This provides the machine operator with the
expert means to apply proposed energy efficiency measures to the physical entity. We demonstrate
the development and application of the system for a throughput parts-cleaning machine in the
metalworking industry.
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1. Introduction

Parts cleaning processes are often necessary for removing solid contamination, such
as metal particles and chippings, or filmic contamination, such as oil and grease [1]. This is
required due to the importance of clean and dry surfaces for the success of downstream
processes, as well as the overall quality and appearance of the parts [2]. When configuring
a cleaning process, several variables affect the process outcome, making it quite difficult
to select the optimal configuration in terms of performance and energy requirement. Gen-
erally, operators of cleaning machines initially follow recommendations provided by the
manufacturer of the cleaning equipment and proceed to iteratively adjust the process
parameters towards minimal requirements [2]. Consequently, cleaning processes tend to
be configured to “overclean” and “overdry” parts, leading to excessive energy use. Fur-
thermore, the lack of transparency and concrete guidelines make the configuration process
time-consuming and error-prone when no experts are available since it usually requires
experience to efficiently follow through the process iterations.

As process heat applications, the included steps, cleaning, rinsing and drying exhibit
substantial energy savings potential due to different forms of energy losses, mostly of a
thermal nature [3]. Hence, most energy savings potentials are related to the heat supply of
the cleaning machine, e.g., temperature setting and thermal insulation [4]. As shown in the
research project ETA-Fabrik, optimizing the mechanical force during cleaning and rinsing
can help save up to 20.5% of a cleaning machine’s total energy consumption by allowing a
temperature reduction while maintaining process quality [5]. The research project LoTuS
presents more complex energy efficiency measures, e.g., the implementation of internal
and external waste heat utilization and replacement of convective drying with alternative
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drying technologies [6]. Furthermore, it is shown that merely preventing overdrying by
reducing the drying temperature can enable energy savings of 57% of the drying system’s
energy requirement [6].

Despite the benefit of improving energy efficiency, barriers impede the widespread
adoption of measures within parts cleaning processes. These barriers can be categorized
into technical, economic, and organizational dimensions. Technical challenges arise from
the complexity of existing production processes, making the integration of energy-efficiency
measures critical with regard to risk assessment for linked production processes where the
quality of the cleaning process directly affects the following production process. Econom-
ical barriers can arise by uncertain cost estimations for the implementation of efficiency
measures which make the objective evaluation of the measures impossible. The third
dimension of common barriers is the organizational dimension. Often the responsibility
for defining energy efficiency measures is not embodied within the same position that
understands the related processes [7].

To overcome the mentioned barriers, expert systems (ESs) present a probate solution as
already shown by [8]. ESs, a subset of artificial intelligence, leverage advanced algorithms
and domain-specific knowledge to emulate human decision-making processes. In the
context of improving energy efficiency, ESs offer a systematic and intelligent approach
for analyzing complex data, identifying optimization opportunities, and recommending
tailored strategies for specific manufacturing processes. By providing manufacturers with
insights and decision-support tools, ESs hold the potential to streamline the adoption of
energy efficiency measures.

ESs for improving energy efficiency in the metal-working industry have already been
the subject of several studies. Ref. [9] describe a system that suggests suitable settings
for a metal-cutting process based on experimental measurement data to achieve a trade-
off between energy consumption, tool lifespan, and productivity. Ref. [10] also aim to
raise the energy efficiency of metal-cutting processes. For this purpose, they develop
an ES that optimizes cutting parameters for machine tools using cutting process cases.
Ref. [11] introduce a system that can be applied to different machine tools using machine
learning models and assesses proposed energy efficiency measures. Further research, such
as that by [12,13], also presents ESs that optimize machine parameters in the metal-working
industry for the purpose of increasing energy efficiency. Ref. [14] apply physical simulation
models to verify the impacts of suggested energy efficiency measures. Thus, changes in the
system can be anticipated and ES recommendations can be confirmed. However, ref. [14]
consider a hydraulic test bench and not a production machine as a use case. Regarding
parts cleaning, ref. [8] present an ES for preliminary energy analysis of several similar
chamber cleaning machines. Ref. [15], on the other hand, focus on the development and
application of an ES providing in-depth analysis for a single chamber cleaning machine.

The comprehensive systematic development of ESs to increase energy efficiency in
manufacturing is barely addressed in the literature. Ref. [16] employ an incremental
development model exclusively for computational implementation, omitting an explana-
tion of the distinct phases. The ES development delineated by [17] is based on a design
science method (DSM) and encompasses three phases: the conceptual design phase, the
tool development phase, as well as the application and validation phase. In the conceptual
design phase, influential factors are chosen, calculation rules are established, and iteratively
refined. Following this, the computational implementation takes place during the tool
development phase. Ultimately, the ES undergoes both qualitative and quantitative valida-
tion. However, ref. [17] focus on predicting the commissioning of existing buildings, which
is why not all development steps are transferable to the manufacturing context. Ref. [15]
present a stepwise procedure for so-called stationary ESs, i.e., those that analyze a single
production machine in depth.

This work aims to refine the procedure described by [15] for individual development
steps, including the creation of a knowledge base, knowledge representation and validation
of the overall ES. For this purpose, the approach of [17] is adapted for manufacturing. Apart
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from refining the methodology for the systematic development of ESs in manufacturing,
the novelty of this work lies in the integration of physical simulation models of entire
production machines to verify the effects of recommended energy efficiency measures on
the machining process. To demonstrate the application of the methodology, parts cleaning
in the metal-working industry is taken as a use case.

The remainder of this work is organized as follows: Section 2 briefly introduces the
concept of ESs along with their elements and functions. Section 3 presents the methodology
for developing ESs. This encompasses the personas and capabilities necessary to apply the
methodology, along with the decision-support process of the implemented ES. Section 4
demonstrates the application of the presented methodology for a throughput parts cleaning
machine and Section 5 concludes by discussing the outcomes and providing a perspective
on future research.

2. Expert Systems

ESs, also referred to as knowledge-based systems or inference-based programs, are
computer programs that are designed to solve problems or to assist in decision-making [18].
In contrast to conventional applications, ESs emulate human reasoning by representing hu-
man knowledge and utilizing heuristic or approximate methods to address problems [19].
Heuristics represent cause-and-effect relationships that act just like rules. These relation-
ships consist of IF-THEN structures in which the IF part represents the causes (antecedent)
and the THEN part the effects (consequent). The knowledge of a human expert is inher-
ently heuristic as well and often provides quick solutions with acceptable accuracy. An
algorithmic approach, on the other hand, can provide solutions with much higher precision,
but often it is not reasonable or even impossible to solve problems with such precision.
The knowledge stored and processed in an ES originates from domain experts and can be
supplemented by technical literature within the same domain [16].

The transfer of heuristic knowledge and experience from human experts to computers
is a crucial element in the development of ESs as outlined in detail in Section 3, but
it is also relevant in the context of knowledge management. Knowledge management
describes the identification, creation, renewal, and application of knowledge that is of
strategic importance to the organization. In this context, ESs have the capability to retain
the knowledge, expertise, problem-solving skills, and experience of the organization’s
experts [16].

Ref. [16] characterize different elements of ESs:

• Knowledge base: Stores expert knowledge and can be divided into short-term and
long-term memory. Long-term memory stores rules representing the heuristic knowl-
edge of human experts. Whereas short-term memory corresponds to a database in
which the facts used by the rules are stored or removed.

• Inference engine: Emulates the reasoning of human experts by utilizing the knowledge
stored in the knowledge base. It matches the facts from short-term memory with the
rules from long-term memory to draw conclusions or solve problems.

• User interface: Serves as the communication environment between the user and
the ES.

• Explanation module: Clarifies the reasoning performed by the inference engine to
make it comprehensible for the user and thus increase its credibility and acceptance.

• Knowledge acquisition module: Enables updating the knowledge base with new
content while the ES is already deployed.

The explanation and knowledge acquisition module are optional and are not frequently
found in ESs. However, they are particularly valuable for continuous energy improvement
as well as knowledge preservation and knowledge transfer within this context.

3. Methodology

Ref. [20] describe the starting point of the DSM as the definition of the environment,
which is an interaction of people, organizational and technical systems that pursue a
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specific objective. Ref. [21] specifies these to improve energy efficiency in organizations.
For the methodology presented in this section, additional personas, i.e., personifications of
a group with certain abilities, are defined. Furthermore, this research work adapts the DSM-
based approach of [17] to manufacturing with the aim of supporting machine operators
in increasing energy efficiency through suitable actions. For this, steps for developing
stationary ESs are incorporated from [15].

3.1. Personas and Description

Four personas with different capabilities are required to develop ESs according to
our approach (see Table 1). The machine operator represents the worker at the machine
with experience and responsibility for changing machine settings. The energy manager is
familiar with energy management [22] and can, therefore, evaluate energy utilization in the
company and derive actions to improve energy efficiency. Expert knowledge is acquired by
the knowledge engineer and represented in a structured form within the computer program.
The modeler’s persona encompasses the development of both data-driven and physical
simulation models to represent the behavior of real systems within virtual instances. Each
persona is required to work towards the common target of improving energy efficiency.
Whereby several personas may also be represented by one real individual and the required
personas do not necessarily have to be the company’s internal resources. As stated by [22],
everyone involved needs to be aware of the benefits of achieving energy targets and the
influence of their activities in this regard.

Table 1. Overview of personas.

Persona Description

Machine operator Responsible for operating the machine and experienced in the
manufacturing process

Energy manager Evaluates processes from an energy perspective and assesses
current energy utilization

Knowledge engineer Acquires knowledge by experts and research to represent it in
a computer system

Modeler Acquires data and builds data-driven or physical models to
represent the behavior of complex systems

Following [17], the methodology shown in Figure 1 consists of three phases: conceptual
design, implementation, as well as application and validation. The conceptual design
phase involves planning the steps that are necessary to develop the ES. These steps are
realized using different methods within the implementation phase. Data, information and
knowledge are acquired during the implementation. As a result, artifacts are created that
need to be validated and, if necessary, adjusted. The following section describes the three
phases with the individual steps, the proposed methods, and the resulting artifacts in detail.

In the initial step of the conceptual design phase, energetically relevant consumers are
identified and prioritized for further attention. The prioritization can be achieved by taking
into account the nominal power and estimated utilization time [23]. If historical energy data
are available, they can be used for a more objective and precise prioritization. To maintain
simplicity, the number of electrical consumers considered in subsequent steps should be
restricted. Nonetheless, all pertinent components should be taken into consideration, and
their selection can be based on methods such as Pareto analysis or an energy portfolio
approach [23,24].

The next step is to identify the parameters that are both controllable and have an
energy impact. The controllable parameters, including their technological limits, can be
determined from the technical documentation or by interviewing the machine operator,
while their energy impact can be estimated by an energy manager.
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Figure 1. Overall methodology.

3.2. Methodological Framework

This is followed by the generation and acquisition of data, for which experiments
must be designed and conducted. The data are distinguished between energy data and
parameter data. For the development of data-driven models, a data set is required in which
both data streams are linked (labeled data). Once the ES has been deployed, energy data
no longer needs to be measured because it is predicted by the data-driven models [15]. The
development of data-driven models can be carried out according to the CRoss-Industry
Standard Process model for the development of Machine Learning applications with Quality
assurance methodology (CRISP-ML(Q)) [25].

The prediction of electrical energy at given parameter settings is realized by data-
driven models due to the comparatively low metering effort [26]. Other relevant physical re-
lationships of the machine are represented in the simulation model. Additionally, functional
segregation is realized through the different model types: Data-driven models for quantify-
ing energy-saving potentials and simulation models for verifying recommended actions.

The development of simulation models is a multi-phase process. First, the overall
simulation goal is defined. Based on that, qualitative and quantitative model aspects are
formulated. This includes the identification of components and necessary structures of
the real-world application that need to be simulated. Afterward, relations between the
identified structures are isolated and qualitatively described. Here, different approaches for
the description of the interaction can be applied (greybox, whitebox, blackbox) [27]. Given
the physical nature of production equipment, an object-oriented modeling procedure is
useful. Therefore, the different components are organized hierarchically and categorized
into classes and subclasses [28]. Following this, the implementation of the models takes
place. Different modeling languages can be exploited which aim at facilitating the process
of developing differential equation systems for the components and systems. Finally, the
developed model is validated by conducting real-world experiments.

The next step is to define appropriate energy performance indicators (EnPIs), which
are metrics that quantify the results in terms of energy efficiency and energy use [21]. The
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definition of EnPIs is supported by the energy manager. The EnPIs are subsequently used to
build a rule base. A fuzzy rule base is recommended for the ES, as it also allows conditions
or conclusions that are partially true or false. The fuzzy approach is based on the premise
that human experts often make decisions without precisely quantified information [29].

The steps mentioned so far result in data-driven models, simulation models, and
a fuzzy rule base. These three artifacts are each validated qualitatively through user
interviews as well as quantitatively through case studies. This can lead to weaknesses in
the artifacts being identified and a refinement and reassessment becoming necessary [20].
Finally, the artifacts are integrated into a comprehensive ES, which is also validated and
refined if necessary. Refinements are also possible after the deployment, for instance, due
to new consumers or degradation (concept drift) of data-driven models.

3.3. Decision Support Process

The decision support process of the implemented ES is shown in Figure 2. Initially,
inefficient parameter settings of the present state are identified by the ES. In the next step,
the data-driven models predict the energy consumption for the given parameter settings,
and the difference, i.e., potential energy savings, to the optimum parameter settings is
calculated. Actions are then prioritized according to the rule base. The actions proposed
by the ES can then be applied by the operator on the virtual instance of the machine.
This enables the machine operator to verify that the constraints required for the specified
product task are met. If the conditions are met, the action can be applied to the actual
production machine. If not, the corresponding action is discarded, and any remaining
actions can be tested and applied.
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Figure 2. Decision support process.

4. Case Study: Throughput Cleaning Machine

The case study considers the cleaning of metallic guide discs for gearboxes at the
ETA research factory, which are contaminated with cutting oil. The parts feature through-
holes and blind holes on the upper surface. The process takes place in a throughput
parts cleaning machine (TPCM) manufactured by BvL Oberflächentechnik GmbH and
schematically illustrated in Figure 3. At the entry, parts are placed on the conveyor belt
and then pass through the cleaning, rinsing and pre-drying zone. Afterward, they are
transported by another conveyor through the drying zone before finally reaching the outlet.
For cleaning and rinsing, aqueous detergent is heated by electric heating elements in
500 L tanks, pressurized by pumps and sprayed onto the parts via spray nozzles. In the
drying chamber, convective drying is achieved through the circulation and heating of an air
mass flow, which is subsequently directed onto the surface of the parts. Furthermore, the
moist air from entry and the pre-drying zone is extracted and dehumidified by the vapor
condensation to support pre-drying.
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Figure 3. Scheme of the TPCM.

4.1. Relevant Consumers and Controllable Parameters

Historical energy data at the component level over a representative period of 2 h
are already available for the TPCM. The measurement results are shown within a Pareto
diagram in Figure 4. According to the results, the heaters and pumps for the rinsing and
cleaning tanks, the air heater and fan for drying, and the vapor condenser together account
for over 90% of the cumulative electrical energy. Consequently, the remaining consumers
are not pursued for further steps. The consultation involving the machine operator and the
energy manager leads to the identification of the parameters that can be controlled among
the relevant consumers. The temperature and pressure settings (gauge pressures) for the
fluid can be adjusted during the cleaning and rinsing stages. Additionally, the temperature
and fan speed can be varied during the drying phase. The vapor condenser does not have
any controllable parameters. Table 2 provides a summary of the controllable parameters.

Figure 4. Pareto analysis for prioritization of consumers based on historical data.
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Table 2. Identified controllable parameters for the TPCM.

Consumer Parameter Range

Fluid heater Fluid temperature Tfluid (40–70) °C
Cleaning fluid pump Cleaning pump pressure pcleaning (0.5–2.3) bar
Rinsing fluid pump Rinsing pump pressure prinsing (0.05–2.3) bar
Heating register Drying air temperature Tdrying (45–120) °C
Drying fan Drying fan speed ndrying (860–3300) rpm

4.2. Data Acquisition and Development of Data-Driven Models

The parameters of this system can be regarded as independent of each other based on
an expert interview with the machine operator and a correlation analysis. As presented
in [15], it is possible that consumers have several controllable parameters, and therefore,
multivariate regressions are necessary. However, in the case of the TPCM, each consumer
has only one variable parameter, as listed in Table 2. Thus, the electrical power can be
modeled by univariate regressions as a function of the parameter setting for each consumer.
For data acquisition, the parameters are varied, respectively, to ensure that a stationary load
profile is established for each set parameter value. Consequently, an average active power
P can be determined for each set parameter value. As outliers have no relevant influence on
the average active power, data cleaning or transformations are not required. The electrical
power is measured with Janitza UMG 604 [30] and Janitza 20CM [31] metering devices
at a sampling rate of 1 Hz and transmitted via Modbus TCP. The parameter values can
be read and written through a connection to the programmable logic controller (PLC) via
OPC UA. Consequently, a regression model can be built for each consumer. To avoid
overfitting the data, we choose models with low complexity and few model parameters,
which also offer the advantage of better comprehensibility. For evaluating the models,
the coefficient of determination (R2) and the root mean square error RMSE are applied.
The coefficient of determination represents the ratio of the variance in the dependent
variable (P) that can be predicted from the independent controllable variables and ranges
from 0 to 1 [32]. The RMSE indicates how well a function curve is fitted to the available
data and is expressed in the same units as the dependent variable, i.e., in Watt in this
paper [33]. Linear regressions provide an appropriate means of data-driven modeling for
fluid temperature (Tfluid) and drying air temperature (Tdrying). Recognizable non-linear
relationships emerge from the data of the remaining consumers. Hence, second-degree
polynomial regressions are selected for the modeling of both pump pressures (pcleaning
and prinsing) and third-degree polynomial regressions for the modeling of the drying speed
(ndrying). The average active power P derived from the data acquisition (sample data) is
shown with the regression models and their metric values in Figure 5. The data-driven
implementation utilizes the Python 3.9.4 library scikit-learn [34].
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Figure 5. Regression models with metric values.

4.3. Development of the Simulation Model

The development of the simulation model for the TPCM follows the methodological
procedure described in Section 3.2. Modelica is used as a modeling language with the
software tool Dymola [35]. The simulation aims to analyze the impact of the suggested
parameter adaptions on the cleaning and drying process. The main components are
the cleaning zone with the cleaning tank, the washing zone with the washing tank, and
the drying zone with the related vapor condenser and ventilation unit. The mentioned
components are modeled as sub-models on the basis of the Modelica Standard Library
Version 4.0.0 [36]. The cleaning and washing tanks have similar designs. An electric heating
unit is used to provide the thermal energy required to heat the water in the corresponding
tanks. Open fluid tanks represent the water mass and thus the thermal storage capacity
while convective thermal energy losses are simulated with thermal resistors. The tanks
are linked to the cleaning or washing zone via a fluid port connection. Fluid transport is
modeled by the application of the Bernoulli law, using pipe models with defined pressure
loss and pump models with corresponding characteristic curves for the pressure loss and
the volume flow (1D Modelica models). The cleaning and washing process is modeled by
defining a water mass flow that represents the mechanical pressure on the parts during the
cleaning process. Evaporation of the water is modeled using a moist air volume, which
is parameterized by the mass flow and the specific enthalpy of the water coming out of
the washing or cleaning tank. Thermal resistors are integrated to model the heat transfer
to the surroundings of the part models. The heat capacity of the parts is represented by
generic thermal masses that are linked to the air volume. As with the washing and cleaning
process, the drying zone is represented by a moist air volume. A heat interface connection
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enables the heat transfer to the environment to be modeled. The associated parts are also
represented by thermal masses. For the vapor condenser, the two media modeling approach
of the cleaning and washing zone is reused. Here, the moist air volume characterizes the
conditions for the condensation process with a control strategy implemented based on the
relative humidity of the exhaust air from the drying zone. The water volume is used as the
representation for the heat transfer necessary to enable the re-cooling of the air volume to
enable the condensation process. Here, external fluid port connections are modeled due to
the external re-cooling of the vapor condenser. The described sub-models are combined to
create the overall model of the TPCM by the connection of the moist air flow. According to
the cleaning process, the moist air flow originates in the cleaning and washing zone and is
transmitted with the parts to the drying zone. From there, the ventilation unit directs the
humid air into the vapor condenser. The ventilation unit is modeled as a pump, which is
also represented by a characteristic curve for the mass flow and pressure loss. The described
parameters in Table 2 are used as input values for the control of the TPCM’s components.
According to the applied modeling language Modelica, these parameters are represented
by a table value assignment. The overall simulation model of the TPCM is integrated in a
test model environment, where the ambient conditions of the production surroundings are
modeled by temperature value definitions and hydraulic condition descriptions. The last
step of the simulation model development is the validation. The necessary experimental
data are gained during the described experiments in Section 4.2. The described simulation
model is accessible via GitHub [37], while the relevant machine parameter data sets are
accessible via the TUDatalib [38].

4.4. Energy Performance Indicators and Rule Base

We define the average active power P as the base measure for the energy assessment,
which is reached during the stationary operation of the individual consumers as described
in Section 4.2. The savings potential ∆P is calculated according to Equation (1) for each
consumer i as the difference between the stationary active power with the value (V) of
current settings of a controllable process parameter (CPP) Pi(VCPP) and the energetically
optimal parameter settings Pi(VCPP,opt). The energetically optimal parameter settings are
values that result from the experiments and are stored in the knowledge base of the ES.

∆Pi = Pi(VCPP)− Pi(VCPP,opt) (1)

For comparability, the absolute savings potential is normalized by the minimum
(∆Pmin) and maximum savings potentials (∆Pmax).

∆pi =
∆Pi

∆Pmax − ∆Pmin
(2)

The optimization potential of the controllable parameters oCPP is defined as another
EnPI [15]. It is determined according to Equation (3) as the normalized difference between
the current and optimal value of a CPP.

oCPP =
|VCPP − VCPP,opt|

VCPP,max − VCPP,min
(3)

As a result, the priority number ZCPP can be determined using the ∆pi and the oCPP. It
indicates a higher urgency to undertake actions as the value increases. ZCPP is determined
using a Mamdani fuzzy inference [39], which is based on the 9 fuzzy rules in Table 3.
The basic idea of the rule base is to prioritize actions higher if small relative parameter
changes (quantified by oCPP) result in high absolute reductions in the average active power
(quantified by ∆pi). For the membership functions of the three variables in the fuzzy
system, trapezoidal and triangular functions are connected with the linguistic values
’low’, ’medium’ and ’high’ on the basis of an assessment by the knowledge engineer and
energy manager, which are shown to be suitable in the validation of the expert system
in Section 4.6. The membership functions (see Figure 6a) enable the input and output
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variables to be assigned truth values. Thus the resulting need for action, represented by the
priority number ZCPP, can take on not only low, medium, or high priority, but also states
in between. The priority number for different combinations of the normalized savings
potential ∆pi and optimization potential oCPP is shown in Figure 6b.

Table 3. Rule base for the fuzzy rule-based expert system.

Premise (IF) Consequent (THEN)

∆pi is high AND oCPP is low ZCPP is high
∆pi is medium AND oCPP is low ZCPP is medium
∆pi is low AND oCPP is low ZCPP is medium
∆pi is high AND oCPP is medium ZCPP is medium
∆pi is medium AND oCPP is medium ZCPP is medium
∆pi is low AND oCPP is medium ZCPP is medium
∆pi is high AND oCPP is high ZCPP is medium
∆pi is medium AND oCPP is high ZCPP is medium
∆pi is low AND oCPP is high ZCPP is low

Figure 6. (a) Membership functions of the fuzzy inputs (∆pi, oCPP) and output (ZCPP). (b) Fuzzy
surface of the output variable (ZCPP) for different combinations of input values (∆pi, oCPP).

4.5. Integration

For the final step, the individual artifacts, i.e., the data-driven models, the simulation
model and the rule base, are linked together. The artifacts are integrated in Jupyter Notebook,
which is a web application for creating and sharing computational documents [40]. The
notebook, which covers the overall expert system, is organized as a tree structure. The
knowledge base and the user interface are functionally separated notebook pages. The
knowledge base contains illustrations and explanations of the TPCM, the description of the
controllable parameters, the definition of EnPIs, the rule base and the addresses of the required
data points on the PLC. By executing the user interface in online mode, the current parameter
values are automatically read from the PLC, all EnPIs are calculated and finally, prioritized
actions are returned. For better comprehensibility, the results are also displayed graphically.
Furthermore, an offline mode allows the expert system to be operated without a connection
to the PLC or to test alternative parameter values manually. Alongside the models, Python
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scripts are also integrated into the notebook, which the user of the expert system does not
have to actively access and which enables features such as connecting to the PLC.

4.6. Application and Validation

During the development process, the ES is successively adjusted based upon feedback.
In this subsection, the focus lies on quantitative validation through case studies. This
involves using the ES for different parameter combinations, of which the results of one
example run are presented in the following. When applying the ES in the case study, the
current parameter settings are read from the PLC via OPC UA during the operation of the
TPCM. The calculation of the savings potential ∆pi and the optimization potential oCPP is
carried out according to Equations (2) and (3). With these two values, the ES performs the
prioritization using the fuzzy output ZCPP. The visualization for the current and optimum
operating points, the regression models and the energy-saving potential indicated by the
shaded area are shown in Figure 7. This provides transparency in the solution-finding
process by the ES. Furthermore, the operator can immediately recognize the characteristic
curves and the areas in which small parameter changes result in disproportionately high
energy savings. The corresponding results of the calculated EnPIs are listed in Table 4. Ac-
cordingly, the highest priority is given to optimizing the fluid temperature Tfluid, followed
in descending order of priority by the drying fan speed ndrying, the drying air temperature
Tdrying and the two pump pressures prinsing, pcleaning.

Figure 7. Visualization of potential energy savings.
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Table 4. Resulting EnPIs for the presented application.

CPP ∆Pi ∆pi oCPP ZCPP

Tfluid 4810.4 1.0 0.33 0.66
pcleaning 1012.66 0.07 0.82 0.33
prinsing 748.37 0.0 0.69 0.38
Tdrying 2853.59 0.52 0.64 0.44
ndrying 1509.11 0.19 0.64 0.60

The operator can test whether the optimum energy values defined in the ES meet the
boundary conditions required for the cleaning and drying task by applying the recom-
mended measures to the simulation model. For this particular case, at least 30 °C should
be maintained in the cleaning and rinsing zone and at least 26 °C in the drying zone in
the stationary state. In Figure 8 the simulation model provides the temperatures in the
cleaning, rinsing and drying zones for a time sequence. The temperatures achieved meet
the necessary process boundaries in accordance with the operator’s requirements for this
particular use case. In addition to the analysis of the physical metrics during process start-
up, the simulation model allows a timely-coupled evaluation of the cleaning and drying
process. Therefore, an analysis of the productivity impact (e.g., cycle time) in relation to the
cleaning process metrics is possible.
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Figure 8. Visualization of the simulation output.
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According to Table 4, 4.81 kW can be saved solely by implementing the measure with
the highest priority—lowering Tfluid from 50 °C to 40 °C. This would result in an absolute
saving of 9.62 kWh and a relative saving of 19.95% for the two-hour reference period as
indicated in Figure 4. The sum of all achievable savings amounts to 10.93 kW. For the
reference period, this would correspond to an absolute saving of 21.87 kWh and a relative
saving of 45.35%.

5. Discussion and Conclusions

This article presents a systematic approach to the development of ESs for production
machines and demonstrates it using a TPCM. Three phases are addressed for this process.
The conceptual design phase and the implementation phase comprise the planning and
execution necessary for the development of ESs. The partial outcomes and the final
product—the ES—are applied and validated. In the case study shown, the ES reveals a
considerable energy-saving potential of up to 45.35 % compared to the reference scenario.

The ES process is based on established approaches for energetic improvement work-
flows, ranging from the creation of energy transparency to the identification of potential
energy savings and the formulation of recommendations for action. Integrating simu-
lation models additionally offers the opportunity to test the impact of energy efficiency
measures on the machining process environment. Furthermore, the ES offers the benefits
of reproducible and possibly objective proposals, acting as a repository for knowledge
and the ability to use data-driven regression models for virtual energy metering. The
implementation involves separate data-driven modeling of electrical quantities and analyt-
ical modeling of other quantities. The analytical simulation model, as presented, reveals
the impact of measures on different zones of the TPCM, enabling the machine operator
to make fact-based assessments of the influence on the production result. However, it
should be emphasized that the present system is not able to determine the effects on the
production result. Adjustments to the simulation model are required to model potential
direct consequences on the conveyed metal parts. In particular, the static thermal masses
must be complemented with dynamic masses, which are put through by the conveyor belt.

During the implementation of the methodology for the use case shown, the authors
also found that the effort required for analytical modeling is significantly higher than for
data-driven electrical modeling. Consequently, it can be concluded that the development
effort can be substantially reduced if analytical modeling is dispensed with, while still
retaining a high level of benefit for the system. In future work, the methodology presented
will be generalized so that it is not limited to individual production machines, but can be
applied to several machines at a higher level of abstraction. It is also possible to consider
energy flexibility in addition to energy efficiency in order to utilize the ES for demand
response applications.
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Abbreviations
The following abbreviations are used in this manuscript:

CPP Controllable Process Parameter
CRISP-ML(Q) CRoss-Industry Standard Process model for the development of

Machine Learning applications with Quality assurance methodology
DSM Design science method
EnPIs Energy performance indicators
ES Expert System
OPC UA Open Platform Communications Unified Architecture
PLC Programmable logic controller
TPCM Throughput cleaning machine
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