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Abstract

:

Silicon Oxide nanoparticle (SiO2-NP) with appropriate surface functionalization has tremendous potential in enhanced oil recovery (EOR) via wettability alternation, interfacial tension reduction, disjoining pressure enhancement, electric charge modification, etc. Prior to the application of SiO2 to EOR, an effective functionalization and an accurate characterization of the surface properties are indispensable. Though many experimental works have been performed in this area, a systematic review is still lacking. Therefore, a review of the above content is presented. Current research gaps are identified, and future outlooks are indicated. This review provides guidance for SiO2-NP surface functionalization, characterization, and evaluation.
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1. Introduction


Due to the rapid development of the world economy in recent years, the demand for crude oil has increased rapidly. However, the average recovery efficiency of existing oil extraction technologies is generally not high enough to meet demands [1,2,3,4,5,6,7,8,9,10,11]. To address this dilemma, silicon oxide nanoparticle (SiO2-NP) has been attempted to be used to enhance oil recovery (EOR) [1,2,3,4,5,6,7,8,12,13,14,15,16]. Prior to the EOR application, the surface properties of the SiO2-NP are required to be functionalized appropriately and characterized systematically [1,7,17,18,19,20,21,22,23,24,25,26,27,28,29]. Many modifiers of SiO2-NP surface functionalization such as surfactants [1,20,21] and/or polymers [22,26] have been used for modification. Methods of SiO2-NP surface properties characterization such as morphology [1,12,27,30,31,32,33,34,35,36,37], size distribution [34,35,38], wettability [35,39], surface electrical properties [1,20,32,36,38], and surface functional groups [1,20,34,35,36,40] are also reported. However, a systematic review of the SiO2-NP functionalization and characterization is still lacking.



Therefore, herein, a comprehensive review of current research status on SiO2-NP functionalization and characterization is provided. Current research gaps are identified, and future outlooks are indicated. This review thus provides basic guidance in the functionalization of SiO2-NP and its characterization and offers a starting point for fresh learners who are entering this area.




2. Functionalization and Characterization of SiO2-NP


2.1. Functionalization


Functionalization is generally used to alter the surface properties of SiO2-NP [24]. Surfactants [1,20,21] and/or polymers [22,26] are generally used for functionalization of SiO2-NP. The SiO2-NP surface properties, such as morphology [1,12,27,30,31,32,33,34,35,36,37], size distribution [34,35,38], wettability [35,39], surface electrical properties [1,20,32,36,38], and surface functional groups [1,20,34,35,36,40] are mainly functionalized by the above-mentioned modifiers. The underlying mechanisms are mainly attributed to physical adsorption [21] and chemical bonding [20], as shown in Figure 1. Although the physical adsorption process generally occurs between SiO2-NP and surfactants, chemical bonding might happen between SiO2-NP with any modifier, either surfactant or polymer [24].



As shown in Figure 1A, physical adsorption is achieved by mixing SiO2-NPs with TX-100, nonionic surfactant, in water to obtain 0.1 wt% dispersion. Subsequently, 1 mol/L NaOH solution is added to modulate the pH to 10. Afterward, mechanical stirring and ultrasonic dispersion are performed to uniformly disperse the functionalized SiO2-NPs. The functionalized SiO2-NPs are used to prepare a nanofluid. The prepared silica nanofluid has excellent performance for EOR in low permeable cores [21].



Chemical bonding takes place through either atom sharing or electron exchange. Compared to the physical adsorption method, chemical bonding involves an additional procedure of coating. As shown in Figure 1B, triethoxyvinylsilane (VTES) is first used to coat the surface of SiO2-NP. Afterward, 2-mercaptobenzimidazole and 2,2-dimethoxy-2-phenylacetophenone (DMPA) are added to chemically bond with the coated SiO2-NP to obtain the final functionalized SiO2-NP [20]. The specific chemical reaction involved in the functionalization process is: VTES acting as a silane coupling agent. The hydrolyzable silanol groups in VTES first hydrolyze to form silanols in aqueous media. Silanol groups react with hydroxyl groups on the surface of SiO2-NPs to form covalent bonds, resulting in VTES being grafted onto the surface of SiO2-NPs. Afterwards, DMPA (a compound containing acrylic functional groups) that reacts with silane coupling agents on the surface of SiO2-NPs under ultraviolet light. Finally, the product is dried in a vacuum oven at 70 °C for 24 h and ground to obtain functionalized SiO2-NPs [20,41]. Functions of different modifiers are shown in Table 1.



Additionally, the experimental design of the SiO2-NP functionalization process and its application in EOR are shown in Figure 2. As shown in Figure 2, using SiO2-NP as carriers, the surface of SiO2-NP is modified with amino groups through synchronous hydrolysis of Tetraethyl orthosilicate and 3-Aminopropyltriethoxysilane. Then, Soloterra 964 surfactant is used to further form surfactant-augmented functional silica nanocomposite. Finally, the nanofluid is prepared using this particle in saline solution for EOR in Berea core samples [1]. Furthermore, as a comparison, approximately 16% of oil is recovered from sandstone cores after 10 days using 0.1 wt% physically adsorbed TX-100 nanofluid [21], and approximately 38% of oil is recovered from sandstone cores after about 10 days using 0.1 wt% chemically bonded BMNP nanofluid [20]. It can be seen that there are differences in the enhancement effect of EOR by SiO2-NP functionalized with different modifiers.




2.2. Characterization


To examine the functionalization performances, the surface properties, e.g., morphology [1,12,27,30,31,32,33,34,35,36,37], size distribution [34,35,38], wettability [35,39], surface electrical properties [1,20,32,36,38], and surface functional groups [1,20,34,35,36,40] of the functionalized SiO2-NPs need to be characterized systematically [7]. The five characteristics of the original and functionalized SiO2-NP are analyzed as the following.



2.2.1. The Morphology


Scanning electron microscope (SEM) [12,27,33,34,35] and transmission electron microscope (TEM) [1,30,31,32,36,37] are often used to characterize the morphology of SiO2-NP before and after functionalization, as shown in Figure 3 and Figure 4. Additionally, statistically analyze the size distribution of SiO2-NPs before and after functionalization, as shown in Figure 5. Figure 5 indicates the particle size distribution after functionalization with different modifiers remains partially unchanged in SEM/TEM images, while in some cases, the size distribution either increased from 20 to 30~40 nm [31] (TEM) or decreased from 102 to 45 nm [32] (TEM).



Depending on the specific functionalization techniques, the SiO2-NP morphology can be changed either slightly or significantly [27,31,32,34,35,36,37]. For example, the initial shape and average size of the amorphous SiO2-NPs are spherical and range from 22 to 400 nm. After chemical bonding with a mixture of 3-(Dimethyl (3-(Trimethoxysilyl)Propyl)-Ammonio)Propane-1-Sulfonate (SBS) and (3-glycidyloxypropyl) trimethoxysilane (GLYMO), the functionalized SiO2-NP still remain the similar shape and size [27]. Figure 3 shows two other similar cases with different modifiers, 3-aminopropyltrimethoxysilane (APTMS) for the case in (a, b) [34] and amino-functionalized for the case in (e, f) [36]. Additionally, as shown in Figure 3c,d, the particle shape after functionalization by 0.1 wt% modifier lauramidopropyl hydroxy sulfobetaine remained spherical, and the size remained below 20 nm. However, the functionalized SiO2-NPs had better dispersibility than the initial particles. This indicates that the modifier effectively improved their dispersibility without causing significant changes in particle size [42].



In contrast, the shape and average size of the SiO2-NPs changed obviously after physical adsorption-based functionalization via TX-100, with the average size of the SiO2-NP increased from 8 to 14 nm [21]. Figure 4 shows three other similar cases with different modifiers. Figure 4a,b indicates the case of SiO2-NP chemical bonding with coupling agent (3-glycidoxypropyl)-trimethoxysilane (GPTMS). After GPTMS is coated on the surface of SiO2-NPs, a shell is formed on the surface, and the functionalized SiO2-NPs become slightly smoother, with average size uniformly increased from 20 to 30~40 nm [31]. In addition, the hydrated shell formed around the functionalized SiO2-NP can provide steric stability [43], thus improving dispersion stability [31]. Figure 4c,d shows the case where mercaptoterminated SiO2-NPs are chemically bonding with sodium oleate through the thiol-ene “click” reaction. Due to the combined effect of the adsorption layer formed by alkanes and the negative charge of –COONa group after ionization in the solution, the functionalized SiO2-NP aggregation is prevented [32]. As a result, the particle shape changed from an amorphous irregular network structure [37] to an approximately spherical shape. The average particle size is therefore decreased from 102 to 45 nm [32]. As shown in Figure 4e,f, the initial SiO2-NPs show an amorphous network structure. After chemical bonding functionalization with polymer amphiphilic block copolymer (PTFEMA-co-PSBMA), the functionalized SiO2-NPs remain amorphous, while the network structure gradually disappears. The functionalized SiO2-NPs become larger because the polymer is coated onto the surface of the particles. Thus, a strong attraction force is generated between the particles of SiO2-NPs, eventually leading to SiO2-NP aggregation and the formation of approximate clusters [37].




2.2.2. Particle Size Distribution


The particle size distribution (PSD) of the initial and functionalized SiO2-NP can be determined using a Zeta potential analyzer [35,38], as shown in Figure 6.



Depending on different modifiers, the PSD of initial and functionalized SiO2-NP may vary slightly or significantly. The initial and functionalized SiO2-NPs’ average particle size is 8~1200 nm [1,12,21,27,30,31,32,33,34,35,36,37,38]. Figure 6A shows that PSD of SiO2-NP is not significantly affected by the functionalization of DCDMS. The functionalized SiO2-NP mean particle size is basically maintained at ~30 nm [35]. Similarly, the PSD of SiO2-NP is barely affected by the functionalization of SBS + GLYMO [27], APTMS [34], and amino-functionalized [36]. The functionalized SiO2-NP mean particle sizes are at 22 nm [27], 41–183 nm [34], and ~400 nm [36], respectively.



Compared to other nanomaterials, surface functionalization of SiO2-NP can achieve different functions (generally, it is hydrophobic modification [35]) through surface functionalization, which can enable the particles to adapt to different reservoir conditions and increase EOR. In addition, the dispersion stability of SiO2-NP in aqueous solutions can be improved by surface functionalization, thus enhancing the stability and persistence of SiO2-NP in oil reservoirs [1,42,44,45,46,47,48,49,50]. After functionalization, the size distribution of some SiO2-NPs will be changed, resulting in better dispersion stability. The better dispersion stability of functionalized SiO2-NPs provides a basis for particles to enter rock pores, and the functionalized SiO2-NPs form hydrogen bonds with water molecules, promoting the adsorption of water molecules onto the rock surface. Additionally, the SiO2-NPs adsorbed on the surface of the rock form a thin film, and the wettability of the rock surface is changed by this film. The interface energy between the rock surfaces is reduced, and thus, the interfacial tension between oil and water is reduced, ultimately improving EOR [38].



Figure 6B shows the PSD variation of three functionalized SiO2-NP by a modifier with three different mole ratios. The modifier is a mixture of 3-aminopropyltriethoxysilane (APTES) and octyltriethoxysilane (OTES). Compared to the initial SiO2-NPs’ size of 277 nm, the PSD of three functionalized SiO2-NPs samples has decreased to 194 nm, 156 nm, and 150 nm, respectively. The particle size of the functionalized samples is smaller than that of initial SiO2-NPs, and the dispersion is better than that of initial SiO2-NPs. The underlying for this size reduction is that the hydration layer of the SiO2-NP is thinned due to the influence of the added OTES [38]. Additionally, the mean PSD is reduced from 102 to 45 nm because of the functionalization of mercaptoterminated SiO2-NPs using sodium oleate through the thiol-ene “click” reaction [32]. Unlike the reduction of the mean PSD after SiO2-NPs are functionalized, as mentioned above, the mean PSD of functionalized SiO2-NPs is increased by modifiers GPTMS [31] and internal olefins sulfonates [33]. After the functionalization, the mean PSD of the SiO2-NP is increased from 20 to 30 ~ 40 nm [31] and 40 to 90 nm [33], respectively, due to changes in the surface coating and electrical properties of the functionalized SiO2-NPs [31,32,37].




2.2.3. Wettability


Surface wettability alternation [51,52,53] of bare and functionalized SiO2-NPs can be quantified by contact angle measurements directly on the bare and functionalized SiO2-NP surface or SiO2-NP coated substrate surface [35]. Additionally, due to the correlation between the immersion heat of SiO2-NP and the contact angle [54], the change in wettability can be reflected by measuring the immersion heat of SiO2-NP before and after functionalization [39]. This technique employs the enthalpy of immersion, a consequence of altering the Gibbs free energy derived from substituting a solid-gas interface with a solid-liquid one. The solid-liquid contact angle’s relationship with enthalpy of immersion is related by the Young–Laplace equation [39], as Equation (1).


  cos θ =   − K T −  h i  −  π e     γ  l v      



(1)




where  θ  is the solid–liquid contact angle,  K  is the difference between the temperature dependence of solid surface tension and solid-liquid interfacial tension,  T  is the absolute temperature,    h i    is the immersion enthalpy,    π e    is the difference between the solid surface tension and the solid–vapor surface tension, and    γ  l v     is the liquid–vapor surface tension.



The trends and images of contact angle changes for bare and functionalized SiO2-NPs with DCDMS are shown in Figure 7A. After the functionalization of SiO2-NP via removing the –OH group from the SiO2-NP surface with various amounts of DCDMS, the surface wettability of the functionalized SiO2-NP changed from hydrophilic to hydrophobic. As shown in Figure 7A, as the molar ratio (MR) between DCDMS and SiO2-NPs increased from 0 to 5.17, the water contact angle increased from 34.7° to 155°. With the further increase in the MR, the contact angle would slightly decrease and stabilize at 135°. The surface grafting rate is an important index for evaluating the reaction progress of surface functionalization. The grafting rate is defined as the ratio of the removal number of OH in modified silica to the OH number in unmodified silica. The trend in the contact angle change before and after functionalization is consistent with the trend in the grafting rate of DCDMS on the SiO2-NP surface, as shown in Figure 7, further pointing out that the change in the SiO2-NPs surface wettability is related to the amount of modifier used [35].




2.2.4. Functional Groups


Fourier transform infrared reflection (FTIR) is generally used to characterize the functional group’s changes of SiO2-NP before and after functionalization [1,20,34,35,36,40], as shown in Figure 8. Using FTIR to detect specific functional groups, attention should be paid to potential interferences during sample preparation, as well as the limitations of information loss between the 2800 cm−1 and 3700 cm−1 region caused by the absorption characteristics of water [55]. In FTIR spectrum, the absorption peak of different vibration can be used as a basis to indicate the existence of functional groups [56]. The transmittance represents the absorption intensity of the absorption peak. The initial surface functional group of SiO2-NPs only has Si–O–Si groups. It can be indicated by Figure 8A at stretching vibration peak near 1100 cm−1 and bending vibration peak near 470 cm−1. After the interaction between VTES and SiO2-NPs, vinyl groups are generated on the surface of SiO2-NP, resulting in the stretching vibration peak of C–H at 2960 cm−1. In addition, the C=C groups skeleton vibration peak between 1600 and 1450 cm−1 is confirmed the existence of benzene. The emergence of new absorption peaks of vinyl and benzene confirms that the benzimidazole group has been successfully grafted onto the surface of SiO2-NPs [20].



Similarly, as shown in Figure 8B, after the 3-aminopropyl triethoxysilane (APTS) functionalization of SiO2-NP, due to the asymmetric and symmetric stretching vibrations of the CH2 groups [57], the new peaks at 2870 and 2824 cm−1 are significantly different from the bare SiO2-NP peaks [40]. Moreover, the N–H bending vibration introduced by the amino group generated a new spectral band at 1564 cm−1. Additionally, another peak at 3501 cm−1 indicated the N–H stretching vibration [58]. The successful preparation of APTS functionalized SiO2-NP can be verified by the above spectral changes [40]. Additionally, as shown in Figure 8C, different amounts of modifier can affect the transmittance of FTIR spectra of SiO2-NP. As the amount of modifier is increased, the absorbance of surface structural water, at 3200–3600 cm−1, and surface hydroxyl groups, at 1636 cm−1, is gradually weakened. The grafting of DCDMS onto the surface of SiO2-NPs causes polar -OH groups to be replaced by nonpolar -CH3 groups, resulting in strong stretching vibration at 1091 and 803 cm−1 of the functionalized SiO2-NPs. As a result, the particle’s surface changes from hydrophilic to hydrophobic. Therefore, the degree of hydrophobic functionalization of SiO2-NPs can be adjusted at the molecular level by changing the amount of modifier DCDMS [35].




2.2.5. Surface Electrical Properties


Surface electrical properties of the SiO2-NPs can be characterized by Zeta potential measurements [1,20,32,36,38]. As shown by curve A1 in Figure 9, initial SiO2-NPs exhibit a negative Zeta potential. By comparison, after -NH2 functionalization, the Zeta potential became positive, illustrated by curve A2 in Figure 9. It indicates that a positively charged -NH2 has been functionalized onto the surface of the SiO2-NP [1]. Additionally, in the solution, the grafted -COONa group is ionized, causing a negative charge on the surface of the mercaptoterminated SiO2-NPs functionalized through the thiol-ene “click” reaction with sodium oleate [32]. Therefore, SiO2-NPs with the desired electrical properties can be obtained by modifying the particles with modifiers of different electrical properties [1,32]. Furthermore, the surface electrical properties of the SiO2-NPs before and after functionalization can be characterized by quartz crystal microbalance (QCM). QCM is a highly sensitive analytical technique. It can monitor the charge changes during the adsorption process of modifiers. Thus, the characterization of the surface electrical changes of SiO2-NPs before and after functionalization is achieved [59].



Additionally, the high stability of the SiO2-NP solution is beneficial for EOR [1]. The higher the absolute Zeta potential value of the SiO2-NPs, the higher the stability of the solution [60]. After functionalizing with amino, the amino group related boarded electric double layer surrounds the functionalized SiO2-NP. The Zeta potential of the SiO2-NP is decreased from −37.7 to −45.5 mV. A decrease in Zeta potential intensity was observed around −50 mV [36], as shown by curves B1 and B2 in Figure 9. Additionally, the Zeta potential of functionalized SiO2-NP could be affected by pH [20,36,38], as shown in Figure 10. At pH 3–9, the Zeta potential of the SiO2-NP is negative. This is due to the presence of a large amount of silicon hydroxyl groups, mainly including isolated silanol groups (19%, pKa = 4.9) and bissilanol groups [19,61] (81%, pKa = 8.5) on the surface of the particles [38]. As the pH value increases, the absolute value of the Zeta potential of the SiO2-NPs solution increases due to the continuous dissociation of silanol groups as the pH increases. For APTES + OTES functionalized SiO2-NP, the Zeta potential of the functionalized SiO2-NP solution decreases with the increase in pH value. This phenomenon might be attributed to the gradual decrease in the degree of cationization of amino groups on the surface of the SiO2-NPs [38].






3. Current Research Gaps and Future Outlooks


Functionalized SiO2-NP maintains the excellent characteristics of nanoparticles, such as ultra-small size, a high surface-to-volume ratio, low costs, and environmental friendliness [23]. The surface functionalization also changes its wettability [35,39], surface electrical properties [1,20,32,36,38], and surface functional groups [1,20,34,35,36,40], making functionalized SiO2-NPs more effective in EOR [1,7,20,21,22,23,24,25,26,27,35]. Thus, functionalized SiO2-NPs are enabled to play a huge role in EOR and attract the attention of many researchers [1,20,21,22,23,31,32,33,38,40,62,63,64]. Although researchers have conducted detailed research on related fields, there are still research gaps. Therefore, current research gaps have been identified, and future outlooks are listed below.



	(1)

	
Surface functionalization of SiO2-NPs occasionally has low grafting rates or coating failures [35]. To circumvent these issues, it is recommended to introduce innovative coating agents such as catalysts or ionic liquids and modulate environmental conditions such as temperature and pressure. Another possibility is to alter the surface properties of SiO2-NP during synthesis to augment functionalization efficiency [24].




	(2)

	
The effect of functionalization on SiO2-NP surface roughness remains underexplored despite the potential influence of roughness on particle wettability [65]. Hence, it becomes essential to extensively characterize the state of particle surface roughness both before and after modification.




	(3)

	
The wettability of the SiO2-NP surface plays an important role in the EOR mechanism [66]. The current method for the characterization of SiO2-NP surface wettability needs further improvement. It is recommended that SiO2-NP surface wettability be characterized using microfluidics [67] combined with immersion thermal measurements [39].




	(4)

	
In the process of improving crude oil recovery, some specific chemicals such as biodiesel-based flow improvers (Biodiesel based on soybean oil) and a non-ionic surfactant (Alkyl glucoside derivative) are used in the process to improve crude oil recovery [68,69]. Attempting EOR of specific chemicals mixed functionalized SiO2-NP. Similar to the evaluation of functionalized SiO2-NP in EOR, the performance of EOR of these two chemical products and the mixtures can be evaluated through core flooding experiments or microfluidic experiments [44,46,47,50].




	(5)

	
The addition of functionalized SiO2-NPs during the geological storage of CO2 in natural gas hydrate reservoirs reduces the fluidity of CO2 and improves its geological storage efficiency. Furthermore, the potential impact of functionalized SiO2-NPs on hydrogen geological storage and farming, such as the wettability of geological rock surfaces, solid–fluid interface tension, capillary pressure, relative permeability, and flowability ratio, may be affected by using functionalized SiO2-NPs [70,71,72,73].








4. Conclusions


Functionalized SiO2-NPs have great potential for application in EOR. Initial SiO2-NPs need to be functionalized to be better applied in EOR. Functionalization of SiO2-NP is mainly achieved through surface coating. Current research has conducted detailed studies on surface functionalization of SiO2-NPs, characterization before and after functionalization, and evaluation of EOR application. However, a review comparing and summarizing relevant content is still needed. Therefore, relevant research content has been reviewed, and some conclusions have been reached, as outlined below.



	(1)

	
Physical adsorption [21] and chemical bonding [20] are the main methods for SiO2-NP surface functionalization, where physical adsorption functionalization typically occurs between SiO2-NP and surfactants, while chemical bonding happens between SiO2-NP and any modifier, both surfactants and polymers [24].




	(2)

	
Whether the modifier is grafted onto the surface of SiO2-NP is an important factor affecting the surface wettability, functional groups, and electrical properties of functionalized SiO2-NP [20,32,35].




	(3)

	
The types of modifiers have a significant impact on the surface properties of SiO2-NPs [31,32,37]. Current characterization techniques mainly focus on analyzing the surface properties of SiO2-NPs before and after functionalization, such as morphology, size distribution, wettability, functional groups and electrical properties [24].







In summary, this review paper is provided to improve the fundamental understanding of the functionalization of SiO2-NP and its characterization.
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Figure 1. Schematic of (A) physical adsorption process [21] and (B) chemical bonding process [20]. (Modified from Mingwei Zhao et al. [21] and Caili Dai et al. [20]). 






Figure 1. Schematic of (A) physical adsorption process [21] and (B) chemical bonding process [20]. (Modified from Mingwei Zhao et al. [21] and Caili Dai et al. [20]).



[image: Energies 17 03429 g001]







[image: Energies 17 03429 g002] 





Figure 2. Schematic diagram of SiO2-NP functionalization and its application in EOR [1]. 
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Figure 3. SEM and TEM images with unchanged particle shape and average size before and after functionalization [34,36,42]. (a,c,e), initial SiO2-NPs; (b,d,f), functionalized SiO2-NPs. SEM images: (a,b); TEM images: (c–f) (Scale bars: 100 nm, 100 and 200 nm for (a,b), (c,d) and (e,f), respectively) (Modified from Lu, HT et al. [34], Zhao, M et al. [42] and Sun, D et al. [36]). 
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Figure 4. TEM images of changes in particle shape and average size before and after functionalization [31,32,37]. (a,c,e), initial SiO2-NPs; (b,d,f), functionalized SiO2-NPs. (Scale bars: 200 nm, 50 and 10 nm for (a,b), (c,d) and (e,f), respectively.) (Modified from Hochang Jang et al. [31], Yun Bai et al. [32] and Shifeng Wen et al. [37]). 
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Figure 5. Statistical analysis of the size distribution of SiO2-NPs before and after functionalization [31,32,34,35,36,37]. 
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Figure 6. Size distribution of initial and functionalized SiO2-NPs [35,38]. (A): DCDMS functionalization; (B): APTES + OTES functionalization. SiO2-NPs-1: Mole ratio of OTES/APTES is 1:3, SiO2-NPs-2: Mole ratio of OTES/APTES is 1:1, SiO2-NPs-3: Mole ratio of OTES/APTES is 3:1 (Modified from Yong-li Yan et al. [35] and Jie Cao et al. [38]). 
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Figure 7. (A): Contact angle changes in the preparation of SiO2-NPs due to different dosages of DCDMS [35]; (B): Surface grafting rate of SiO2-NPs functionalized with varying amounts of DCDMS [35]. (Modified from Yong-li Yan et al. [35]). 
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